JPS59207621A - Formation of thin film - Google Patents
Formation of thin filmInfo
- Publication number
- JPS59207621A JPS59207621A JP8162383A JP8162383A JPS59207621A JP S59207621 A JPS59207621 A JP S59207621A JP 8162383 A JP8162383 A JP 8162383A JP 8162383 A JP8162383 A JP 8162383A JP S59207621 A JPS59207621 A JP S59207621A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- thin film
- reaction tube
- gas
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02579—P-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
Abstract
Description
【発明の詳細な説明】
反薯」す[
本発明は、薄膜形成方法に関するもので、より詳細には
、光化学気相成長法(光CVD法)による薄膜形成方法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a thin film, and more particularly to a method for forming a thin film by photochemical vapor deposition (photoCVD).
従来技術
従来、化学気相成長法(CVD法)による薄膜形成方式
としては、基板を600℃以上の高温状態に加熱しつつ
行なう熱CVD法やグロー放電等のプラズマエネルギを
利用するプラズマCVD法及び紫外光等の光エネルギを
利用する光CVD法等がある。この内、熱CVD法は基
板温度が高くなりすぎる為基板に対するダメージが大き
いという欠点を有している。又、プラズマCVD法は、
関与する要因が多くそれらの制御が困難で生成膜の再現
性が悪いこと、異常放電等によるピンホールの発生が多
いこと、例えば太陽電池等に於けるアモルファスシリコ
ン膜の如き良質な薄膜を得る為には基板温度を250℃
以上の高温状態に維持する必要があること、及び膜生成
がプラズマに於ける電子温度分布、電子密度分布又はガ
ス濃度分布等に敏感でありこの為大面積膜の均一性が十
分て無いこと等の欠点を有している。Conventional technology Conventionally, methods for forming thin films using chemical vapor deposition (CVD) include thermal CVD, which is performed while heating a substrate to a high temperature of 600°C or higher, plasma CVD, which uses plasma energy such as glow discharge, and There is a photo-CVD method that uses light energy such as ultraviolet light. Among these methods, the thermal CVD method has the disadvantage that the substrate temperature becomes too high, causing great damage to the substrate. In addition, the plasma CVD method is
There are many factors involved, and it is difficult to control them, resulting in poor reproducibility of the produced film, and pinholes are often generated due to abnormal discharge.For example, in order to obtain high-quality thin films such as amorphous silicon films in solar cells, etc. The substrate temperature is set to 250℃.
It is necessary to maintain the high temperature state above, and the film formation is sensitive to the electron temperature distribution, electron density distribution, gas concentration distribution, etc. in the plasma, and therefore the uniformity of the large area film is not sufficient. It has the following disadvantages.
一方、光CVD法は、比較的低温で薄膜形成が可能であ
るという利点を有するが、次の様な欠点も有している。On the other hand, although the photo-CVD method has the advantage of being able to form a thin film at a relatively low temperature, it also has the following drawbacks.
即ち、例えばl−1増感光CVD法の場合は、約4.8
6eVのエネルギがトリガーとなってその利用が選択的
となり、反応ガスを分解させる為の分解エネルギを大き
く確保できない。従って、N2.02 、NHa 、C
H4,82等の結合・解離エネルギが大きいガスを分解
できないか或いは分解し難い傾向がある。又、薄膜の形
成速度が遅いことも欠点の1つである。That is, for example, in the case of l-1 sensitized photoCVD method, about 4.8
The energy of 6 eV acts as a trigger and its use becomes selective, and a large amount of decomposition energy for decomposing the reaction gas cannot be secured. Therefore, N2.02, NHa, C
There is a tendency that gases such as H4 and 82, which have large binding and dissociation energies, cannot be decomposed or are difficult to decompose. Another disadvantage is that the thin film formation rate is slow.
目 的
本発明は、以上の点に鑑みてなされたものであって、任
意の成分からなるガスを使用して基板上にボイドやピン
ホールのない良質な薄膜を高速度で形成可能な薄膜形成
方法を提供することを目的とする。Purpose The present invention has been made in view of the above points, and provides a method for forming a thin film that can form a high-quality thin film without voids or pinholes on a substrate at high speed using a gas made of arbitrary components. The purpose is to provide a method.
構 成
先ず、本発明方法の原理について説明する。例えばHO
増感光分解反応の場合、基板の表面近傍3−
に供給されたSiH4”ガスや媒介ガスとしての水銀(
H(+ >蒸気に周波数νの紫外光を照射すると、下記
(1)式にて示す如<H(]蒸気が光励起され、これに
より例えば(2)式や(3)式で表わされる後続反応が
引き起こされる。Configuration First, the principle of the method of the present invention will be explained. For example, H.O.
