JPS59228183A - Radiation sensor - Google Patents
Radiation sensorInfo
- Publication number
- JPS59228183A JPS59228183A JP58104607A JP10460783A JPS59228183A JP S59228183 A JPS59228183 A JP S59228183A JP 58104607 A JP58104607 A JP 58104607A JP 10460783 A JP10460783 A JP 10460783A JP S59228183 A JPS59228183 A JP S59228183A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- radiation
- transmission loss
- optical
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 42
- 239000013307 optical fiber Substances 0.000 claims abstract description 51
- 238000001514 detection method Methods 0.000 claims abstract description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 abstract description 27
- 230000003287 optical effect Effects 0.000 description 27
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 12
- 239000000463 material Substances 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 5
- 206010073306 Exposure to radiation Diseases 0.000 description 3
- 238000005253 cladding Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/02—Dosimeters
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Radiation (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は被曝線量に相応、して光伝送損失が変化する光
ファイバを用いた検出部と、耐放射線性を備える光ファ
イバを用いたリード部とを有する新規な放射線センサー
に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a novel radiation detector having a detection part using an optical fiber whose optical transmission loss changes according to the exposure dose, and a lead part using an optical fiber having radiation resistance. It's about sensors.
従来、放射線センサーは種々のものが提案されているが
、被曝線量(又は照射線量)の検出には多成分ガラス片
等が用いられている。これは被曝線量に応じて変化する
多成分ガラス片の光学的変化を利用するものであって、
放射線場に多成分ガラス片を放置しておき、所定時間毎
にこれを取り出してその光学的変化を調べ、変化の程度
によって被曝線量を求めるようになっている。しかし、
このような手段にあっては被曝線量を離散的に求め得る
に過ぎず、連続的な測定が出来ないこと、また検出に際
してはその都度放射線場から取り出し、別途用意した検
出器にて検出を行わねばならず、画定作業が煩わしく、
まだ被曝線量をリアルタイムに検出することが出来ない
ことなどの欠点があった。Conventionally, various types of radiation sensors have been proposed, and a multi-component glass piece or the like has been used to detect the exposure dose (or irradiation dose). This utilizes optical changes in multi-component glass pieces that change depending on the radiation dose.
A piece of multi-component glass is left in a radiation field, taken out at predetermined intervals to examine its optical changes, and the exposure dose is calculated based on the degree of change. but,
With such methods, the exposure dose can only be determined discretely, and cannot be measured continuously.Also, when detecting radiation, it must be taken out of the radiation field each time and detected using a separately prepared detector. The definition work is troublesome,
There were drawbacks, such as the inability to detect radiation doses in real time.
この対策として本発明者等が知見した、Ti及び/又は
Pの如き特定成分をドープしたコアを有する光ファイバ
は時間当りの被曝線量が変化しても光伝送損失の変化量
が略一定しているという特性を利用して、逆にこの極光
ファイバの光伝送損失量の変化を検出することによシ被
曝線量を容易に、しかもリアルタイムに測定し得る放射
線センサーにつき既に出願をしている(特願昭58−3
1362号)。As a countermeasure to this problem, the inventors discovered that optical fibers with cores doped with specific components such as Ti and/or P have a substantially constant change in optical transmission loss even if the exposure dose per hour changes. We have already filed an application for a radiation sensor that can easily and in real time measure the exposure dose by detecting changes in the optical transmission loss of this extremely optical fiber. Gansho 58-3
No. 1362).
