JPS59204292A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS59204292A JPS59204292A JP7991183A JP7991183A JPS59204292A JP S59204292 A JPS59204292 A JP S59204292A JP 7991183 A JP7991183 A JP 7991183A JP 7991183 A JP7991183 A JP 7991183A JP S59204292 A JPS59204292 A JP S59204292A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- light
- light emitting
- semiconductor
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/024—Arrangements for thermal management
- H01S5/02407—Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
- H01S5/02415—Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/0607—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
- H01S5/0612—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
- H01S5/0261—Non-optical elements, e.g. laser driver components, heaters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はレーザービームプリンタ等の光源として用いる
に適した半導体装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device suitable for use as a light source for a laser beam printer or the like.
従来、レーザービームブリンク等、電子写真方式の記録
装置の光源としてはヘリウム−カドミウム、アルゴン、
ヘリウム−ネオンなどのガスレーザが用いられ、さらに
小型、低コストで、直接変調が可能な半導体レーザが用
いられるようになった。Conventionally, helium-cadmium, argon,
Gas lasers such as helium-neon were used, and semiconductor lasers, which were smaller, lower cost, and capable of direct modulation, began to be used.
また上記記録装置の感光体としては、使用するレーザ光
の波長に応じて、十分な感度と帯電特性が得られるよう
に、電荷移動層と電荷発生層との積層型感光体が注目さ
れている。Furthermore, as photoconductors for the above-mentioned recording devices, laminated photoconductors with a charge transfer layer and a charge generation layer are attracting attention in order to obtain sufficient sensitivity and charging characteristics depending on the wavelength of the laser light used. .
前記積層型感光体の電荷発生層は、光を吸収して自由電
荷を発生させる役割をもち、その厚さは0.1〜5gm
と薄いのが通例である。The charge generation layer of the laminated photoreceptor has the role of absorbing light and generating free charges, and has a thickness of 0.1 to 5 gm.
It is usually thin.
電荷移動層は、静電荷の受容と自由電荷の輸送の役割を
もち、像形成光をほとんど吸収しないものを用い、その
厚さは通例5〜30gmである。The charge transfer layer has the role of accepting static charges and transporting free charges, and is made of a material that hardly absorbs image forming light, and its thickness is usually 5 to 30 gm.
ところで、このような積層型感光体を用い。By the way, when using such a laminated photoreceptor.
レーザー光をライン走査して画像を出してみると、文字
などのライン画像では問題にならないが、ベタ画像の場
合、干渉縞状の濃度ムラが現われる。When an image is produced by scanning a line with a laser beam, there is no problem with line images such as characters, but in the case of solid images, density unevenness in the form of interference fringes appears.
この原因は、電荷移動層表面での反射光と金属などの基
体面での反射光との干渉と考えられる。The cause of this is thought to be interference between the light reflected on the surface of the charge transfer layer and the light reflected on the surface of the substrate such as metal.
即ち、積層型電子写真感光体は、第1図のように、基体
1の上に電荷発生層2と電荷移動層3とが積層された構
成になっている。この積層型感光体にレーザ光4(発光
波長は例えば半導体レーザでは約0.8pm)か入射し
た場合、第2図のように、反射の大きい電荷移動層3の
表面での反射光5と、)5体lの表面で反射され電荷移
動層3の表面から出てくる光6との干渉が生ずる。電荷
発生層2と電荷移動層3との積層の屈折率をn、厚ざを
d+ 、 レーザ光の波長を入とすると、ndlが入
/2の整数倍のときは反射光の強度が極大、すなわち電
荷移動層3の内部へ入っていく光の強度が極小(エネル
キー保存則による) 、 ndlか入/4のに丁数倍の
ときは反射光が極小、すなわち内部へ入っていく光か極
大となる。ところで、 dl には製造」二l用m程度
の場所ムラか裂けられない。That is, the laminated electrophotographic photoreceptor has a structure in which a charge generation layer 2 and a charge transfer layer 3 are laminated on a base 1, as shown in FIG. When laser light 4 (emission wavelength is approximately 0.8 pm for a semiconductor laser, for example) is incident on this laminated photoreceptor, as shown in FIG. ) Interference with the light 6 reflected from the surface of the charge transfer layer 3 and coming out from the surface of the charge transfer layer 3 occurs. Assuming that the refractive index of the laminated layer of the charge generation layer 2 and the charge transfer layer 3 is n, the thickness difference is d+, and the wavelength of the laser beam is I, when ndl is an integral multiple of I/2, the intensity of the reflected light is maximum, In other words, when the intensity of the light entering the charge transfer layer 3 is minimal (according to the law of conservation of energy), the reflected light is minimal when the intensity of the light entering the charge transfer layer 3 is ten times as large as ndl, which means that the intensity of the light entering the layer is minimal (according to the law of conservation of energy). becomes. By the way, the DL does not have any unevenness or tearing in some places due to the manufacturing process.
