[go: up one dir, main page]

JPS59225321A - Optical fiber type radiation thermometer - Google Patents

Optical fiber type radiation thermometer

Info

Publication number
JPS59225321A
JPS59225321A JP58100281A JP10028183A JPS59225321A JP S59225321 A JPS59225321 A JP S59225321A JP 58100281 A JP58100281 A JP 58100281A JP 10028183 A JP10028183 A JP 10028183A JP S59225321 A JPS59225321 A JP S59225321A
Authority
JP
Japan
Prior art keywords
optical fiber
emissivity
measured
radiation thermometer
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58100281A
Other languages
Japanese (ja)
Inventor
Noriyuki Ashida
葭田 典之
Tsutomu Mitsui
三井 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58100281A priority Critical patent/JPS59225321A/en
Publication of JPS59225321A publication Critical patent/JPS59225321A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0887Integrating cavities mimicking black bodies, wherein the heat propagation between the black body and the measuring element does not occur within a solid; Use of bodies placed inside the fluid stream for measurement of the temperature of gases; Use of the reemission from a surface, e.g. reflective surface; Emissivity enhancement by multiple reflections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔本発明の技術分野〕 本発明は、遠隔的に計測可能な光フアイバー型放射温度
計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fiber optic radiation thermometer that can be remotely measured.

〔背景技術〕[Background technology]

0℃〜100℃程度の比較的低温の計測を遠隔的に計測
する装置として放射温度計がある。
A radiation thermometer is a device that remotely measures relatively low temperatures of about 0° C. to 100° C.

これは被測定物から放射される8〜12μm程度の波長
の赤外線を検知してその温度を黒体輻射の法則から算出
して、計測するものである。
This method detects infrared rays with a wavelength of about 8 to 12 μm emitted from the object to be measured, and calculates and measures the temperature from the law of black body radiation.

近年、その赤外線を伝送する導光路として赤外光用光フ
ァイバを用い、その可撓性を利用して複雑な形状物内部
のあるいは入シくんだ場所の温度計測を行なう試みが盛
んとなシっつちる。
In recent years, there have been many attempts to use infrared optical fibers as light guides for transmitting infrared rays, and to take advantage of their flexibility to measure the temperature inside or inside objects with complex shapes. Ttsuchiru.

光ファイバを用いたこの温度計測法は、電気的に絶縁さ
れた状態で計測できること、ファイバ径を細くすること
によって極めて微小な範囲の温度を測定できることにそ
の特徴を有する。
This temperature measurement method using an optical fiber is characterized in that it can be measured in an electrically insulated state, and by reducing the diameter of the fiber, it is possible to measure temperatures in an extremely small range.

〔従来の放射温度計の欠点〕[Disadvantages of conventional radiation thermometers]

しかしながら、従来の放射温度計と同様、光ファイバを
導光路とした放射温度計では被測定物の放射率による検
出温度の較正という煩雑な操作を行なわなければその真
の温度を知ることはできなかった。
However, like conventional radiation thermometers, with a radiation thermometer using an optical fiber as a light guide, it is impossible to know the true temperature of the object to be measured without performing the complicated operation of calibrating the detected temperature using the emissivity of the object. Ta.

〔本発明の目的〕[Object of the present invention]

本発明は、従来の放射温度計の上記欠点を解消すること
を目的とする。すなわち、本発明の目的は、被測定物の
違いによる放射率の較正を行なわずに計測できる光フア
イバー型放射温度計を提供するにある。
The present invention aims to eliminate the above-mentioned drawbacks of conventional radiation thermometers. That is, an object of the present invention is to provide an optical fiber type radiation thermometer that can measure the emissivity without calibrating the emissivity depending on the difference between the objects to be measured.