In the case of sensitized photolysis reaction, SiH4'' gas supplied near the surface of the substrate and mercury (
When H(+> vapor is irradiated with ultraviolet light of frequency ν, <H(] vapor is photoexcited as shown in equation (1) below, which causes the subsequent reactions shown in equations (2) and (3), for example. is caused.
Ho+hν−−−→)l(]” (1
)H(+”+N2−一→H(] +N2僚2
(2)HCl”+SiH+→Si H2+H2+H(1
(3)
ここで、HQ” Ho** はエネルギ単位の異な
る光励起された水銀原子を表わし、夫々のエネルギ量は
112.7Kcal /mole(4,86eV) 、
107.0Kcal /n+ole(4,64eV
)で緩和時間は1.14 xl 0−7sec、 10
−’ secである。従って、112.7Kcat /
mo18より大きいか或いは少なくとも100Kcal
/mole以上の結合・解離エネルギを持った分子は
光励起された水銀原子Hg”により分解されないか、分
解されても効率が悪い。Ho+hν−−−→)l(]” (1
)H(+”+N2-1→H(] +N2 staff 2
(2) HCl”+SiH+→Si H2+H2+H(1
(3) Here, HQ"Ho** represents photoexcited mercury atoms with different energy units, and the respective energy amounts are 112.7 Kcal/mole (4,86 eV),
107.0Kcal/n+ole(4,64eV
) and the relaxation time is 1.14 xl 0-7sec, 10
-' sec. Therefore, 112.7Kcat/
greater than mo18 or at least 100Kcal
Molecules with bonding/dissociation energy greater than /mole are not decomposed by the photoexcited mercury atoms Hg'', or even if they are decomposed, the efficiency is low.
4−
そこで、本発明方法に於いては、例えばN2゜CH4、
NH3、H2等の分解され難い気体を含む反応ガスを光
CVD法で処理する前に予備的に活性化させ、これによ
りその分解効率を高めて薄膜生成速度を向上させること
を企図している。かくして、例えば下記(4)式で示さ
れる如き結合・解離エネルギの大きい気体が関与する反
応の効率が高められ、Si 3 N4からなる薄膜が高
速度で形成される。4- Therefore, in the method of the present invention, for example, N2°CH4,
The idea is to preliminarily activate a reactive gas containing gases that are difficult to decompose, such as NH3 and H2, before processing it with the photo-CVD method, thereby increasing the decomposition efficiency and increasing the thin film production rate. In this way, the efficiency of the reaction involving a gas with large bonding/dissociation energy, such as shown by the following formula (4), is increased, and a thin film made of Si 3 N4 is formed at a high speed.
3Si Ha NJ ) + 4NHa <Q
)→5isNa (S) + 128
2 (CI>(4)
以下、本発明の構成について具体的な実施例に基づき説
明する。第1図は本発明方法を実施する装置の1実施例
を示した模式図である。第1図に於いて、円筒状の石英
製反応管2の内部の出口端側に基板3が設置されている
。基板3は、その長手方向を反応管2の長手軸方向に沿
って延在させて設けられた支持台4上に載置されている
。この基板3に反応管2の管壁を介して対向させ、光源
としての低圧水銀ランプ5が配設されている。低圧水銀
ランプ5は、例えば主波長が253.7nmの紫外光を
発光させ反応管2内の基体3に向けて照射する。又、反
応管2の外部で水銀ランプ5の略反対側には、基板3を
加熱する為の例えばハロゲンランプからなる加熱ヒータ
6が配設されている。3Si Ha NJ ) + 4NHa <Q
)→5isNa (S) + 128
2 (CI>(4)) Hereinafter, the structure of the present invention will be explained based on specific examples. FIG. 1 is a schematic diagram showing one example of an apparatus for carrying out the method of the present invention. A substrate 3 is installed on the outlet end side inside a cylindrical quartz reaction tube 2.The substrate 3 is provided with its longitudinal direction extending along the longitudinal axis of the reaction tube 2. A low-pressure mercury lamp 5 as a light source is disposed facing the substrate 3 through the tube wall of the reaction tube 2.The low-pressure mercury lamp 5 is, for example, Ultraviolet light with a dominant wavelength of 253.7 nm is emitted and irradiated toward the substrate 3 inside the reaction tube 2. Also, on the outside of the reaction tube 2 and on the almost opposite side of the mercury lamp 5, there is a lamp for heating the substrate 3. A heater 6 made of, for example, a halogen lamp is provided.