レーザ光は単色性がよく、コヒーレントなため。Laser light is monochromatic and coherent.
dlの場所ムラに対応して前記の干渉条件が変化し、1
1を荷発生層2でのレーザ光の吸収針の場所ムラが生し
、それかへ夕画像の濃度の干渉輪状のムラとなって現わ
れると考えられる。The above-mentioned interference condition changes in response to the unevenness of dl, and 1
1 is thought to be caused by unevenness in the location of the laser beam absorption needle in the particle generation layer 2, which appears as an interference ring-like unevenness in the density of the evening image.
」−記の如き濃度ムラを防ぐ為には、異なった波長の光
を含んだ記録光で記録すればよいが、従来の半導体装置
では、単一の波長の光しか得られず、前述のような記録
光を摺る為には複数の装置からの光を合成する等の方法
を用いねばならず、構造が複雑で光源が大型化してしま
うという欠点があった。In order to prevent density unevenness as described above, it is possible to record with recording light that contains light of different wavelengths, but with conventional semiconductor devices, only light of a single wavelength can be obtained, and as mentioned above, In order to print a recording beam with a certain amount of light, it is necessary to use a method such as combining the beams from a plurality of devices, which has the disadvantage that the structure is complicated and the light source becomes large.
本発明の目的は、コンパクトで複数波長の光が得られる
半導体装置を提供゛することにある。An object of the present invention is to provide a compact semiconductor device that can obtain light of multiple wavelengths.
本発明は、同一基板上に形成された複数個の半導体発光
素子と、前記複数個の半導体発光素子の温度を各々独立
に制御する手段とから成る半導体装置によって上記目的
を達成するものである。The present invention achieves the above object with a semiconductor device comprising a plurality of semiconductor light emitting elements formed on the same substrate and means for independently controlling the temperature of the plurality of semiconductor light emitting elements.
以下、本発明を図面を用いて説明する。Hereinafter, the present invention will be explained using the drawings.
第3図は本発明の一実施例を示す概略図である。ここで
Aは発光部であり、基板15」二に形成されたアレイ状
の半導体レーザから成る。個々の半導体レーザは通常の
ダブルへテロ構造を有する。Bは夫々の半導体レーザに
独ヴに設けられた加熱部で、AとBを電気的に絶縁する
絶縁部材7、発熱部材8、発熱部材の電極9、発熱部材
の保護膜10とから成る。またCは上記発光部の支持部
材11と、この支持部材の温度を一定に保つ手段から成
る温調部である。さらに前記手段は、支持部材11の温
度を検出する感温素子12、感温素子12の情報をもと
に支持部材を加熱、冷却する熱電素子13及び熱電素子
13からの熱を大気へ拡散させる放熱フィン14とがら
なっている。FIG. 3 is a schematic diagram showing an embodiment of the present invention. Here, A is a light emitting section, which is composed of an array of semiconductor lasers formed on a substrate 15''. The individual semiconductor lasers have a conventional double heterostructure. B is a heating section independently provided in each semiconductor laser, and is composed of an insulating member 7 for electrically insulating A and B, a heat generating member 8, an electrode 9 of the heat generating member, and a protective film 10 of the heat generating member. Further, C is a temperature control section consisting of a support member 11 for the light emitting section and means for keeping the temperature of this support member constant. Further, the means includes a temperature sensing element 12 that detects the temperature of the support member 11, a thermoelectric element 13 that heats and cools the support member based on information from the temperature sensing element 12, and a thermoelectric element 13 that diffuses the heat from the thermoelectric element 13 into the atmosphere. The heat dissipation fins 14 are arranged in a row.
