JPS59155775A - Radiation sensor - Google Patents
Radiation sensorInfo
- Publication number
- JPS59155775A JPS59155775A JP3136283A JP3136283A JPS59155775A JP S59155775 A JPS59155775 A JP S59155775A JP 3136283 A JP3136283 A JP 3136283A JP 3136283 A JP3136283 A JP 3136283A JP S59155775 A JPS59155775 A JP S59155775A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- radiation
- exposure dose
- transmission loss
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 29
- 239000013307 optical fiber Substances 0.000 claims abstract description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 230000005540 biological transmission Effects 0.000 abstract description 22
- 239000002184 metal Substances 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 230000003287 optical effect Effects 0.000 description 23
- 230000035945 sensitivity Effects 0.000 description 4
- 238000005253 cladding Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/1606—Measuring radiation intensity with other specified detectors not provided for in the other sub-groups of G01T1/16
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は被曝線量に相応して光伝送損失量が変化する光
ファイバを用いた全く新規な放射線センサーを提供する
にある。DETAILED DESCRIPTION OF THE INVENTION The object of the present invention is to provide a completely new radiation sensor using an optical fiber in which the amount of optical transmission loss changes in accordance with the exposure dose.
従来、放射線センサーは種々のものが提案されているが
、被曝線量(又は照射線量)の検出には多成分ガラス片
等が用いられている。これは被曝線量に応じて変化する
多成分ガラス片の光学的変化を利用するものであって、
放射線場に多成分ガラス片を放置しておき、所定時間毎
にこれを収り出してその光学的変化を調べ、変化の程度
によって被曝線量を求めるようになっている。しかし、
このような手段にあっては被曝線量を離散的に求め得る
に過ぎず、連続的な測定が出来ないこと、また検出に際
してはその都度放射線場から取り出し、別途用意した検
出器にて検出を行わねばならず、測定作業が煩わしく、
また被曝線量をリアルタイムに検出することが出来ない
こと々どの欠点があった。Conventionally, various types of radiation sensors have been proposed, and a multi-component glass piece or the like has been used to detect the exposure dose (or irradiation dose). This utilizes optical changes in multi-component glass pieces that change depending on the radiation dose.
A piece of multi-component glass is left in a radiation field, removed at predetermined intervals, and its optical changes are examined, and the exposure dose is calculated based on the degree of change. but,
With such methods, the exposure dose can only be determined discretely, and cannot be measured continuously.Also, when detecting radiation, it must be taken out of the radiation field each time and detected using a separately prepared detector. measurement work is troublesome,
Another drawback was that the exposure dose could not be detected in real time.
木発明者等は放射線場における光ファイバの光学特性の
変化についての実験研究の過程において、次のような事
実を知見した。即ち、各種成分をドープしたコアを有す
る石英系光ファイバについて、被曝線量(9)と光伝送
損失量(dB/km)との関係につき調査した結果、そ
の殆んどの光ファイバは時間当りの被曝線量が変化する
と夫々に応じて光伝送損失量(dB/km)の変化量が
変わるのに対し、Ti及び/又はPの如き特定成分をド
ープしたコアを有する光ファイバについては時間当りの
被曝線量が変化しても光伝送損失量の変化量が略一定し
ておシ、従って、逆に光伝送損失量の変化を検出するこ
とによって、被曝線量が容易に、しかも正確に検出し得
ることとなることである。The inventors discovered the following facts in the course of experimental research on changes in the optical properties of optical fibers in radiation fields. That is, as a result of investigating the relationship between exposure dose (9) and optical transmission loss (dB/km) for silica-based optical fibers having cores doped with various components, it was found that most optical fibers When the dose changes, the amount of change in optical transmission loss (dB/km) changes accordingly, whereas for optical fibers with cores doped with specific components such as Ti and/or P, the amount of exposure dose per hour changes. Even if the amount of optical transmission loss changes, the amount of change in the amount of optical transmission loss remains approximately constant. Therefore, by detecting the change in the amount of optical transmission loss, the exposure dose can be detected easily and accurately. It is what happens.
第1,2図は光ファイバに対する単位時間当りの照射線
量を変化させたときの被曝線量と光伝送損失量との関係
を示すグラフであり、第1図は石英ガラスにTiを5モ
ル%ドープしたコアを有する光ファイバについての、ま
た第2図は石英ガラスにPを25モル%ドープしたコア
を有する光ファイバについての実験結果を示している。Figures 1 and 2 are graphs showing the relationship between the exposure dose and the amount of optical transmission loss when the irradiation dose per unit time to the optical fiber is changed. FIG. 2 shows experimental results for an optical fiber having a core made of quartz glass doped with 25 mol % of P.