〔本発明の構成〕[Configuration of the present invention]

そして、本発明は、上記目的を達成するだめに、低放射
率を有する固定材料で高放射率を有する微小片を固定す
るものである。すなわち、本発明は、光ファイバーの一
端に、その光軸に合せて高放射率を有する微小片を配置
し、これを断熱性で低放射率を有する固定用材料で固定
してなることを特徴とする光フアイバー型放射温度計で
ある。
In order to achieve the above object, the present invention fixes a minute piece having a high emissivity with a fixing material having a low emissivity. That is, the present invention is characterized in that a minute piece having a high emissivity is arranged at one end of an optical fiber in alignment with the optical axis of the optical fiber, and this is fixed with a fixing material having heat insulating properties and a low emissivity. This is an optical fiber type radiation thermometer.

本発明において、微小片は高放射率を有する材料から作
られるものであ・す、0.8以上の放射率を有する材料
が好適である。この種材料としてはNi2O%、0r2
5%、Fe55%からなるものでその表面が酸化された
もの(放射率090)またはカーボン(放射率o、 s
 1)があげられる。また、本発明において固定材料と
しては、断熱性でしかも低放射率を有する材料からなる
ものであシ、0.05以下の放射率を有するものが好適
である。この種材料としては断熱材料として石英ガラス
、アルミナなどの非金属材料を使用し、この内面に低放
射率材料である亜鉛(放射率o、 05 ’lスズ(放
射率o、 043 )鉛(放射率O,OS )などをコ
ーテングしたものを使用するのが好ましい。
In the present invention, the minute pieces are made of a material having a high emissivity, preferably a material having an emissivity of 0.8 or more. This kind of material is Ni2O%, 0r2
5% Fe and 55% Fe with an oxidized surface (emissivity 090) or carbon (emissivity o, s
1) can be mentioned. Furthermore, in the present invention, the fixing material is made of a material that is heat insulating and has a low emissivity, preferably a material that has an emissivity of 0.05 or less. For this type of material, non-metallic materials such as quartz glass and alumina are used as heat insulating materials, and the inner surface is made of low emissivity materials such as zinc (emissivity o, 05'l tin (emissivity o, 043), lead (emissivity o, 043), etc. It is preferable to use a material coated with a material such as O, OS).

また、本発明において、微小片としては、被測定物の温
度変化に対する応答をよくするため、出来る限り微小と
するのが好ましく、例えば0.5φ、 0.2 tのデ
ィスク状の形状にするのが好適である。
In addition, in the present invention, in order to improve the response to temperature changes of the object to be measured, it is preferable that the minute pieces be as small as possible, for example, in the shape of a disk of 0.5φ and 0.2t. is suitable.

以上、本発明を説明しだが、第1図及び第2第1図は本
発明の光フアイバー型放射温度計を使用して被測定物の
温度を計測するだめの説明図である。
The present invention has been described above, and FIGS. 1 and 2 are explanatory diagrams of how the temperature of an object to be measured is measured using the optical fiber type radiation thermometer of the present invention.

導光路となる光ファイバBの被測定物E側には微小な、
放射率が大きい微小片Aを固定する。
On the side of the measured object E of the optical fiber B, which serves as a light guide path,
A minute piece A with high emissivity is fixed.

微小片Aは微小であるため被測定物Eに接触するとすぐ
にそれと熱平衡状態に達し、この微小片Aは被測定物E
と同一の温度を有する黒体として赤外線を放射する。と
の放射赤外線は光ファイバB内を伝送し、集光レンズC
全通して検出素子りに入る。このよう、にして被測定物
Eに接触したファイバ先端の微小片Aを介在させた状態
で被測定物Eの温度計測を行なうことにより、被測定物
Eの放射率による検出温度の較正を行なうことなしに放
射温度計測が可能である。
Since the minute piece A is minute, it reaches a state of thermal equilibrium with the object to be measured E as soon as it comes into contact with it.
It emits infrared rays as a black body with the same temperature as . The radiated infrared rays are transmitted through the optical fiber B, and the condensing lens C
All the way through, it enters the detection element. In this way, by measuring the temperature of the object to be measured E with the microscopic piece A at the tip of the fiber in contact with the object to be measured E, the detected temperature is calibrated based on the emissivity of the object to be measured E. Radiation temperature measurement is possible without any problems.