次に本実施例の動作を順に説明する。Next, the operation of this embodiment will be explained in order.
発光部Aの半導体レーザは環境温度により特性を犬きく
変化させる。また個々の半導体レーザ間で熱のやりとり
があると、独立な温度制御が難がしい。その為基板15
まで溝を設けて隣接する半導体レーザを熱的に分離し、
まず支持部材11を熱電素子13により一定温度に保つ
。次に複数の半導体レーザを同時に発光させるが、これ
らの半導体レーザが同−tJ料で作られている為、同一
波長の発光となる。ここて半導体レーザ上の加熱部Bを
動作させることによって、複数波長の光を得る。半導体
レーザの発振波長は、約3λ/’Cの温度係数で変化す
る為、夫々の発熱部材8に加える電流を変える事により
、個々の半導体レーザの温度を独立に制御して、異なっ
た波長で発光させることが出来る。The characteristics of the semiconductor laser in the light emitting section A vary considerably depending on the environmental temperature. Furthermore, if heat is exchanged between individual semiconductor lasers, independent temperature control is difficult. Therefore, the board 15
A groove is provided to thermally separate adjacent semiconductor lasers,
First, the support member 11 is maintained at a constant temperature by the thermoelectric element 13. Next, a plurality of semiconductor lasers are caused to emit light at the same time, but since these semiconductor lasers are made of the same -tJ material, they emit light of the same wavelength. By operating the heating section B on the semiconductor laser, light of multiple wavelengths is obtained. The oscillation wavelength of a semiconductor laser changes with a temperature coefficient of about 3λ/'C, so by changing the current applied to each heat generating member 8, the temperature of each semiconductor laser can be controlled independently, and the oscillation wavelength can be changed at different wavelengths. It can be made to emit light.
次に前記実施例における加熱部Bの作製法を説明する。Next, a method for manufacturing the heating section B in the above embodiment will be explained.
第4図はアレイ状に形成された半導体レーザの内の一つ
を示す部分図である。まず半導体レーザから成る発光部
A上に、この発光部と発熱部材8とを電気的に遮断する
為、絶縁部材7としてSiO膜をスパッタ法によりつけ
る。その上に発熱部材8としてTa或いはHfB2をス
パッタし、更にその上にAnをEB蒸着しエツチングに
よって゛1L極9を形成する。最後に保護膜10をつけ
ることによって加熱部Bが形成される。このように前記
実施例の加熱部Bは通常の薄膜形成法を用いて、極めて
容易に作製される。FIG. 4 is a partial view showing one of the semiconductor lasers formed in an array. First, an SiO film is applied as an insulating member 7 on a light emitting part A consisting of a semiconductor laser by sputtering in order to electrically isolate the light emitting part from the heat generating member 8. Ta or HfB2 is sputtered thereon as a heat generating member 8, and furthermore, An is deposited thereon by EB evaporation and etched to form a 1L pole 9. Finally, the heating section B is formed by applying the protective film 10. In this way, the heating section B of the above embodiment can be manufactured very easily using a normal thin film forming method.