本発明は上述の既出願に係る発明を更に発展させたもの
であって、放射線場に配した検出部と、非放射線場に配
した放射線量計とが離れている場合、その間に長いリー
ド部を設ける必要があるが、このリード部に用いる光フ
ァイバが線源がらの漏洩放射線の被曝によりその光伝送
損失が変化すると、検出部の放射線感度を向上しても、
十分な検出精度が得られないという問題に対処すべくな
されたものであシ、その要旨とするところは石英ガラス
にTi及び/又はPをドープしたコアを有する光ファイ
バからなる放射線検知部と、各一端部が前記光ファイバ
の両端部に接続され、各他端部の一方が光源に、他方が
線量計に各接続され、石英ガラスのOH基含有量を1
ppm以下としたコアを有する光ファイバを用いたリー
ド部とを具備し、1.3μm帯の光を伝送せしめること
により、放射線をその被曝による光量変化を通じて検出
し、放射線の検出精度を格段に高め得るようにしたこと
を特徴とするものである。The present invention is a further development of the invention related to the above-mentioned existing application, and when the detection section disposed in a radiation field and the radiation dosimeter disposed in a non-radiation field are separated, a long lead is provided between them. However, if the optical fiber used for this lead section changes its optical transmission loss due to exposure to leakage radiation from the radiation source, even if the radiation sensitivity of the detection section is improved,
This was made to deal with the problem of not being able to obtain sufficient detection accuracy, and its gist is that a radiation detection section consisting of an optical fiber having a core made of quartz glass doped with Ti and/or P; One end of each is connected to both ends of the optical fiber, one of the other ends is connected to a light source, and the other end is connected to a dosimeter.
It is equipped with a lead part using an optical fiber with a core of ppm or less, and by transmitting light in the 1.3 μm band, radiation can be detected through changes in light intensity due to exposure, and radiation detection accuracy has been greatly improved. It is characterized by the fact that it can be obtained.
尚、本発明において使用波長1.3μm帯とは1.31
tm〜1.4μm帯のものを意味する。In addition, in the present invention, the wavelength band used in the 1.3 μm band is 1.31 μm.
It means a band of tm to 1.4 μm.
、以下本発明をその実施例を示す図面に基づき具体的に
説明する。第1図は本発明に係る放射線センサー(以下
本発明υという)の使用状態を示す模式的正面図、第2
図は同じく模式的側面図であり、図中Aは放射線場、B
は非放射線場、Cは放射線の遮閉壁を示している。遮閉
壁Cの内1i+11 、即ち放射線場Aにはセンサ一本
体を構成する光ファイバ1が支承具2に装着されて配設
され、その両端部には接続具3,4を用いてリード部を
(14成する光ファイバ5.6の各一端が接続され、光
ファイバ5,6の各他端は遮閉壁Cを通して非放射線場
Bに配設した光源7、線量計8に接続されている0
支承具2は矩形の取付台21における表面中央に支柱2
2を立設すると共に、支柱22の上端に止ねじ23を用
いて、中間部に円盤24を固定した揺動杆25の一端を
回動可能に固定して構成されており、前記上ねじ23を
緩めることによシ該止ねじ23回プに揺動杆25、円盤
24を前、後方向に略180°の範囲にわたって傾動せ
しめ得、また止ねじ23を緊締することによって、上記
範囲内の任意位置に固定し得るようになっている。Hereinafter, the present invention will be specifically explained based on drawings showing embodiments thereof. FIG. 1 is a schematic front view showing the usage state of the radiation sensor according to the present invention (hereinafter referred to as the present invention υ), and FIG.
The figure is also a schematic side view, where A is the radiation field and B is the radiation field.
indicates a non-radiation field, and C indicates a radiation shielding wall. In 1i+11 of the shielding wall C, that is, in the radiation field A, an optical fiber 1 constituting the main body of the sensor is attached to a support 2, and a lead portion is connected to both ends using connectors 3 and 4. (14 optical fibers 5 and 6 are connected at one end, and the other ends of the optical fibers 5 and 6 are connected to a light source 7 and a dosimeter 8 arranged in a non-radiation field B through a shielding wall C. 0 The support 2 has a support 2 in the center of the surface of the rectangular mounting base 21.
2 is erected, and a set screw 23 is used at the upper end of the support column 22 to rotatably fix one end of a swinging rod 25 to which a disk 24 is fixed at the middle part. By loosening the set screw 23, the swinging rod 25 and the disc 24 can be tilted forward and backward over a range of approximately 180 degrees, and by tightening the set screw 23, the swing rod 25 and the disc 24 can be tilted within the above range. It can be fixed in any position.