なお実験は光ファイバの一端から14.4zWで波長0
.88/’mの光を入射せしめ、光ファイバの他端で受
光量を検出し、γ、線を照射したときの被曝線量と光伝
送損失量(dB/km)とを求めた。第1図中○印でプ
ロットしたのはTiを5モル%ドープしたコアを有する
光ファイバ10mに5X103(R7時)の割合でγ線
を照射したときの結果を、また△印でプロットしたのは
同様の光ファイバlOmにlXl0’(R7時)の割合
でγ線を照射したときの結果を示している。The experiment was conducted at 14.4zW from one end of the optical fiber at a wavelength of 0.
.. Light of 88/'m was made incident, and the amount of received light was detected at the other end of the optical fiber, and the exposure dose and optical transmission loss amount (dB/km) when irradiating the γ-ray were determined. In Figure 1, the ○ mark plots the result when 10 m of optical fiber with a core doped with 5 mol% Ti is irradiated with γ-rays at a ratio of 5 x 103 (R7), and the △ mark plots the result. shows the results when a similar optical fiber lOm was irradiated with gamma rays at a rate of lXl0' (at R7).
一方、第2図のグラフ中○印でプロットしたのはPを2
5モル%ドープしたコアを有する光ファイバ50mに5
X103(R7時)の割合でγ線を照射したときの結果
を、また・印でプロットしたのは上記と同様の光ファイ
バ50mに1x1o’(R7時)の割合でγ線を照射し
たときの結果を夫々示している。そして第1,2図にお
いて、実線2..22は上記夫々の結果を集約した基準
線を示している。On the other hand, the plotted circle in the graph of Figure 2 indicates that P is 2.
5 to 50 m of optical fiber with 5 mol% doped core
The results when γ-rays were irradiated at a ratio of The results are shown respectively. In FIGS. 1 and 2, the solid line 2. .. Reference numeral 22 indicates a reference line that summarizes the above results.
上記各グラフから明らかな叩く、夫々の結果に若干のず
れは認められるが、時間当りの被曝線量に殆んど影響さ
れることなく光伝送損失量が略一定の割合で変化してい
る。従って被曝線量と光伝送損失量との関係を、例えば
基準線Zl、Z2にて特定しておくことにより、逆に光
伝送損失量を測定することによって、被曝線量を連続的
にリアルタイムで検知することが可能となる。なお基準
線からのずれに相当する量は適宜に補正を行うものとす
る。Although it is clear from the above graphs that there are slight deviations between the respective results, the amount of optical transmission loss changes at a substantially constant rate, almost unaffected by the exposure dose per hour. Therefore, by specifying the relationship between the exposure dose and the optical transmission loss using, for example, the reference lines Zl and Z2, and conversely measuring the optical transmission loss, the exposure dose can be detected continuously in real time. becomes possible. Note that the amount corresponding to the deviation from the reference line shall be corrected as appropriate.
本発明はこのような現象を利用して放射線を検出せんと
するものであり、その目的とするところは石英ガラスに
Ti及び/又はPをドープしたコアを有する光ファイバ
を具備することにより、放射線被曝線量を連続的に、し
かもリアルタイムで正確に検出出来るようにした放射線
センサーを提供するにある。The present invention aims to detect radiation by utilizing such a phenomenon, and its purpose is to detect radiation by providing an optical fiber having a core made of quartz glass doped with Ti and/or P. To provide a radiation sensor capable of continuously and accurately detecting radiation dose in real time.
以下本発明をその実施例を示す図面に基づき具体的に説
明する。第3図は本発明に係る放射線センサー(以下本
発明品という)の使用状態を示す模式図であり、図中A
は放射線場、Bは非放射線場、Cは遮閉壁を示している
。遮閉壁Cの内側、即ち放射線場Aには石英ガラスにT
i及び/又はPをドープしたコアを有する光ファイバ1
が放射線の透過に何ら支障のない薄い金属製ケース2内
に収納し、て配設されており、その両端部は遮閉壁Cに
固定したコネクタ8a、8bを用いて非放射線場Bに配
した耐放射線性を備える光ファイバ4゜5の各一端に接
続されている。光ファイバ4の他端は光源6に、また光
ファイバ5の他端は線量計7に夫々接続されておシ、光
源6の光は光ファイバ4,1.5を経て線量計7で泥見
られるようになっている。線量計7は受光量を検出する
通常のパワーメータの目盛を、前記@l、2図に示した
如く、光伝送損失量を被曝線量に換算して示したもので
あって、被曝線量が零のときの受光量を零点に合せるこ
とにより、光伝送損失量が被曝線量に換算されてディジ
タル的又はアナログ的に表示されるようになっている。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments thereof. FIG. 3 is a schematic diagram showing the usage state of the radiation sensor according to the present invention (hereinafter referred to as the product of the present invention), and in the figure A
indicates a radiation field, B indicates a non-radiation field, and C indicates a shielding wall. Inside the shielding wall C, that is, the radiation field A, there is a T
Optical fiber 1 having a core doped with i and/or P
is housed in a thin metal case 2 that does not impede the transmission of radiation, and its both ends are placed in a non-radiation field B using connectors 8a and 8b fixed to the shielding wall C. It is connected to each end of an optical fiber 4.5 having high radiation resistance. The other end of the optical fiber 4 is connected to a light source 6, and the other end of the optical fiber 5 is connected to a dosimeter 7.The light from the light source 6 is connected to the dosimeter 7 through the optical fibers 4 and 1.5. It is now possible to The dosimeter 7 shows the scale of a normal power meter that detects the amount of received light by converting the amount of optical transmission loss into the exposure dose, as shown in Figure 2 above, and when the exposure dose is zero. By adjusting the amount of light received at the time to zero, the amount of optical transmission loss is converted to the exposure dose and displayed digitally or analogously.
