[go: up one dir, main page]

JPS6316546A - Light emitting device - Google Patents

Light emitting device

Info

Publication number
JPS6316546A
JPS6316546A JP15873586A JP15873586A JPS6316546A JP S6316546 A JPS6316546 A JP S6316546A JP 15873586 A JP15873586 A JP 15873586A JP 15873586 A JP15873586 A JP 15873586A JP S6316546 A JPS6316546 A JP S6316546A
Authority
JP
Japan
Prior art keywords
electron beam
beam source
light emitting
light
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15873586A
Other languages
Japanese (ja)
Inventor
Isao Hakamata
袴田 勲
Kenji Nakamura
憲司 中村
Fumitaka Kan
簡 文隆
Naoji Hayakawa
早川 直司
Masanori Takenouchi
竹之内 雅典
Yasuo Agari
上里 泰生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15873586A priority Critical patent/JPS6316546A/en
Publication of JPS6316546A publication Critical patent/JPS6316546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dot-Matrix Printers And Others (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)

Abstract

PURPOSE:To solve a problem on generation of heat attending on high densification, by using a two-dimensional electron beam source, and setting up a radiation fin, a thermoelectric cooling element and a heating insulating member. CONSTITUTION:In this device, there are provided with an electron beam source 1 being set up in a support member 2 in a two-dimensional manner and emitting an electron beam, a protective member 3 covering the electron beam source 1 and having an emitting aperture 10 for the electron beam, and a light emitting member 4 being set up in and around the emitting aperture 10 as opposed to the electron beam source 1 and excited by the electron beam. In addition, a radiation fin 7 and a thermoelectric clooing element 6 are thermally made stick fast to the electron beam source 1 and the light emitting member 4, or a heating member 8 is thermally made stick fast to the electron beam source 1 and the support member 2 for this source 1, and a heat insulating member 9 is set up between the support member 2 of the electron beam source 1 and another member. With this constitution, a light emitting source comes possible to be formed at the desired position in desired size, thus manufacture of such a high densification light emitting device that is independently drivable comes to fruition.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、発光装置に関し、特に、半導体等の発光部材
へ電子ビームを照射して、発光部材から光を出射させる
発光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a light emitting device, and more particularly to a light emitting device in which a light emitting member such as a semiconductor is irradiated with an electron beam and light is emitted from the light emitting member.

C開示の概要] 本明細書及び図面は、半導体等の発光部材へ電子ビーム
を照射して発光部材から光を出射させる発光装置におい
て、2次元の電子ビーム源を使用することにより高密度
な発光装置を実現し、かつ放熱フィン、電子冷却素子、
断熱部材を配設することにより高密度化に伴う発熱の問
題を解消する技術を開示するものである。
C. Summary of Disclosure] This specification and drawings describe a light emitting device that emits light from a light emitting member such as a semiconductor by irradiating an electron beam onto the light emitting member, which emits light with high density by using a two-dimensional electron beam source. The device is realized, and heat dissipation fins, electronic cooling elements,
The present invention discloses a technique for solving the problem of heat generation caused by high density by disposing a heat insulating member.

[従来の技術] 従来より、電子ビームにより光を励起する試みは各積行
われていて、 PM接合のできない半導体でも発光は可
能となっている。
[Prior Art] Various attempts have been made to excite light with electron beams, and it has become possible to emit light even in semiconductors that cannot be subjected to PM junctions.

[発明が解決しようとする問題点] しかし、 300keVに達する高速電子ビームにより
結晶が受けるダメージや電子ビーム源が高密度に配せな
いことなどで電子ビーム源の信頼性が悪く、発光部材へ
の照射は実用化し難かった。
[Problems to be solved by the invention] However, the reliability of the electron beam source is poor due to damage to the crystal caused by the high-speed electron beam reaching 300 keV and the inability to arrange the electron beam source in a high density, and there is a risk of damage to the light emitting member. Irradiation was difficult to put into practical use.

又、近年、コンパクトディスク用として半導体レーザが
多く使用されているが、シングルビームを取り出すのは
容易であっても、複数本のビームを高密度かつ独立駆動
でそれぞれ取り出すことは大変難しかった。
Further, in recent years, semiconductor lasers have been widely used for compact discs, but although it is easy to extract a single beam, it is very difficult to extract multiple beams at high density and independently driven.