壕だ微小片AをとシかこむホルダFは低放射率を有する
金属でおおわれておシホルダFの放射赤外線を少なくし
て測定誤差を小さくするようにしたものである。Gは中
空部である。
The holder F that encloses the small piece A is covered with a metal having a low emissivity to reduce the infrared rays emitted by the holder F and reduce measurement errors. G is a hollow part.

〔第2図説明〕 第2図は、本発明の1実施例である光フアイバー型放射
温度計の拡大図である。この図でFは石英ガラスから作
られたホルダで内面に低放射率材料である亜鉛(放射率
O,OS )スズ(放射率o、 043 )鉛(放射率
o、 05 )等をコーティングしたものである。この
ような構造によって内面の低放射率コーテイング面から
の放射赤外線は無視できる。Aは高屈折率材料であるN
i20%、0r25%、Fe55%(放射率0.90’
)等の表面を酸化させた微小片またはカーボン(放射率
(0,81’)等の微小片で、これが被測定物と接触し
、熱平衡に達するととにより、被測定物の温度に対応す
る赤外線を一定の高放射率で放射する。微小片Aはホル
ダFの熱伝導性のわみい石英ガラスによって固定されて
いるだめ微小片Aを断熱性よく固定でき、被測定物の微
小な温度変化にも対応して熱平衡に達する。
[Explanation of FIG. 2] FIG. 2 is an enlarged view of an optical fiber type radiation thermometer that is an embodiment of the present invention. In this figure, F is a holder made of quartz glass whose inner surface is coated with low emissivity materials such as zinc (emissivity O, OS), tin (emissivity O, 043), lead (emissivity O, 05), etc. It is. With such a structure, the infrared rays radiated from the inner low emissivity coating surface can be ignored. A is a high refractive index material N
i20%, 0r25%, Fe55% (emissivity 0.90'
), etc., or carbon (emissivity (0,81'), etc.), which contact the object to be measured and reach thermal equilibrium, which corresponds to the temperature of the object to be measured. Emit infrared rays with a constant high emissivity.The microscopic piece A is fixed by the thermally conductive soft quartz glass of the holder F.The microscopic piece A can be fixed with good heat insulation properties, and the small temperature change of the object to be measured can be prevented. Thermal equilibrium is reached accordingly.

また微小片Aは、被測定物の温度変化に対する応答をよ
くするため微小であるのがよ(,0,3φ、 0.2 
tのディスク状とした。
In addition, it is preferable that the minute piece A is minute (,0,3φ, 0.2
It was made into a disk shape of t.

Bは微小片Aからの放射赤外線を伝送するだめの光ファ
イバである。上記の構造をもつだ光ファイバBを用いて
次のような実験を行々つだ。
B is an optical fiber for transmitting the infrared radiation emitted from the minute piece A. The following experiments were conducted using optical fiber B having the above structure.

被測定物としてタングステンブロック(放射率0.02
4)Ni80%、0r20%の合金を表面酸化させたも
ののブロック(放射率087)を用い、この表面に本発
明の光ファイバの先端(第2図の微小片A部)を接触さ
せ、微小片Aから放射される赤外線を光ファイバBで伝
送させ、その出力を検出した所、上記二つの被測定物ブ
ロックが異なる放射率を有するにもかかわらず本発明の
温度計を用いた測定によって検出赤外放射線量は0℃〜
200℃の同一温度において誤差範囲内で一致した。
The object to be measured was a tungsten block (emissivity 0.02
4) Using a block (emissivity 087) made of an alloy of 80% Ni and 20% 0R whose surface has been oxidized, the tip of the optical fiber of the present invention (part A of the micropiece in Fig. 2) is brought into contact with this surface to form a microparticle. When the infrared rays emitted from A are transmitted through optical fiber B and the output is detected, even though the two blocks to be measured have different emissivities, the infrared rays detected by measurement using the thermometer of the present invention. External radiation dose is 0℃~
At the same temperature of 200°C, there was agreement within the error range.