放射線場に配する光ファ□イバ1としては石英ガラスに
Ti及び/又はPを夫々所定の割合でドープしたコアを
有するものが用いられ、例えばTiを単独にドープさせ
る場合はこれを0.5〜10モル%、望ましくは5モル
%前後、まだP単独にドープさせる場合はこれを0.5
〜80モル%、望ましくは25モル%前後、更にTi及
びPを共にドープさせる場合は全体として0.5〜30
モル%とするのが望ましい。Tiのドープ量を0.5〜
10モル%としたのは0.5モル%以下では十分な感度
、即ち被曝線量に対する光伝送損失量が得られず、また
10モル%以上では感度の向上は期待出来るが光ファイ
バの母材の製造が困難となることによる。Pのドープ量
についても同様であって、0.5モル%以下では感度が
、“まだ80モル%以上では光フアイバ母材の製造が困
難となることによる。The optical fiber 1 placed in the radiation field is made of quartz glass having a core doped with Ti and/or P at predetermined ratios. For example, when Ti is doped alone, the core is doped with Ti and/or P at a predetermined ratio. ~10 mol%, preferably around 5 mol%, but if P is doped alone, increase this to 0.5 mol%
~80 mol%, preferably around 25 mol%, and further 0.5 to 30 mol% as a whole when doping both Ti and P.
It is desirable to set it as mol%. Ti doping amount is 0.5~
The reason why the setting is 10 mol% is that if it is less than 0.5 mol%, sufficient sensitivity, that is, the amount of optical transmission loss for the exposure dose, cannot be obtained, and if it is more than 10 mol%, an improvement in sensitivity can be expected, but the This is due to the difficulty in manufacturing. The same holds true for the doping amount of P; if it is less than 0.5 mol %, the sensitivity will be low, but if it is more than 80 mol %, it will be difficult to manufacture the optical fiber base material.
また光ファイバ1の長さはこれを長くすると被曝線量に
対する全体としての光伝送損失量が太きくなるだめ、線
量計7の測定感度を向上せl−めることか可能となる。Furthermore, if the length of the optical fiber 1 is increased, the overall optical transmission loss relative to the exposure dose increases, so it is possible to improve the measurement sensitivity of the dosimeter 7.
なお光7アイパlのクラッド層の材質或いはドーパント
については特に限定するものではなく、従来より用いら
れている、例えばポリマーのクラッド、石英系ガラスの
クラッド等を適宜採用し得る。Note that the material or dopant for the cladding layer of Hikari 7 Ipal is not particularly limited, and conventionally used materials such as polymer cladding, silica glass cladding, etc. may be appropriately employed.
耐放射線性光ファイバ4,5については従来知られたも
のを適宜採択すればよい。なお光ファイバ4,5を非放
射線場B内でのみ用いる場合には通常の光7アイパをそ
のまま用いてもよいことは勿論である。As for the radiation-resistant optical fibers 4 and 5, conventionally known ones may be appropriately selected. Note that when the optical fibers 4 and 5 are used only in the non-radiation field B, it goes without saying that the normal optical 7-eyeper may be used as is.
以上の如く本発明品にあっては石英ガラスにTi及び/
又はPをドープしたコアを有する光7アイパを用いるこ
ととしているから、被曝線量と光伝送損失量との関係が
略直線的となυ、従って光伝送損失量を検出することに
よって、被曝線量を連続的にリアルタイムで測定するこ
とが出来るなど、本発明は優れた効果を奏するものであ
る。As described above, in the product of the present invention, Ti and/or
Alternatively, since an optical 7-eyeper with a P-doped core is used, the relationship between the exposure dose and the optical transmission loss is approximately linear υ.Therefore, by detecting the optical transmission loss, the exposure dose can be calculated. The present invention has excellent effects such as continuous real-time measurement.