円盤24は放射線の透過率の高い素材、例えばアルマイ
ト等にて所要の直径(150mm程度)に形成され、外
周面には断面円弧状の凹溝24aを備え、中心部を図示
しない止ねじにて揺動杆25に対し着脱可能に固定され
ており、放射線場Aの床面、或いは側壁等に取付台21
をねじ止めすることにより配設されるようになっている
。なお揺動杆25、支柱22、取付台21等の材質につ
いては特に限定するものではないが、これらが支承具2
の配置態様によっても放射線に対する障壁とならないよ
う円盤24と同様の素材を用いて形成しておくのが望ま
しい。26は取付台21上面に配設したリード品用光フ
ァイバ5.6の保持具である0光フアイバ1としては石
英ガラスにTi及び/又はPを夫々所定の割合でドープ
したコアを有するものが用いられ、例えばTiを単独に
ドープさせる場合はこれを0.5〜10モルチ、望まし
くは5モルチ前後、またP単独にドープさせる場合はこ
れを0.5〜30モルチ、望ましくは25モル%前後、
更にTi及びPを共にドープさせる場合は全体として0
.5〜30モル係とするのが望ましい。Tiのドープ量
を0.5〜10モル係としたのは0.5モル係以下では
十分な感度、即ち被曝線量に対する光伝送損失量が得ら
れず、また10モル係以上では感度の向上は期待出来る
が光ファイバの母材の製造が(ホ)難となることによる
。■)のドープ量についても同様であって、0.5モル
係以下では感度が、また30モル係以上では光フアイバ
母材の製造が困難となることによる。The disk 24 is made of a material with high radiation transmittance, such as alumite, to a required diameter (approximately 150 mm), has a groove 24a with an arcuate cross section on its outer circumferential surface, and has a set screw (not shown) in the center. It is removably fixed to the swinging rod 25, and the mounting base 21 is attached to the floor or side wall of the radiation field A.
It is designed to be installed by screwing it. Note that there are no particular limitations on the materials of the swinging rod 25, the support column 22, the mounting base 21, etc.;
It is desirable to form the disk 24 using the same material as the disk 24 so that it does not act as a barrier to radiation depending on the arrangement thereof. 26 is a holder for the optical fiber 5.6 for lead products arranged on the top surface of the mount 21. The optical fiber 1 has a core made of quartz glass doped with Ti and/or P in predetermined proportions. For example, when Ti is doped alone, it is 0.5 to 10 mol%, preferably around 5 mol%, and when P is doped alone, it is 0.5 to 30 mol%, preferably around 25 mol%. ,
Furthermore, when Ti and P are doped together, the overall value is 0.
.. It is desirable to set it as 5-30 molar ratios. The reason for setting the Ti doping amount to 0.5 to 10 molar ratio is that if it is less than 0.5 molar ratio, sufficient sensitivity, that is, the amount of optical transmission loss for the exposure dose, cannot be obtained, and if it is more than 10 molar ratio, there is no improvement in sensitivity. Although this is expected, it will (e) be difficult to manufacture the optical fiber base material. The same applies to the doping amount in (2); if it is less than 0.5 molar, the sensitivity will be poor, and if it is more than 30 molar, it will be difficult to manufacture the optical fiber base material.
また光ファイバの長さはこれを長くすると被曝線量に対
する全体としての光伝送損失量が大きくなるため、線量
計8の測定感度を向上せしめることが可能となる。Furthermore, as the length of the optical fiber is increased, the overall amount of optical transmission loss relative to the exposure dose increases, so it is possible to improve the measurement sensitivity of the dosimeter 8.