1だ、被測定物の温度変化に対する応答は、0、2秒で
あり十分速く、被測定面積は微小片Aの面積06φに等
しく十分微小な範囲の測定が可能である。
1, the response to the temperature change of the object to be measured is 0.2 seconds, which is sufficiently fast, and the area to be measured is equal to the area 06φ of the minute piece A, making it possible to measure a sufficiently small range.

〔本発明の効果〕[Effects of the present invention]

本発明は、以上詳記したように、放射率が高くしかも一
定である微小片を介して被測定物の温度を測定するよう
にしたので、被測定物の違いによる放射率の較正を行な
わずに測定可能である顕著な効果が生ずる。甘だ、温度
測定の応答速度は、微小片の大きさを小さくすることで
、従来の放射温度計による測定と比較して孫色なく、さ
らに、より微小片を小さくすることによシ、微小な部分
の温度測定も可能となる効果も生ずる。すなわち、本発
明により放射率の較正という操作を行なう必要がなく、
しかも従来の放射温度計測の利点がそのまま維持される
というすぐれた効果が生ずるものである。
As described in detail above, the present invention measures the temperature of the object to be measured through a minute piece whose emissivity is high and constant, so there is no need to calibrate the emissivity due to differences in the object to be measured. This results in significant measurable effects. By making the size of the microscopic particles smaller, the response speed of temperature measurement can be improved by reducing the size of the microscopic particles. This also has the effect of making it possible to measure the temperature of certain parts. In other words, the present invention eliminates the need to calibrate emissivity.
Furthermore, an excellent effect is produced in that the advantages of conventional radiation temperature measurement are maintained as they are.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光フアイバー型放射温度計を使用して
被測定物の温度を計測するだめの説明図であり、第2図
は本発明の1実施例である光フアイバー型放射温度計の
拡大図でちる。 A・・・微小片 B・・・光ファイバー C・・・集光レンズ D・・・検出素子 E・・・被測定物 F ・・・ ホ ル ダ G・・・中空部 代理人  内 1)  明 代理人  萩 原 亮 −
Fig. 1 is an explanatory diagram of how the temperature of a measured object is measured using the optical fiber type radiation thermometer of the present invention, and Fig. 2 is an explanatory diagram of the optical fiber type radiation thermometer which is an embodiment of the present invention. An enlarged view of the image. A... Microscopic piece B... Optical fiber C... Condensing lens D... Detection element E... Measured object F... Holder G... Hollow agent inside 1) Bright Agent Ryo Hagiwara −

Claims (3)

【特許請求の範囲】[Claims] (1)光ファイバーの一端に、その光軸に合せて高放射
率を有する微小片を配置し、これを断熱性で低放射率を
有する固定用材料で固定してなることを特徴とする光フ
アイバー型放射温度計。
(1) An optical fiber characterized by arranging a microscopic piece with high emissivity at one end of the optical fiber in line with its optical axis, and fixing this with a fixing material that has heat insulating properties and low emissivity. type radiation thermometer.
(2)微小片が0,8以上の放射率を有する材料からな
る特許請求の範囲第1項に記載の光フアイバー型放射温
度計。
(2) The optical fiber type radiation thermometer according to claim 1, wherein the minute pieces are made of a material having an emissivity of 0.8 or more.
(3)  固定用材料が石英ガラス、アルミナ等の断熱
性の良好な非金属材料からなりかつ、その内面に低放射
性材料をコーチングしたものからなる特許請求の範囲第
1項に記載の光フアイバー型放射温度計。
(3) The optical fiber type according to claim 1, wherein the fixing material is made of a non-metallic material with good heat insulation properties, such as quartz glass or alumina, and the inner surface of the fixing material is coated with a low-radiation material. Radiation thermometer.
JP58100281A 1983-06-07 1983-06-07 Optical fiber type radiation thermometer Pending JPS59225321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58100281A JPS59225321A (en) 1983-06-07 1983-06-07 Optical fiber type radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58100281A JPS59225321A (en) 1983-06-07 1983-06-07 Optical fiber type radiation thermometer