本発明は、上記従来例の欠点を除去すると同時に、高密
度化による発熱の問題を解消し、高密度で信頼性の高い
1次元もしくは2次元の発光装置を提供することを目的
とする。
It is an object of the present invention to eliminate the drawbacks of the above-mentioned conventional examples and at the same time solve the problem of heat generation due to high density, and to provide a one-dimensional or two-dimensional light emitting device with high density and high reliability.

[問題点を解決するための手段] 本発明による発光装置は、支持部材に2次元に配置され
、電子ビームを放射する電子ビーム源と、その電子ビー
ム源を掩蔽し、かつ電子ビームの出射窓を有する保護部
材と、前記出射窓の近傍に電子ビーム源と対向して配設
され、電子ビームにより励起される発光部材とを備える
発光装置であって、電子ビーム源及び発光部材に、放熱
フィンと電子冷却素子とを熱的に密着させ、又は電子ビ
ーム源及び電子ビーム源の支持部材に加熱部材を熱的に
密着させ、かつ電子ビーム源の支持部材と他部材との間
に断熱部材を配設することを好適とするものである。
[Means for Solving the Problems] A light emitting device according to the present invention includes an electron beam source that is two-dimensionally arranged on a support member, that emits an electron beam, and an electron beam exit window that covers the electron beam source and that emits an electron beam. and a light-emitting member disposed near the exit window facing the electron beam source and excited by the electron beam, the electron beam source and the light-emitting member having a radiation fin. and an electron cooling element, or a heating member is thermally brought into close contact with the electron beam source and the supporting member of the electron beam source, and a heat insulating member is provided between the supporting member of the electron beam source and other members. It is preferable to arrange this.

[作 用] 本発明に使用される電子ビーム源は、特公昭54−30
274号、特開昭54−111272号(USP 42
59878)、特開昭58−15529号(USP 4
303930) 、特開昭57−38528号等の各公
報に開示されている下記の如き固体電子ビーム発生装置
である。
[Function] The electron beam source used in the present invention is
No. 274, JP 54-111272 (USP 42
59878), Japanese Patent Application Publication No. 58-15529 (USP 4
303930) and Japanese Patent Laid-Open No. 57-38528, etc., the following solid-state electron beam generator is disclosed.

第2図は、固体電子ビーム発生装置の一例を示す平面図
である。第2図において、EXI、 EX2゜EX3・
・・はX方向の選択を行う電極であり、それらは接点領
域を介して、高ドープn影領域MDI。
FIG. 2 is a plan view showing an example of a solid-state electron beam generator. In Figure 2, EXI, EX2゜EX3・
. . are electrodes that perform selection in the X direction, and they pass through the contact area to the highly doped n shadow area MDI.

HO2,HO2・・・とそれぞれ接続されている。また
EYはY方向の電極で、やはり接点領域を介して高ドー
プp形通路PPに接続されていて、前記電極EXI。
They are connected to HO2, HO2, . . . , respectively. Further, EY is an electrode in the Y direction, which is also connected to the highly doped p-type path PP via a contact area, and is connected to the electrode EXI.

EX2. EX3・・・と電極EYでマトリクスを構成
している。基板11上には絶縁層ILを介して引き出し
電極PEが設けられ、電子ビーム源EBI、 HO2,
HO3・・・を形成している。
EX2. EX3... and the electrode EY constitute a matrix. An extraction electrode PE is provided on the substrate 11 via an insulating layer IL, and electron beam sources EBI, HO2,
HO3... is formed.