而して、反応管2の入口端側には誘導加熱ヒータ7が外
挿されている。この誘導加熱ヒータ7には高周波電源(
不図示)が接続されており、その誘導加熱作用により反
応管2内部を流れるガスを効率良く加熱する。An induction heater 7 is fitted on the inlet end side of the reaction tube 2. This induction heater 7 has a high frequency power source (
(not shown) is connected, and its induction heating effect efficiently heats the gas flowing inside the reaction tube 2.
反応管2の誘導加熱ヒータ7が外挿されている側の端面
2aからは流入配管8が延出され、この流入配管8はガ
スボンベ群9のボンベ数に応じて分岐され、夫々のボン
ベ9a 、 9b 、 9c 、 9d・・・にMFC
(マス・フロー・コントローラ)を介し連結されている
。夫々のボンベ9には、供給すべき反応ガスの成分とな
る各種ガスが充填されている。An inflow pipe 8 extends from the end face 2a of the reaction tube 2 on the side where the induction heater 7 is inserted. MFC on 9b, 9c, 9d...
(mass flow controller). Each cylinder 9 is filled with various gases that are components of the reaction gas to be supplied.
一方、反応管2の基板3が設置されている側の端面2b
には、2系統の配管10.11が連結されている。その
うちの一方の配管10には、バルブ10a及び水銀が貯
留された容器10bが介設されている。そして、この管
路にはキャリアガスとしての窒素ガスN2が流され、水
銀蒸気を反応管2内へ供給する。他方の配管11は真空
排気用配管で、バルブ11a及び排気ポンプ11bが介
設されており、反応管2内を光化学反応に好適な真空状
態とする。On the other hand, the end surface 2b of the reaction tube 2 on the side where the substrate 3 is installed
Two lines of piping 10 and 11 are connected to the . One of the pipes 10 is provided with a valve 10a and a container 10b in which mercury is stored. Then, nitrogen gas N2 as a carrier gas is flowed through this pipe, and mercury vapor is supplied into the reaction tube 2. The other pipe 11 is a vacuum evacuation pipe, and is provided with a valve 11a and an evacuation pump 11b to bring the inside of the reaction tube 2 into a vacuum state suitable for a photochemical reaction.
上述の如く構成された装置により実施される薄膜形成方
法について説明する。A thin film forming method performed by the apparatus configured as described above will be described.
先ず、反応管2内の支持台4上に基体3を設置し反応管
2を密封状とする。次いで、バルブ11aを開き排気ポ
ンプ11bを駆動して反応管2内を、例えば1Q −3
torr程度の真空状態とする。そして、加熱ヒータ6
に通電して基板を従来技術よりも低基準の所定温度に加
熱すると共に、予備処 7−
運用の誘導加熱ヒータ7にも高周波電流を通電し反応管
2内の支持台4に至るまでの反応ガスの流路を所定温度
に加熱する。First, the substrate 3 is placed on the support stand 4 inside the reaction tube 2, and the reaction tube 2 is sealed. Next, the valve 11a is opened and the exhaust pump 11b is driven to pump the inside of the reaction tube 2, for example, 1Q-3.
A vacuum state of about torr is created. And the heater 6
In addition to heating the substrate to a predetermined temperature that is lower than that of the conventional technology, a high-frequency current is also applied to the induction heater 7 used in the preliminary treatment 7 to heat the substrate to a predetermined temperature that is lower than that of the conventional technology. The gas flow path is heated to a predetermined temperature.
以上の様な状態下において、反応管2内の真空度を実質
的に変動させない様にバルブ10aを所要量だけ開き、
キャリアガスとしての窒素ガスと共に水銀蒸気を導入す
る。そして、低圧水銀ランプ5をオンさせて例えば波長
が253.7nn+の紫外光を基板3上に照射させると
共に、ボンベ群9の各ボンベのMFCを適宜操作して各
種ガスを所定の組成の反応ガスとして混合させつつ流入
配管8を通じて反応管2内に流入させる。Under the above conditions, the valve 10a is opened by the required amount so as not to substantially change the degree of vacuum inside the reaction tube 2.