Publications (1)

Publication Number Publication Date
JPS59225321A true JPS59225321A (en) 1984-12-18

Family

ID=14269809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58100281A Pending JPS59225321A (en) 1983-06-07 1983-06-07 Optical fiber type radiation thermometer

Country Status (1)

Country Link
JP (1) JPS59225321A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT401971B (en) * 1992-10-12 1997-01-27 Gigerl Johann Thermography method
JP2013246133A (en) * 2012-05-29 2013-12-09 Micronics Japan Co Ltd Joint pad, probe assembly, and method for manufacturing joint pad
DE202013103760U1 (en) * 2013-08-20 2014-11-28 Makita Corporation Temperature measuring device for measuring a temperature of a medium, internal combustion engine and engine tool
DE102014114816A1 (en) * 2014-08-26 2016-03-03 Heraeus Holding Gmbh Device for temperature measurement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT401971B (en) * 1992-10-12 1997-01-27 Gigerl Johann Thermography method
JP2013246133A (en) * 2012-05-29 2013-12-09 Micronics Japan Co Ltd Joint pad, probe assembly, and method for manufacturing joint pad
DE202013103760U1 (en) * 2013-08-20 2014-11-28 Makita Corporation Temperature measuring device for measuring a temperature of a medium, internal combustion engine and engine tool
DE102014114816A1 (en) * 2014-08-26 2016-03-03 Heraeus Holding Gmbh Device for temperature measurement
DE102014114816B4 (en) 2014-08-26 2022-02-10 Heraeus Nexensos Gmbh Porous, lens-shaped ceramic body for temperature measurement

Similar Documents

Publication Publication Date Title
US3626758A (en) Remote radiation temperature sensor
US4362057A (en) Optical fiber temperature sensor
CN102539012B (en) Optical fiber Fabry-Perot temperature sensor for measuring temperature of micro area and measuring method thereof
US5164999A (en) Blackbody fired on silica fiber
CN113029381A (en) High-precision temperature sensor based on quartz tube packaging PDMS cavity and air cavity
CN110987229A (en) An optical fiber end face Fa-Per cavity temperature sensor
CN202522326U (en) Contact-noncontact type sapphire infrared temperature measurement system
US2921972A (en) Heat sensing apparatus
CN202204618U (en) Calibration device for multi-layer material infrared optical fiber thermometer
CA2028352A1 (en) High temperature sensor
JPS59225321A (en) Optical fiber type radiation thermometer
JPS6219727A (en) Immersion thermometer for molten metal
CA2547809C (en) Method and apparatus for measuring spatial temperature distribution of flames
CN206787724U (en) A kind of photoelectric sensor and infrared radiation thermometer
US2912862A (en) Radiation measurement of non-opaque bodies
Woskov et al. Millimeter-Wave Monitoring of Nuclear Waste Glass Melts–An Overview
JPS6013231A (en) Infrared ray thermometer
RU2441205C1 (en) Fibre-optic thermal detector
JPS6255529A (en) Radiation thermometer
JP3143846B2 (en) Contact type optical fiber sensor
Musurmonov MEASUREMENT OF ULTRAFAST CHANGING TEMPERATURE USING OPTIC FIBER NON-CONTACT METHOD
JP3103338B2 (en) Radiation thermometer
JPS60198419A (en) Calorimeter device for measuring transmission power of optical fiber
JPS5837527A (en) Photodetector
CN117606641A (en) An optical fiber interference sensor based on germanium wafer and its production method