本発明の半導体装置の発光波長は、用途によって設定さ
れるべきものであるが、第5図の如き感度特性の感光体
を有する記録装置に用いる場合には、例えば2波長発光
の装置では入、、屓を選べばよい。ここで入Iと漁の差
はレーザ波長、感光体の厚さ、屈折率等を考慮し、干渉
による濃度ムラが生じないように設定すれば良い。この
ような記録装置、では多波長になればより画像は均一に
なるので、本発明における半導体発光素子の数も多1.
)程、前記記録装置における効果が大きい。The emission wavelength of the semiconductor device of the present invention should be set depending on the application, but when used in a recording device having a photoreceptor with sensitivity characteristics as shown in FIG. , just choose the bottom. Here, the difference between the input value and the value may be set in consideration of the laser wavelength, the thickness of the photoreceptor, the refractive index, etc., so that density unevenness due to interference will not occur. In such a recording device, since the image becomes more uniform with multiple wavelengths, the number of semiconductor light emitting elements in the present invention is also large.1.
), the greater the effect in the recording apparatus.
前記発光波長は、測定によって予め設定値に調整してお
くこともできるが、コストの面から記録装置に搭載した
後、画像を見ながら夫々の発光を調整し、任意の波長と
することが望ましい。更には、感光体は作成時にロット
内およびロ5.ト間で感度が大きくばらつくので、感光
体交換時は、半導体レーザの温度を変化させ、波長をシ
フトさせて感光体の感度に合わせると良い。The emission wavelength can be adjusted to a set value in advance by measurement, but from the viewpoint of cost, it is preferable to adjust each emission wavelength while looking at the image after installing it in the recording device and set it to an arbitrary wavelength. . Furthermore, the photoreceptor is manufactured within the lot and at the time of production. Since the sensitivity varies greatly between photoreceptors, it is best to change the temperature of the semiconductor laser and shift the wavelength to match the sensitivity of the photoreceptor when replacing the photoreceptor.
尚、半導体レーザの使用温度の最高限度は要求寿命にも
依存するが約70°Cとみて良い。一方最低温度は温度
調整手段の能力、電源の容量等で決まるが、0℃以下も
可能である。Note that the maximum operating temperature of a semiconductor laser can be considered to be about 70°C, although it depends on the required life span. On the other hand, the minimum temperature is determined by the ability of the temperature adjustment means, the capacity of the power supply, etc., but it is also possible to lower it to 0°C or lower.
第6図は本発明の他の実施例を示す概略図で、第3図と
共通の部分には同一の符号を附し詳細な説明は省略する
。ここで16は熱電素子、17は放熱フィン、18は感
温素子である。本実施例ではそれぞれの半導体レーザの
温度を感温素子18で検知しなから熱電素子16で制御
し、心霊な波長の光を得るものである。FIG. 6 is a schematic diagram showing another embodiment of the present invention, in which parts common to those in FIG. 3 are given the same reference numerals and detailed explanations will be omitted. Here, 16 is a thermoelectric element, 17 is a heat radiation fin, and 18 is a temperature sensing element. In this embodiment, the temperature of each semiconductor laser is detected by a temperature sensing element 18 and then controlled by a thermoelectric element 16 to obtain light of a mysterious wavelength.
本発明の構成は前述の実施例に限られるものではない。The configuration of the present invention is not limited to the above-described embodiments.
例えば、半導体発光素子として発光ダイオード(LED
)を用いてもかまわないし、/!lA度制御半制御手段
の変形が考えられる。For example, a light emitting diode (LED) is used as a semiconductor light emitting device.
) and /! Variations of the 1A degree control semi-control means are conceivable.
以上説明したように、本発明は同一基板」―の複数の半
導体発光素子の温度を独立に制御し得るようにしたので
、単一の半導体装置で複数波長の光か得られた。As explained above, the present invention makes it possible to independently control the temperature of a plurality of semiconductor light emitting elements on the same substrate, so that light of a plurality of wavelengths can be obtained with a single semiconductor device.