Mercury vapor is introduced together with nitrogen gas as a carrier gas. Then, the low-pressure mercury lamp 5 is turned on to irradiate the substrate 3 with ultraviolet light having a wavelength of, for example, 253.7 nn+, and the MFC of each cylinder in the cylinder group 9 is appropriately operated to convert various gases into reactive gases with predetermined compositions. The components are mixed together and flowed into the reaction tube 2 through the inflow pipe 8.
反応管2内に導入された反応ガスは、誘導加熱ヒータ7
により熱エネルギが付与され予備的に活性化される。予
備的に活性化された反応ガスは、基板3の近傍領域に到
達しここで光CVD反応処理を受ける。即ち、水銀ラン
プ5から発せられた紫外光により活性化された水銀原子
を媒介として例えば前述の(1)弐〜(4)式で表わさ
れる光化学反応が起こる。そして、十分に活性化された
薄膜を構成すべき原子又は分子が所定温度に加熱されて
いる基板3上に付着し所望の薄膜を形成する。この場合
、従来技術で光化学反応により処理され難かったNH3
やH2等のガスも、予備的に加熱され2段階に亘って活
性化処理を施されるため、容易に活性化若しくは分解さ
れる。従って、例えば第(4)式で示される化学反応等
も光CVD法により円滑に推進させることが可能となり
、Sf 3 N4から成る薄膜が基板上により高速度で
形成される。又、これにより形成される薄膜は、基板温
度を従来技術のプラズマCVD法等に比べて低く設定し
たにも拘わらず、ピンホールやボイド等がなく良質であ
る。The reaction gas introduced into the reaction tube 2 is passed through the induction heater 7
thermal energy is applied and preliminary activation is performed. The preliminarily activated reaction gas reaches a region near the substrate 3 and undergoes photo-CVD reaction treatment there. That is, the photochemical reactions represented by the above-mentioned formulas (1) to (4) occur through the mercury atoms activated by the ultraviolet light emitted from the mercury lamp 5. The sufficiently activated atoms or molecules to form a thin film adhere to the substrate 3 heated to a predetermined temperature to form a desired thin film. In this case, NH3, which was difficult to treat by photochemical reaction in the conventional technology,
Gases such as H2 and H2 are also easily activated or decomposed because they are preliminarily heated and activated in two stages. Therefore, for example, the chemical reaction represented by equation (4) can be smoothly promoted by the photo-CVD method, and a thin film made of Sf 3 N4 can be formed on the substrate at a higher speed. Furthermore, the thin film formed by this method is of good quality and has no pinholes or voids, even though the substrate temperature is set lower than that of conventional plasma CVD methods.
次に、本発明の他の実施例について説明する。Next, other embodiments of the present invention will be described.
本例に於ける11!形成方法は、予備的に反応ガスを活
性化させるのにグロー放電によるプラズマエネルギを利
用する点のみが上述の実施例と異なる。11 in this example! The formation method differs from the above embodiments only in that plasma energy from glow discharge is used to preliminarily activate the reaction gas.
第2図は、本例の薄膜形成方法を実施する装置を示した
模式図である。尚、上記実施例と同一の構成要素につい
ては同一符号を付しその説明を省略b−
する。第2図に於いて、反応管2内の流入配管8が連結
された側には、1対のグロー放電用の平行板電極12.
12が所定距離だけ離隔させ対向されて配設されている
。夫々の電極12は電源13に接続されており、これに
より数100V程度の電圧が両電極12.12間に印加
されグロー放電が起こる。FIG. 2 is a schematic diagram showing an apparatus for implementing the thin film forming method of this example. Incidentally, the same components as those in the above embodiment are given the same reference numerals, and the explanation thereof will be omitted. In FIG. 2, on the side of the reaction tube 2 connected to the inflow pipe 8, there is a pair of parallel plate electrodes 12 for glow discharge.
12 are arranged facing each other and separated by a predetermined distance. Each electrode 12 is connected to a power source 13, whereby a voltage of approximately several hundred volts is applied between the two electrodes 12, 12, causing a glow discharge.