上記のような構成において、電極EXI、 EX2゜E
X3・・・と電極EYとに7パランシ工増幅作用がp−
n接合部で生じるような電圧を印加し、同時に引き出し
電極PEにある大きさの電圧を与えることにより、電子
ビーム源EBI、 HO2,HO3・・・から電子が放
出される。この時電極EXI、 EX2. EX3・・
・を適当に選択することにより所望の電子ビーム源から
電子を放出させることができる。この構造の電子ビーム
源の密度は30ビ一ム源/am程度まで可能で、一般の
記録装置の仕様を考えるときは充分な密度である。
In the above configuration, the electrodes EXI, EX2゜E
There is a 7-parasitic amplification effect on X3... and electrode EY.
Electrons are emitted from the electron beam sources EBI, HO2, HO3, . . . by applying a voltage that occurs at the n-junction and simultaneously applying a voltage of a certain magnitude to the extraction electrode PE. At this time, electrodes EXI, EX2. EX3...
By appropriately selecting .electrons, electrons can be emitted from a desired electron beam source. The density of an electron beam source with this structure can be up to about 30 beam sources/am, which is sufficient when considering the specifications of a general recording device.

尚、別な電子ビーム源として公知のPM接合に順方向バ
イアスをかけて電子放出を得るものや、電界放出型等の
固体電子ビーム源を用いたものでも同様な効果を奏する
ことができる。
Note that similar effects can be achieved using other electron beam sources such as those that obtain electron emission by applying forward bias to a known PM junction, or those that use a solid-state electron beam source such as a field emission type.

このような高密度の電子発生源が配置されると各所で温
度上昇が起こる。これを防ぐためには。
When such high-density electron generating sources are arranged, temperature increases occur at various locations. To prevent this.

電子ビーム源の支持部材に断熱部材を付設する他1発光
部材にも冷却・放熱部材を密着させる。
In addition to attaching a heat insulating member to the supporting member of the electron beam source, a cooling/heat dissipating member is also attached to one light emitting member.

[実施例] 以下、本発明の実施例を図面と共に詳細に説明する。[Example] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明を実施した発光装置の一例を示す縦断
面図である。第1図において、発光装置は、1次元に3
0本/厘腸の密度で、2次元に配置された電子ビーム源
lと、その電子ビーム源1を取り付けられる支持部材2
と、電子ビーム源lを真空にシールドする保護部材3と
、電子ビームを出射させるために保護部材3に設けられ
た出射窓lOに近接し、電子ビーム源lと対向する位置
に配設され、■−■化合物1例えばGaAsなどの半導
体で成る発光部材4とを備え、かつ発光部材4は支承部
材5により支承され、支承部材5には例えばペルチェ素
子等の電子冷却素子6及びその放熱フィン7が密着され
ている。尚、支持部材2は電子ビーム源1の放熱部材を
兼ね、支承部材5は発光部材4の放熱部材を兼ねている
FIG. 1 is a longitudinal sectional view showing an example of a light emitting device embodying the present invention. In FIG. 1, the light emitting device has three dimensions in one dimension.
An electron beam source 1 arranged two-dimensionally with a density of 0 beams/loam, and a support member 2 to which the electron beam source 1 is attached.
and a protective member 3 that shields the electron beam source l in a vacuum, and a protective member 3 disposed at a position facing the electron beam source l in close proximity to an exit window lO provided in the protective member 3 for emitting the electron beam, ■-■Compound 1 includes a light-emitting member 4 made of a semiconductor such as GaAs, and the light-emitting member 4 is supported by a support member 5, and the support member 5 includes an electronic cooling element 6 such as a Peltier element and its radiation fins 7. is closely attached. Note that the support member 2 also serves as a heat dissipation member for the electron beam source 1, and the support member 5 also serves as a heat dissipation member for the light emitting member 4.

電子ビーム源lは、第2図で既に説明したちのと同様で
あって、そのEBIから出射された電子ビームは、前記
出射窓10から半導体内に入り、入射された電子のエネ
ルギーはアバランシェ増幅作用の禁止帯幅に比較して大
きいので、半導体内でかなり高いエネルギー準位に励起
され、電子は導電体底部へ、一方、陽子は価電子帯の頂
部の準安定状態に落ち着き、そこから直接又は不純物を
介して再結合し、発光が起こる。ここで、レーザ発振条
件は、キャビティ間の反射率をR1吸収係数をα、キャ
ビティ長をLとして、 Rexp  C(g−α)L]≧1 であり、利得の閾値(gth)は。
The electron beam source l is the same as that already explained in FIG. Since it is large compared to the bandgap of action, it is excited to a fairly high energy level in the semiconductor, and the electrons go to the bottom of the conductor, while the protons settle in a metastable state at the top of the valence band and are directly ejected from there. Or, they recombine through impurities and emit light. Here, the laser oscillation conditions are Rexp C(g-α)L]≧1 where the reflectance between the cavities is R1, the absorption coefficient is α, and the cavity length is L, and the gain threshold (gth) is.