第1図は電子写真方式の記録装置の積層型感光体の構成
を示す略断面図、第2図は第1図の感光体に従来の半導
体装置から発した光が入用した様子を説明する図、第3
図は本発明の実施例を示す概略図、第4図は第3図の実
施例の一部分を示す斜視図、第5図は感光体の感度特性
を示す図、第6図は本発明の他の実施例を示す概略図。
7−−−−絶縁部材、8−一一一発熱部材、9−−−一
電極10−−−−保護膜、ti−−−一支持部材、12
.18−−−一感温素子、13.16−−−−熱電素子
、14.17−−−−放熱フィン、15−−−一基板。
博イ本し一す゛プ&、[屹Figure 1 is a schematic cross-sectional view showing the structure of a laminated photoreceptor in an electrophotographic recording device, and Figure 2 explains how light emitted from a conventional semiconductor device is applied to the photoreceptor in Figure 1. Figure, 3rd
4 is a perspective view showing a part of the embodiment of FIG. 3, FIG. 5 is a diagram showing the sensitivity characteristics of the photoreceptor, and FIG. 6 is a diagram showing an embodiment of the present invention. FIG. 7---Insulating member, 8-111 heat generating member, 9---1 electrode 10---protective film, ti---1 supporting member, 12
.. 18---One temperature sensing element, 13.16---Thermoelectric element, 14.17---Radiation fin, 15---One substrate. Hiroshi book one step &, [屹
Claims (1)
子と、tia記祖教祖数個導体発光素子の温度を各々独
立に制御する手段とから成る半導体装置。(1) A semiconductor device comprising a plurality of semiconductor light emitting elements formed on the same substrate and means for independently controlling the temperature of each of the several conductor light emitting elements.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7991183A JPS59204292A (en) | 1983-05-06 | 1983-05-06 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7991183A JPS59204292A (en) | 1983-05-06 | 1983-05-06 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59204292A true JPS59204292A (en) | 1984-11-19 |
Family
ID=13703466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7991183A Pending JPS59204292A (en) | 1983-05-06 | 1983-05-06 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59204292A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62205680A (en) * | 1986-03-06 | 1987-09-10 | Nec Corp | Semiconductor laser light source |
US4727554A (en) * | 1985-02-18 | 1988-02-23 | Fuji Photo Film Co., Ltd. | Temperature controller for semiconductor devices |
US5138340A (en) * | 1990-12-06 | 1992-08-11 | Xerox Corporation | Temperature controlled light source for interlaced printer |
US5150371A (en) * | 1991-06-05 | 1992-09-22 | Xerox Corporation | Laser diode carrier with a semiconductor cooler |
JPH0555709A (en) * | 1991-08-29 | 1993-03-05 | Nec Corp | Cooling type semiconductor laser array module |
EP0560358A2 (en) * | 1992-03-11 | 1993-09-15 | Sumitomo Electric Industries, Limited | Semiconductor laser and process for fabricating the same |
FR2690571A1 (en) * | 1992-04-23 | 1993-10-29 | Peugeot | Temp. control system for electronic circuit module, esp. laser diode - includes thermistor temp. sensors linked to control circuit for regulating two cooling elements |
US5513200A (en) * | 1992-09-22 | 1996-04-30 | Xerox Corporation | Monolithic array of independently addressable diode lasers |
WO1999028999A1 (en) * | 1997-12-01 | 1999-06-10 | Deutsche Telekom Ag | Method for syntonizing the wave lengths of an arrangement of optoelectronic components |
WO1999028998A1 (en) * | 1997-12-01 | 1999-06-10 | Deutsche Telekom Ag | Method and device for tuning the wavelength of an optoelectronic component arrangement |
JP2000232251A (en) * | 1999-02-09 | 2000-08-22 | Nec Corp | Electronic cooling device |
-
1983
- 1983-05-06 JP JP7991183A patent/JPS59204292A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4727554A (en) * | 1985-02-18 | 1988-02-23 | Fuji Photo Film Co., Ltd. | Temperature controller for semiconductor devices |