なお光ファイバ1のクラッド層の材質、或いはドーパン
トについては特に限定するものではなく、従来より用い
られている、例えばポリマーのクラッド、石英系ガラス
のクラッド等を適宜採用し得る0
@3.4図は石英ガラスにTi及び/又はPをドープし
たコアを有する光ファイバの照射線量とそれによる光伝
送損失量との関係を示すグラフであシ、いずれも横軸に
照射線量Rを、また縦軸には光伝送損失fjk (d
B/km )をとって示しである。第3図は石英ガラス
にTiを5モルチドープしたコアを有する光ファイバに
ついての、また第4図は石英ガラスにPを25モルチド
ープしたコアを有する光ファイバについての実験結果を
示している。なお実験は光ファイバの一端から14.4
μWで波長0.88μmの光を入射せしめ、光ファイバ
の他端で受光量を検出し、γ線を照射したときの被曝線
量と光伝送損失量(dB/km)とを求めた。第3図中
○印でプロットしたのはTiを5モルチドープしたコア
を有する光ファイバ10’mに5X103(R7時)の
割合でγ線を照射したときの結果を、またΔ印でプロッ
トしたのは同様の光ファイバ10mにI X 10’(
R7時)の割合でγ線を照射したときの結果を示してい
る。Note that there are no particular limitations on the material or dopant for the cladding layer of the optical fiber 1, and conventionally used materials such as polymer cladding, silica glass cladding, etc. can be used as appropriate. is a graph showing the relationship between the irradiation dose and the resulting optical transmission loss of an optical fiber having a core made of quartz glass doped with Ti and/or P. In both cases, the horizontal axis represents the irradiation dose R, and the vertical axis represents the irradiation dose R. is the optical transmission loss fjk (d
B/km). FIG. 3 shows the experimental results for an optical fiber having a core in which quartz glass is doped with 5 moles of Ti, and FIG. 4 shows the experimental results for an optical fiber having a core in which quartz glass is doped with 25 moles of P. The experiment was conducted from one end of the optical fiber at 14.4
Light with a wavelength of 0.88 μm was made incident at μW, the amount of light received was detected at the other end of the optical fiber, and the exposure dose and optical transmission loss amount (dB/km) when γ-rays were irradiated were determined. In Figure 3, the ○ mark plots the result when a 10'm optical fiber with a core doped with 5 moles of Ti is irradiated with γ-rays at a ratio of 5 x 103 (R7), and the Δ mark plots the result. is a similar optical fiber of 10 m with I x 10' (
The results are shown when γ-rays were irradiated at a rate of R7.
一方、第4図のグラフ中○印でプロットしたのはPを2
5モル係ドープしたコアを有する光ファイバ50mに5
X10”(R7時)の割合でγ線を照射したときの結果
を、また・印でプロットしたのは上記と同様の光ファイ
バ50 rnにI X 1.0’ (R/IJの割合で
γ線を照射したときの結果を夫々ンj<シている。そし
て第3.4図において、実^#Z、、Z2は上記夫々の
結果を集約した基準線を示している。On the other hand, what is plotted with a circle in the graph of Figure 4 is that P is 2
50m of optical fiber with 5molar doped core
The results when γ-rays were irradiated at a ratio of The results obtained when irradiating the lines are shown in FIG.
上記各グラフから明らかな如く、夫々の結果に若干のず
れは認められるが、時間当りの被II’≠組゛Hに殆ん
ど影響されることなく光伝送損失量が略一定の割合で変
化しているのが解る。ここでは第3゜4図とも0.88
μmの波長での特性を示したが、その他の波長(例えば
1.3μmの波長)を使用した場合も略同様の傾向を示
す。As is clear from the graphs above, although there are slight deviations in the results, the amount of optical transmission loss changes at an almost constant rate, almost unaffected by the set II'≠H per time. I understand what you're doing. Here, both figures 3 and 4 are 0.88.
Although the characteristics at a wavelength of .mu.m are shown, substantially the same tendency is shown when other wavelengths (for example, a wavelength of 1.3 .mu.m) are used.
一方、リード部を構成する光ファイバ5.61;i石英
ガラス中のOH基含有量が1 ppm以下の冒純度石英
ガラス製のコアを有する光ファイバにて構成されている
。OH基含有量を1 ppm以下とするのは放射線被曝
環境下においては1.3μIn帯で、しかも0H含有量
の少ないファイバを使用するのが光伝送損失の低減効果
が大きいとの知見に基づくものである。On the other hand, the optical fiber 5.61 constituting the lead portion is composed of an optical fiber having a core made of impurity quartz glass in which the content of OH groups in the quartz glass is 1 ppm or less. The reason for setting the OH group content to 1 ppm or less is based on the knowledge that in a radiation-exposed environment, the 1.3μIn band is used, and that using fiber with a low OH content is more effective in reducing optical transmission loss. It is.