である、この時、熱として失われる量は入力分の80%
以上であることが実験的に判明している0本発明の重要
点の1つは、その熱処理であって、まず電子ビーム源l
からの発熱であるが、高密度で電子発生源が配置されて
いるため、温度上昇が起こり、電子ビーム源としての性
能が変動する。これを防ぐために、ここでは、電子ビー
ム源1の支持部材2に放熱部材の機能を兼ねさせて、熱
を吸収し、大気へ放出する。このように放熱フィンの容
量を大きくすれば、電子ビーム源1の温度変化は小さく
なるが、更に積極的な方策としては、バイアス加熱があ
る。
At this time, the amount lost as heat is 80% of the input amount.
One of the important points of the present invention, which has been experimentally found to be the above, is the heat treatment.
However, since the electron generating sources are arranged at a high density, the temperature rises and the performance as an electron beam source fluctuates. In order to prevent this, here, the support member 2 of the electron beam source 1 is made to also function as a heat radiating member to absorb heat and release it to the atmosphere. If the capacity of the radiation fins is increased in this way, the temperature change in the electron beam source 1 will be reduced, but a more aggressive measure is bias heating.

EBI〜EBnまで同時に連続動作させると、第3図に
示す如く、放熱フィンを有しないタイプはA、放熱フィ
ンを有するタイプはB、バイアス加熱を有するタイプは
Cの各う≧ンになり、性能の安定が大きく異なる。特に
、バイアス加熱の効果は大きい、尚、この時のバイアス
温度は、放熱フィンを設置し、電子ビーム源が連続動作
して飽和に達する温度の近傍が望ましい。
When continuous operation is performed from EBI to EBn at the same time, as shown in Figure 3, the type without heat radiation fins becomes A, the type with heat radiation fins becomes B, and the type with bias heating becomes C. The stability of is significantly different. In particular, the effect of bias heating is great, and the bias temperature at this time is preferably near the temperature at which the electron beam source reaches saturation when heat radiation fins are installed and the electron beam source is continuously operated.

第4図は、バイアス加熱の構造の一例を示す縦断面図で
ある。同図において、発光装置は第1図に示さ庇たもの
と殆ど同様に構成されているが。
FIG. 4 is a longitudinal sectional view showing an example of a bias heating structure. In the same figure, the light emitting device is constructed almost the same as that shown in FIG. 1.

電子ビーム源1にヒータ(加熱部材)8が取り付けられ
、そこからの熱伝導を防ぐために断熱部材9が支持部材
2と保護部材3との間に配設されている。今、ヒータ8
により電子ビーム源1を加熱し、温度バイアスをかける
と、第3図に示す如く、電子ビーム!(1を駆動しても
温度T!に保持され、T2との差値は、A、Bに比較し
てもかなり小さく、安定した電子ビームの出射が得られ
る。
A heater (heating member) 8 is attached to the electron beam source 1, and a heat insulating member 9 is disposed between the support member 2 and the protection member 3 to prevent heat conduction therefrom. Now heater 8
When the electron beam source 1 is heated and a temperature bias is applied, an electron beam is generated as shown in FIG. (Even if 1 is driven, the temperature is maintained at T!, and the difference value from T2 is quite small compared to A and B, and stable electron beam emission can be obtained.

次に1発光部材側の発熱であるが、発光部材4の性能は
温度上昇により劣化する傾向を示すので、温度上昇は好
ましいものとは言えず、極力これを抑えるか1発熱を速
やかに吸収する手段を講じる必要がある。ここでは、発
光効率を上げる必要と放熱又は吸熱との兼ね合いが要点
となる。
Next, regarding the heat generation on the side of the light emitting member 1, the performance of the light emitting member 4 tends to deteriorate as the temperature rises, so a rise in temperature cannot be said to be desirable, so it is necessary to suppress this as much as possible or absorb the heat generated quickly. Measures need to be taken. Here, the key point is the balance between the need to increase luminous efficiency and heat radiation or heat absorption.