第1,2図は夫々Ti、Pをドープしたコアを有する光
ファイバにおける被曝線量と光伝送損失量との関係を示
すグラフ、第3図は本発明品の使用状態を示す模式図で
ある。
A・・・放射線場 B・・・非放射線場 C・・・遮閉
壁1・・・光ファイバ 2・・・ブース 3a、3b・
・・コネクタ 4.5・・・耐放射線性光ファイバ 6
・・・光源7・・・線量計
特 許 出 願 人 大日日本電線株式会社代理人
弁理士 河 野 登 夫1 and 2 are graphs showing the relationship between the exposure dose and the amount of optical transmission loss in an optical fiber having a core doped with Ti and P, respectively, and FIG. 3 is a schematic diagram showing the state of use of the product of the present invention. A... Radiation field B... Non-radiation field C... Shielding wall 1... Optical fiber 2... Booth 3a, 3b.
...Connector 4.5...Radiation-resistant optical fiber 6
...Light source 7...Dosimeter patent applicant: Dainichi Nippon Cable Co., Ltd., agent, patent attorney, Noboru Kono
Claims (1)
を有する光ファイバを具備することを特徴とする放射線
センサー。1. A radiation sensor comprising an optical fiber having a core made of quartz glass doped with Ti and/or P.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3136283A JPS59155775A (en) | 1983-02-25 | 1983-02-25 | Radiation sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3136283A JPS59155775A (en) | 1983-02-25 | 1983-02-25 | Radiation sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59155775A true JPS59155775A (en) | 1984-09-04 |
Family
ID=12329125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3136283A Pending JPS59155775A (en) | 1983-02-25 | 1983-02-25 | Radiation sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59155775A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5606170A (en) * | 1995-02-03 | 1997-02-25 | Research International, Inc. | Multifunctional sensor system |
WO2003014716A3 (en) * | 2001-08-06 | 2003-11-06 | Hrl Lab Llc | System, assembly and methods for sensing |
-
1983
- 1983-02-25 JP JP3136283A patent/JPS59155775A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5606170A (en) * | 1995-02-03 | 1997-02-25 | Research International, Inc. | Multifunctional sensor system |
WO2003014716A3 (en) * | 2001-08-06 | 2003-11-06 | Hrl Lab Llc | System, assembly and methods for sensing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
O'Keeffe et al. | A review of optical fibre radiation dosimeters | |
US6551231B1 (en) | Scintillator waveguide for sensing radiation | |
US5264702A (en) | On-line tritium production monitor | |
Zhuang et al. | Embedded structure fiber-optic radiation dosimeter for radiotherapy applications | |
Fernandez et al. | Real-time fibre optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors | |
GB2472574A (en) | Radiation Detector | |
Zaghloul et al. | High spatial resolution radiation detection using distributed fiber sensing technique | |
Olivero et al. | Distributed X-ray dosimetry with optical fibers by optical frequency domain interferometry | |
CN111221021A (en) | Method and device for measuring radiation dose | |
Rogina et al. | Application of optical fibre sensors for radiation dosimetry | |
Rahman et al. | Real-time dosimetry in radiotherapy using tailored optical fibers | |
JPS59155775A (en) | Radiation sensor | |
Takada et al. | Application of red and near infrared emission from rare earth ions for radiation measurements based on optical fibers | |
Jones et al. | Potential clinical utility of a fibre optic-coupled dosemeter for dose measurements in diagnostic radiology | |
Kim et al. | Development of compact and real-time radiation detector based on SiPM for gamma-ray spectroscopy | |
GB2200984A (en) | Fire optic ionizing radiation detector | |
Chen et al. | High-sensitivity fiber-optic X-ray detectors employing gadolinium oxysulfide composites | |
Olusoji et al. | Radiation Response of Perfluorinated Polymer Optical Fibers (CYTOP) to Low Doses of X-Rays, Protons, and Neutrons | |
Olivero et al. | Preliminary investigation of radiation dose sensors based on aluminum-doped silicate optical fibers | |
Sporea | Optical fiber sensors in ionizing radiation environments | |
Stajanca | POF and Radiation Sensing | |
Gaebler | Characteristics of fiber optic radiation detectors | |
RU213911U1 (en) | BETA-SENSITIVE ELEMENT OF FIBER-OPTIC DOSIMETRY SYSTEM | |
Maekawa et al. | Fiber-optic multipoint radiation sensing system using waveguide scintillators | |
Sporea | Optical fiber sensors in ionizing radiation environments |