この様な装置により薄膜を形成する場合は、グロー放電
電源13をオンすると共に上述の実施例と同様に反応管
2内の真空度や各部温度等を設定条件下に維持した状態
に於いて、流入配管8を通じて所定の組成に混合された
反応ガスを平行板電極12.12間に導入する。導入さ
れた反応ガスは、この電極12.12間を通過する際、
グロー放電作用によりその間に発生するプラズマのエネ
ルギが付与され前述の実施例と同様に予備的に活性化さ
れる。予備的に活性化された反応ガスは、他端側の基板
3の近傍に至りここで前述の実施例と同様な光CVD反
応による処理を受は十分に活性化される。これにより、
結合・解離エネルギが大きく分解され難いNH3やH2
等のガス等も容易に活性化若しくは分解され、所望の成
分からなりピンホールやボイド等のない良質な薄膜を光
CVD法により効率良く形成することができる。尚、こ
の場合、基板3の加熱温度を100℃以下の相対的に低
い温度に設定しても薄膜形成に支障を及ぼさない。When forming a thin film using such an apparatus, the glow discharge power supply 13 is turned on, and the degree of vacuum in the reaction tube 2 and the temperature of each part are maintained under the set conditions as in the above embodiment. A reaction gas mixed to a predetermined composition is introduced between the parallel plate electrodes 12 and 12 through the inflow pipe 8. When the introduced reaction gas passes between the electrodes 12 and 12,
Energy is given to the plasma generated during that time by the glow discharge action, and the plasma is preliminarily activated in the same manner as in the previous embodiment. The preliminarily activated reaction gas reaches the vicinity of the substrate 3 on the other end side, where it undergoes the same photo-CVD reaction treatment as in the previous embodiment and is sufficiently activated. This results in
NH3 and H2 have large bond/dissociation energy and are difficult to decompose.
These gases are easily activated or decomposed, and a high-quality thin film made of desired components and free from pinholes and voids can be efficiently formed by photo-CVD. Note that, in this case, even if the heating temperature of the substrate 3 is set to a relatively low temperature of 100° C. or less, thin film formation will not be hindered.
尚、上述した2通りの実施例に於いては、双方で活性化
した水銀蒸気(H(1” ’)を触媒として利用してい
るが、本発明方法に於いては2段階に分けて処理対象ガ
スを活性化している為、水銀蒸気の供給を省略すること
もできる。In the two examples described above, activated mercury vapor (H(1'')) is used as a catalyst in both cases, but in the method of the present invention, the treatment is divided into two stages. Since the target gas is activated, the supply of mercury vapor can be omitted.
効 果
以上詳述した如く、本発明によれば、処理対象ガスを光
CVD反応に供する前に予備的に活性化若しくは分解さ
せることにより、従来の各種CVD法では困難であった
結合・解離エネルギの大きいガスも効率良く光CVD法
により処理することができる。従って、それらのガスを
成分とする薄膜をピンホールやボイドのない良質な状態
で相対的に高速度で効率良(形成可能となる。尚、本発
明は上記の特定の実施例に限定されるべきものではなく
本発明の技術的範囲に於いて種々の変形が可能であるこ
とは勿論である。Effects As detailed above, according to the present invention, by preliminarily activating or decomposing the gas to be treated before subjecting it to the photo-CVD reaction, the bonding/dissociation energy, which has been difficult with various conventional CVD methods, can be reduced. Gases with large amounts of gas can also be efficiently processed by the photo-CVD method. Therefore, it is possible to form a thin film containing these gases in a high-quality state without pinholes or voids at a relatively high speed and with high efficiency. However, the present invention is limited to the above-mentioned specific embodiments. Of course, various modifications are possible within the technical scope of the present invention.