一般的には、発光部材4の電子ビーム源l側と反対側に
放熱部材を配設すればよいが、本実施例では、更に積極
策として、温度を一定に保つため放熱部材を兼ねる支承
部材5に電子冷却素子6としてペルチェ素子を配設し、
これらをより低温に保つことによって、発光部材4の長
期安定動作を図っている。その場合の温度制御は、支承
部材5にサーミスタを設けて常に温度検知を行い、電子
冷却素子6にフィードバックをかけることにより、支承
部材5の温度管理を行う、実験値では20±0.2℃を
充分にクリアし、温度安定に大きく寄与することが確認
されている。放熱部材の効果だけでもかなりの寄与はあ
るが、発光部材の温度係数はGaAgの場合0.3mm
/’C程度の波長シフトが見られ、出力も同様な傾向の
温度係数を有するので、要求度の厳しい用途に使用する
ときは電子冷却素子を配設する方がペターである。
Generally, a heat dissipation member may be provided on the side opposite to the electron beam source l side of the light emitting member 4, but in this embodiment, as a more proactive measure, a support member that also serves as a heat dissipation member is used to keep the temperature constant. A Peltier element is arranged as the electronic cooling element 6 in 5,
By keeping these at lower temperatures, stable operation of the light emitting member 4 is achieved over a long period of time. In this case, temperature control is carried out by providing a thermistor on the support member 5 to constantly detect the temperature, and by applying feedback to the electronic cooling element 6, the temperature of the support member 5 is controlled.The experimental value is 20 ± 0.2 ° C. It has been confirmed that it satisfactorily clears the following conditions and greatly contributes to temperature stability. Although the effect of the heat dissipation member alone makes a considerable contribution, the temperature coefficient of the light emitting member is 0.3 mm in the case of GaAg.
Since a wavelength shift of about /'C is observed and the output has a temperature coefficient with a similar tendency, it is better to install a thermoelectric cooling element when used in demanding applications.

尚、本実施例では、発光部材4は放熱部材をかねる支承
部材5を介して電子冷却素子6を熱的に結合しているが
、発光部材4と電子冷却素子6とを直接結合させてもも
ちろん差し支えない。
In this embodiment, the light emitting member 4 is thermally coupled to the electronic cooling element 6 via the support member 5 which also serves as a heat dissipation member, but the light emitting member 4 and the electronic cooling element 6 may be directly coupled. Of course you can.

次に、本発明の発光装置を電子写真の記録手段に使用し
た一例を説明する。第5図は、LED型プリンタに応用
した場合の一例を示す部分斜視図である。第5図におい
ては、感光ドラム!2に近接して、セルフォックレンズ
13が配設され、更にその外方に本発明の発光装置14
が配設されている。
Next, an example in which the light emitting device of the present invention is used as an electrophotographic recording means will be described. FIG. 5 is a partial perspective view showing an example of application to an LED type printer. In Figure 5, the photosensitive drum! 2, a selfoc lens 13 is disposed, and a light emitting device 14 of the present invention is further disposed outside the selfoc lens 13.
is installed.

LEDアレイを使用した場合との相違は、LEDアレイ
の個々の発光サイズは(発光出力との関係もあるが)2
0本/ml11程度が限界であることで、それはLED
の発光効率が入力に対して0.1%と低く、殆どが発熱
となり、隣接素子との熱的、光学的、電気的な干渉を抑
えるためには現実に20本/■程度の素子形成となって
しまうためである。一方、本発明の発光装置では、電子
ビーム源のピッチにより発光密度が決まるため、30木
/rats以上が可能となり、より高精細なパターンを
形成できるので、従来のデジタルプリンタ、例えばレー
ザビームプリンタ、インクジェットプリンタ、感熱プリ
ンタ等よりも高精細な画像形成が可能となる。
The difference from the case of using an LED array is that the individual light emission size of the LED array (although it is related to the light emission output) is 2
The limit is about 0 bottles/ml11, which means that LED
The luminous efficiency of the device is as low as 0.1% relative to the input, and most of it is generated as heat.In reality, it is necessary to form about 20 elements/■ in order to suppress thermal, optical, and electrical interference with adjacent elements. This is because it will become. On the other hand, in the light-emitting device of the present invention, since the light-emitting density is determined by the pitch of the electron beam source, it is possible to achieve a rate of 30 wood/rats or more, and a higher-definition pattern can be formed. It is possible to form images with higher definition than inkjet printers, thermal printers, etc.