JPS62205680A (en) * | 1986-03-06 | 1987-09-10 | Nec Corp | Semiconductor laser light source |
US5138340A (en) * | 1990-12-06 | 1992-08-11 | Xerox Corporation | Temperature controlled light source for interlaced printer |
US5150371A (en) * | 1991-06-05 | 1992-09-22 | Xerox Corporation | Laser diode carrier with a semiconductor cooler |
JPH0555709A (en) * | 1991-08-29 | 1993-03-05 | Nec Corp | Cooling type semiconductor laser array module |
US5663975A (en) * | 1992-03-11 | 1997-09-02 | Sumitomo Electric Industries, Ltd. | Multi-beam semiconductor laser with separated contacts characterized by semiconductor mixed crystal and active layer |
EP0560358A3 (en) * | 1992-03-11 | 1994-05-18 | Sumitomo Electric Industries | Semiconductor laser and process for fabricating the same |
EP0560358A2 (en) * | 1992-03-11 | 1993-09-15 | Sumitomo Electric Industries, Limited | Semiconductor laser and process for fabricating the same |
FR2690571A1 (en) * | 1992-04-23 | 1993-10-29 | Peugeot | Temp. control system for electronic circuit module, esp. laser diode - includes thermistor temp. sensors linked to control circuit for regulating two cooling elements |
US5513200A (en) * | 1992-09-22 | 1996-04-30 | Xerox Corporation | Monolithic array of independently addressable diode lasers |
WO1999028999A1 (en) * | 1997-12-01 | 1999-06-10 | Deutsche Telekom Ag | Method for syntonizing the wave lengths of an arrangement of optoelectronic components |
WO1999028998A1 (en) * | 1997-12-01 | 1999-06-10 | Deutsche Telekom Ag | Method and device for tuning the wavelength of an optoelectronic component arrangement |
US6219362B1 (en) | 1997-12-01 | 2001-04-17 | Deutsche Telekom Ag | Method for syntonizing the wave lengths of an arrangement of optoelectronic components |
US7054340B1 (en) * | 1997-12-01 | 2006-05-30 | Deutsche Telekom Ag | Method and deivce for tuning the wavelength of an optoelectronic component arrangement |
JP2000232251A (en) * | 1999-02-09 | 2000-08-22 | Nec Corp | Electronic cooling device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6046837A (en) | Optical modulator | |
JPS59204292A (en) | Semiconductor device | |
US4375067A (en) | Semiconductor laser device having a stabilized output beam | |
JPS6381317A (en) | Apparatus and method for detecting and removing mode hop of diode laser | |
EP0828245A3 (en) | Optical recording medium | |
JPH01281786A (en) | Array laser | |
JPH07193336A (en) | Laser diode rear face emission monitoring device and laser diode array configuration method | |
KR100416993B1 (en) | Optical element integrated heat transferring device for plc | |
JPH0532917B2 (en) | ||
EP0214674B1 (en) | Method of adjusting the light-emission of a light emitting diode at a given driving current | |
JPS59197186A (en) | Semiconductor device | |
JPH0288259A (en) | Optical recording method and optical recording device | |
JPS60143683A (en) | Light source device | |
EP1540410B1 (en) | Electro-optic spatial modulator for high energy density | |
JP2538450Y2 (en) | Semiconductor laser device | |
JPH045329Y2 (en) | ||
JPH05243664A (en) | Semiconductor laser equipment | |
JP2748754B2 (en) | Semiconductor optical device | |
SU976458A1 (en) | Semiconductor block for displaying and printing alphanumeric symbols | |
JPH0414632B2 (en) | ||
JP2694989B2 (en) | Laser scanner | |
JPS6095987A (en) | Laser unit | |
JPS6316546A (en) | Light emitting device | |
JPH0454422Y2 (en) | ||
JPH07302947A (en) | Wavelength stabilizing device |