第1図は本発明の1実施例を示した模式図、第2図は本
発明の他の実施例を示した模式図である。
(符号の説明)
2: 反応管 3: 基板
5: 低圧水銀ランプ 7: 誘導加熱ヒータ12:
平行板電極FIG. 1 is a schematic diagram showing one embodiment of the present invention, and FIG. 2 is a schematic diagram showing another embodiment of the present invention. (Explanation of symbols) 2: Reaction tube 3: Substrate 5: Low-pressure mercury lamp 7: Induction heater 12:
parallel plate electrode
Claims (1)
に所定成分を含有する反応ガスを導入して前記基板上に
前記所定成分で構成される薄膜を形成させる薄膜形成方
法に於いて、前記反応ガスの所定成分にエネルギを付与
する前処理工程と、前記前処理された反応ガスの所定成
分を光CVD反応させて前記基体上に堆積させる薄膜形
成工程とを有することを特徴とする薄膜形成方法。 2、上記第1項に於いて、前記前処理工程は300℃以
上の熱エネルギを付与する工程であることを特徴とする
薄膜形成方法。 3、上記第1項に於いて、前記前処理工程はグロー放電
によるプラズマエネルギを付与する工程であることを特
徴とする薄膜形成方法。[Claims] 1. Thin film formation in which a substrate is housed in a reaction vessel and a reaction gas containing a predetermined component is introduced into the reaction vessel to form a thin film made of the predetermined component on the substrate. The method includes a pretreatment step of imparting energy to a predetermined component of the reaction gas, and a thin film forming step of causing a photoCVD reaction of the predetermined component of the pretreated reaction gas to deposit it on the substrate. A thin film forming method characterized by: 2. The thin film forming method according to item 1 above, wherein the pretreatment step is a step of applying thermal energy of 300° C. or higher. 3. The thin film forming method according to item 1 above, wherein the pretreatment step is a step of applying plasma energy by glow discharge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8162383A JPS59207621A (en) | 1983-05-12 | 1983-05-12 | Formation of thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8162383A JPS59207621A (en) | 1983-05-12 | 1983-05-12 | Formation of thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59207621A true JPS59207621A (en) | 1984-11-24 |
Family
ID=13751451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8162383A Pending JPS59207621A (en) | 1983-05-12 | 1983-05-12 | Formation of thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59207621A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6188521A (en) * | 1984-10-08 | 1986-05-06 | Canon Inc | Formation of deposited film |
JPS61190925A (en) * | 1985-02-19 | 1986-08-25 | Canon Inc | Formation of deposited film |
JPS61191022A (en) * | 1985-02-20 | 1986-08-25 | Canon Inc | Formation of deposited film |
JPS6216511A (en) * | 1985-07-15 | 1987-01-24 | Mitsui Toatsu Chem Inc | Manufacture of semiconductor thin film |
JPS6223105A (en) * | 1985-07-24 | 1987-01-31 | Mitsui Toatsu Chem Inc | Filming process of semiconductor thin film |
JPS62160713A (en) * | 1986-01-10 | 1987-07-16 | Toshiba Corp | Photoexcitation film forming equipment |
JPS63239811A (en) * | 1987-03-27 | 1988-10-05 | Nippon Telegr & Teleph Corp <Ntt> | Optical reactor |
-
1983
- 1983-05-12 JP JP8162383A patent/JPS59207621A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6188521A (en) * | 1984-10-08 | 1986-05-06 | Canon Inc | Formation of deposited film |
JPS61190925A (en) * | 1985-02-19 | 1986-08-25 | Canon Inc | Formation of deposited film |
JPS61191022A (en) * | 1985-02-20 | 1986-08-25 | Canon Inc | Formation of deposited film |
JPS6216511A (en) * | 1985-07-15 | 1987-01-24 | Mitsui Toatsu Chem Inc | Manufacture of semiconductor thin film |
JPS6223105A (en) * | 1985-07-24 | 1987-01-31 | Mitsui Toatsu Chem Inc | Filming process of semiconductor thin film |
JPS62160713A (en) * | 1986-01-10 | 1987-07-16 | Toshiba Corp | Photoexcitation film forming equipment |
JPS63239811A (en) * | 1987-03-27 | 1988-10-05 | Nippon Telegr & Teleph Corp <Ntt> | Optical reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5276594B2 (en) | Film formation method by vapor deposition from plasma | |
JPS61127121A (en) | Formation of thin film | |
JPH049369B2 (en) | ||
JPS59207621A (en) | Formation of thin film | |
JPS60117711A (en) | Forming apparatus of thin film | |
JPS59188913A (en) | Photo cvd device | |
JPH0366280B2 (en) | ||
JPS63317675A (en) | Plasma vapor growth device | |
KR102583567B1 (en) | Film formation method and film formation equipment | |
JPH07300677A (en) | Film formation and apparatus therefor by photo-cvd | |
JPH0689455B2 (en) | Thin film formation method | |
JPH1018042A (en) | Thin film forming device | |
JPH0978245A (en) | Formation of thin film | |
JPS6064426A (en) | Method and device for forming vapor-phase reaction thin- film | |
JPS6156279A (en) | Film forming method | |
JPS59209643A (en) | Photochemical vapor phase deposition device | |
JPS61288431A (en) | Manufacture of insulating layer | |
KR950008846B1 (en) | Amorphous Silicon Deposition Device Using Microwave | |
JPS6118125A (en) | Thin film forming apparatus | |
JPH0563552B2 (en) | ||
JPS62213118A (en) | Formation of thin film and device therefor | |
JPS60182127A (en) | Photoexcitation reactor | |
JPS6052579A (en) | Optical nitride film forming device | |
JPS61170037A (en) | Device for vapor growth | |
JPS59224118A (en) | Photochemical vapor-phase reaction method |