なお上記光ファイバのクランド層の拐質、或いはドーパ
ントについては特に限定するものではなく、従来公知の
ポリマークランド、石英クラッド等を適宜採用し得る。Note that there are no particular limitations on the material or dopant for the crund layer of the optical fiber, and conventionally known polymer cruds, quartz clads, etc. may be used as appropriate.
第5図はコア中のOH基含有用:と放射線被曝後の光伝
送損失量との関係を示すグラフであり、横軸に光フアイ
バ中のOH基含有量を、まだ縦軸に光伝送損失1tr
(d B/km )をとって示しである。グラフ中実線
は1.3μm帯の光を用いた場合を、また破線は0.8
5μm帯の光を用いた場合を示している。なお照射線量
は105Rである。このグラフから明らかな如く、0.
85μm帯の光を用いた場合にはOH基含有量の最適値
はあるが、光伝送損失量が比較的大きいのに対し、1.
3μm帯の光でOH基含有量を少なくした光ファイバを
使用すれば光伝送損失量が低く、10ppm程度では1
.3μm帯の光を用いる場合と大差がないが、i pp
m以下では0.85μm帯の光を用いる場合に比較して
光伝送損失量が格段に低減され、その差が顕著なものと
なっていることが解る0
第6図はOH基含有量を50 ppbとした高純度石英
製コアを有する光ファイバに1.30/Am帝の光を伝
送した場合と、OH基含有量を300ppmとした高純
就石英ガラスコアを有する光ファイバに0.8μm ’
ijFの光伝送を行った場合との放射線被曝後における
光伝送損失量との関係を示すグラフであり、横軸に照射
線量(R7時)を、また縦軸に光伝送損失量(dB/k
m)をとって示しである。グラフ中実線はOH基50
ppbとした場合の、また破線はO■(基含有量を30
0 ppmとした場合の結果を示している。このグラフ
から明らかなように、OH基含有量を少なく、また使用
光の波長を大きくした場合は、OH基含有量を多く、ま
た使用光波長を小さくした場合に比較して光伝送損失量
は格段に低減していることが解る。Figure 5 is a graph showing the relationship between the content of OH groups in the core and the amount of optical transmission loss after exposure to radiation, with the horizontal axis representing the OH group content in the optical fiber and the vertical axis representing the optical transmission loss. 1tr
(dB/km) is shown. The solid line in the graph represents the case using 1.3 μm band light, and the broken line represents the case using 0.8 μm band light.
The case where light in the 5 μm band is used is shown. Note that the irradiation dose was 105R. As is clear from this graph, 0.
When using light in the 85 μm band, there is an optimal value for the OH group content, but the amount of optical transmission loss is relatively large;
If an optical fiber with a reduced OH group content is used for light in the 3 μm band, the optical transmission loss will be low; at around 10 ppm, the loss will be 1
.. There is not much difference from using light in the 3 μm band, but ipp
It can be seen that below the OH group content of 50 μm, the optical transmission loss is significantly reduced compared to the case of using light in the 0.85 μm band, and the difference is remarkable. When transmitting light of 1.30/Am to an optical fiber having a high-purity quartz core with ppb and 0.8 μm' to an optical fiber having a high-purity quartz glass core with an OH group content of 300 ppm.
This is a graph showing the relationship between the optical transmission loss after radiation exposure and the case of optical transmission of ijF, with the horizontal axis representing the irradiation dose (at R7), and the vertical axis representing the optical transmission loss (dB/k).
m) is shown. The solid line in the graph is OH group 50
In the case of ppb, the broken line is O■ (group content is 30
The results are shown in the case of 0 ppm. As is clear from this graph, when the OH group content is decreased and the wavelength of the light used is increased, the amount of optical transmission loss is lower than when the OH group content is increased and the wavelength of the light used is decreased. It can be seen that it has been significantly reduced.