上記実施例の発光部材においては、内部のファブリペロ
共振器(図示せず)周辺に光の屈折率差を設けていない
ので、光の出射幅は広がる傾向にあるが、それぞれ必要
なサイズで光を導波させたい場所とそうでない場所とに
Δn =0.05程度の適当な屈折率差をつければ、光
は導波路内に閉じ込められ、シャープな光出射サイズが
得られる。この考え方によれば、結晶内で光の出射方向
を任意に選択でき、所望の方向に導波路を形成しさえす
ればよいことになる。即ち、へ方への光出射も可能であ
る。尚、屈折率差は、拡散やイオンインプランテーショ
ン等により容易に形成可能である。
In the light-emitting member of the above embodiment, there is no difference in the refractive index of light around the internal Fabry-Perot resonator (not shown), so the light output width tends to widen, but the light can be adjusted to the required size. By creating an appropriate refractive index difference of about Δn = 0.05 between a place where waveguide is desired and a place where it is not, the light is confined within the waveguide and a sharp light output size can be obtained. According to this idea, the direction of light emission within the crystal can be arbitrarily selected, and it is only necessary to form a waveguide in a desired direction. That is, it is also possible to emit light in the opposite direction. Note that the refractive index difference can be easily formed by diffusion, ion implantation, or the like.

また、本実施例と異なるが、発光部材4を保護部材3に
よる真空内に配置し、ガラス等の出射窓から光を放出す
るようにしても差し支えない。
Further, although different from this embodiment, the light emitting member 4 may be placed in a vacuum created by the protective member 3, and light may be emitted from an exit window made of glass or the like.

[発明の効果] 以上説明したように、本発明によれば、高密度な2次元
の電子ビーム源を使用し、かつ発熱の問題を解消した結
果、所望の位置に所望のサイズで発光源を形成すること
が可能となる。したがって独立駆動の可能な高密度発光
装置の作成を実現すると共に、導波路を形成することに
より発光サイズの規制と選択、更には所望の方向への光
出射も可能であり、記録装置においても高精細で良画質
の記録を実現することができる。
[Effects of the Invention] As explained above, according to the present invention, a high-density two-dimensional electron beam source is used and the problem of heat generation is solved, and as a result, a light emitting source can be placed at a desired position and in a desired size. It becomes possible to form. Therefore, it is possible to create a high-density light-emitting device that can be driven independently, and by forming a waveguide, it is possible to regulate and select the light-emitting size, and also to emit light in a desired direction. Detailed and high-quality recording can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の縦断面図、第2図は本発明
の電子ビーム源の平面図、第3図は温度一時間の曲線図
、第4図は本発明の別な実施例の縦断面図、第5図は本
発明の応用例の斜視図である。 1:電子ビーム源、2:支持部材、 3:保護部材、4:発光部材、5:支承部材、6:電子
冷却素子、7:放熱フィン。 8:加熱部材、9:断熱部材、10:窓、ll二基板。
FIG. 1 is a longitudinal sectional view of one embodiment of the present invention, FIG. 2 is a plan view of an electron beam source of the present invention, FIG. 3 is a temperature curve diagram for one hour, and FIG. 4 is another embodiment of the present invention. FIG. 5 is a perspective view of an application example of the present invention. 1: electron beam source, 2: support member, 3: protection member, 4: light emitting member, 5: support member, 6: electronic cooling element, 7: radiation fin. 8: heating member, 9: heat insulating member, 10: window, ll2 board.