而して上述の如く構成された本発明品においてはこれを
放射線場A内の適所に取付台21を用いて設置し、止ね
じ23を緩めて揺動杆25を止ねじ23回りに回転させ
、円盤24の中心線、換言すれば光ファイバ1のコイル
状部分の軸心線を、例えば放射線源に向けた状態で止ね
じ23を緊締する。発光部7にて1.3μm帯の光を発
生させ、光をこれに接続した光ファイバ5に入射させ、
光ファイバ1,6を経て#J!量計8にて捉えて、 そ
の光量の変化から被曝線量を算出表示する。Therefore, in the product of the present invention configured as described above, it is installed at a suitable location within the radiation field A using the mounting base 21, and the set screw 23 is loosened and the swinging rod 25 is rotated around the set screw 23. The set screw 23 is tightened with the center line of the disk 24, in other words, the axis of the coiled portion of the optical fiber 1 facing, for example, the radiation source. The light emitting unit 7 generates light in the 1.3 μm band, and the light is input to the optical fiber 5 connected to the light emitting unit 7.
#J via optical fibers 1 and 6! The exposure dose is calculated and displayed from the changes in the amount of light captured by the radiation meter 8.
なお上述の説明は放射線としてγ線の場合につき説明し
だが、これに限らず、中性子線その他の放射線にも適用
し得ることは勿論である。In addition, although the above description was made in the case of γ rays as the radiation, the invention is not limited to this and can of course be applied to neutron rays and other radiations.
以上の如く本発明品にあっては検知部には時間当りの被
曝線量が変化しても光伝送損失の変化量が略一定の光フ
ァイバを、またリード部には耐放射線性を有する光ファ
イバを用いているから、漏洩放射線によるリード部の光
伝送変化を可及的に低減し得て、検知部による検出値
を正確に捉えることが出来、またリード部による影響を
容易に補正することが可能となり、検出精度の格段の向
上を図ることが出来るなど、本発明は優れた効果を奏す
るものである。As described above, the product of the present invention uses an optical fiber in which the amount of change in optical transmission loss is approximately constant even if the exposure dose per hour changes, and an optical fiber with radiation resistance in the lead part. Because it uses a
The present invention exhibits excellent effects, such as being able to accurately capture the information, making it possible to easily correct the influence of the lead portion, and making it possible to significantly improve detection accuracy.
【図面の簡単な説明】
第1図は本発明品の使用状態を示す模式的正面図、第2
図は同じく模式的側面図、第3図は本発明品の検知部に
用いる光ファイバにおける被i1’、A 10量と光伝
送損失量との関係を示すグラフ、第4図は本発明品のリ
ード部に用いる光ファイバにおける放射線量と光伝送損
失量との関係を示すグラフ、第5図はOH基含有量と放
射線被曝後の光伝送]員失量との関係を示すグラフ、第
6図は照射線叶と光伝送損失との関係を示すグラフであ
る。
1・・・光ファイバ 2・・・支承具 3,4・・・接
続具5.6・・・光ファイバ 21・・・取付台 22
・・・支柱23・・・止ねじ 24・・・円Dk 2
4 a・・・凹(1道25・・・揺動杆 26・・・保
持具
特許出願人 大日日本電線株式会社
代理人弁理士 河 野 登 夫
第1図
第2図[Brief Description of the Drawings] Figure 1 is a schematic front view showing the product of the present invention in use;
The figure is also a schematic side view, Figure 3 is a graph showing the relationship between the amount of irradiation i1', A10 and the amount of optical transmission loss in the optical fiber used in the detection part of the product of the present invention, and Figure 4 is a graph of the product of the present invention. Figure 5 is a graph showing the relationship between the radiation dose and optical transmission loss in the optical fiber used for the lead part, and Figure 6 is a graph showing the relationship between the OH group content and optical transmission loss after radiation exposure. is a graph showing the relationship between irradiation rays and optical transmission loss. 1... Optical fiber 2... Supporting tool 3, 4... Connection tool 5.6... Optical fiber 21... Mounting stand 22
...Strut 23...Set screw 24...Circle Dk 2
4 a... Concave (1 way 25... Swinging rod 26... Holder Patent applicant Dainichi Nippon Cable Co., Ltd. Patent attorney Noboru Kono Figure 1 Figure 2
Claims (1)
有する光ファイバを備えた放射線検知部と、各一端部が
前記光ファイバの両端部に接続され、各他端部の一方が
光源に、他方が線量計に各接続され、石英ガラスのOH
基含有量をi ppm以下としたコアを有する光ファイ
バを用いたリード部とを具備し、1.3μm帯の光を伝
送せしめるようにしたことを特徴とする放射線センサー
。1. A radiation detection unit equipped with an optical fiber having a core made of quartz glass doped with Ti and/or P; one end of each is connected to both ends of the optical fiber, and one of the other ends is connected to a light source; The other is connected to each dosimeter, and the OH of quartz glass
1. A radiation sensor comprising: a lead portion using an optical fiber having a core having a group content of i ppm or less, and transmitting light in the 1.3 μm band.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58104607A JPS59228183A (en) | 1983-06-10 | 1983-06-10 | Radiation sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58104607A JPS59228183A (en) | 1983-06-10 | 1983-06-10 | Radiation sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59228183A true JPS59228183A (en) | 1984-12-21 |
Family
ID=14385104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58104607A Pending JPS59228183A (en) | 1983-06-10 | 1983-06-10 | Radiation sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59228183A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102736096A (en) * | 2012-07-13 | 2012-10-17 | 中国石油集团长城钻探工程有限公司 | Enhanced optical fiber nuclear radiation sensor |
-
1983
- 1983-06-10 JP JP58104607A patent/JPS59228183A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102736096A (en) * | 2012-07-13 | 2012-10-17 | 中国石油集团长城钻探工程有限公司 | Enhanced optical fiber nuclear radiation sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5779365A (en) | Temperature sensor for medical application | |
EP0670994B1 (en) | Temperature sensor for medical application | |
US4788436A (en) | Radiation sensitive optical fiber and detector | |
RU2106619C1 (en) | Laser centralizer for x-radiator | |
US20120138806A1 (en) | Novel radiation detector | |
US5640017A (en) | Remote radiation detection device with inorganic scintillating detecting crystal and fiber optic | |
US5012103A (en) | Radiation detector | |
CN116734760A (en) | Device and method for simultaneously detecting curing depth and light transmittance of UV adhesive | |
GB1298658A (en) | Photometer for measuring total radiant energy at selected angles | |
CA2034237C (en) | High resolution scintillation counters | |
CA1197024A (en) | Radiochromic leuko dye real time dosimeter, one way optical waveguide | |
JPS59228183A (en) | Radiation sensor | |
KR840002359B1 (en) | Infrared film thickness meter | |
US3773420A (en) | Apparatus for measuring the thickness of a metal oxide coating on a glass article | |
DE50001263D1 (en) | Optical measuring arrangement for determining the transmission and scattered radiation | |
KR20040028565A (en) | Scintillation detector with gadolinium based sidewall axial restraint and compliance assembly | |
JPS5910837A (en) | Optical measuring device for physical quantity values and substance concentrations | |
AU7961591A (en) | Density-moisture measuring system | |
Montecchi et al. | Study of some optical glues for the Compact Muon Solenoid at the large hadron collider of CERN | |
JPS59155775A (en) | Radiation sensor | |
Pruett et al. | Gamma-ray to Cerenkov-light conversion efficiency for pure-silica-core optical fibers | |
Blumenfeld et al. | Measurement of the reflection coefficient at the core-cladding interface in plastic scintillating fibers | |
JPS60230104A (en) | Optical fiber | |
SU1187563A1 (en) | Method of determining dissipation factor of translucent solid mirror-reflection materials with small absorption factor | |
JPS5918647B2 (en) | How do you know how to use light and light? |