Claims (3)

【特許請求の範囲】[Claims] (1)支持部材に2次元に配置され、電子ビームを放射
する電子ビーム源と、その電子ビーム源を掩蔽し、かつ
電子ビームの出射窓を有する保護部材と、前記出射窓の
近傍に電子ビーム源と対向して配設され、電子ビームに
より励起される発光部材とを備えることを特徴とする発
光装置。
(1) An electron beam source that is two-dimensionally arranged on a support member and emits an electron beam, a protective member that covers the electron beam source and has an electron beam exit window, and an electron beam source that is arranged in the vicinity of the exit window. 1. A light-emitting device comprising: a light-emitting member disposed facing a source and excited by an electron beam.
(2)電子ビーム源及び発光部材に、放熱フィンと電子
冷却素子とを熱的に密着させたことを特徴とする特許請
求の範囲第1項に記載の発光装置。
(2) The light-emitting device according to claim 1, characterized in that a radiation fin and an electronic cooling element are thermally bonded to the electron beam source and the light-emitting member.
(3)電子ビーム源及び電子ビーム源の支持部材に加熱
部材を熱的に密着させ、かつ電子ビーム源の支持部材と
装置自体の他部材との間に断熱部材を配設したことを特
徴とする特許請求の範囲第1項もしくは第2項に記載の
発光装置。
(3) A heating member is thermally attached to the electron beam source and the supporting member of the electron beam source, and a heat insulating member is provided between the supporting member of the electron beam source and other members of the device itself. A light emitting device according to claim 1 or 2.
JP15873586A 1986-07-08 1986-07-08 Light emitting device Pending JPS6316546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15873586A JPS6316546A (en) 1986-07-08 1986-07-08 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15873586A JPS6316546A (en) 1986-07-08 1986-07-08 Light emitting device

Publications (1)

Publication Number Publication Date
JPS6316546A true JPS6316546A (en) 1988-01-23

Family

ID=15678184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15873586A Pending JPS6316546A (en) 1986-07-08 1986-07-08 Light emitting device

Country Status (1)

Country Link
JP (1) JPS6316546A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161466A (en) * 1986-12-24 1988-07-05 Ricoh Co Ltd Laser recorder
US6052401A (en) * 1996-06-12 2000-04-18 Rutgers, The State University Electron beam irradiation of gases and light source using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161466A (en) * 1986-12-24 1988-07-05 Ricoh Co Ltd Laser recorder
US6052401A (en) * 1996-06-12 2000-04-18 Rutgers, The State University Electron beam irradiation of gases and light source using the same
US6282222B1 (en) 1996-06-12 2001-08-28 Rutgers, The State University Electron beam irradiation of gases and light source using the same

Similar Documents

Publication Publication Date Title
US7486709B2 (en) Semiconductor laser micro-heating element structure
JP3339709B2 (en) Temperature stabilized light emitting diode structure
US6553045B2 (en) Multiple wavelength broad bandwidth optically pumped semiconductor laser
US8995483B2 (en) Methods and apparatus for temperature tuning of semiconductor lasers
US8031751B2 (en) Nitride semiconductor laser device
JPH05190981A (en) Thermally stable diode laser structure
WO1990010327A1 (en) A heat dissipating device for laser diodes
JP2007273644A (en) Optical semiconductor device, laser chip, and laser module
US6798804B2 (en) Laser apparatus including surface-emitting semiconductor excited with semiconductor laser element, and directly modulated
JP2004518287A5 (en)
US6584130B2 (en) Multiple semiconductor laser structure with narrow wavelength distribution
JP2004163753A (en) Optical waveguide type semiconductor device
CA2370788A1 (en) Semiconductor diode lasers with thermal sensor control of the active region temperature
US4280108A (en) Transverse junction array laser
KR100634538B1 (en) Semiconductor light emitting device having efficient cooling structure and manufacturing method thereof
JP3990745B2 (en) Semiconductor optical module
US4297652A (en) Injection-type semiconductor laser
JPS6316546A (en) Light emitting device
JPS60149156U (en) Semiconductor light source with laser and photodetector
CN101542853A (en) Micro heating element structure of semiconductor laser
JP3869106B2 (en) Surface emitting laser device
KR100565049B1 (en) Surface light laser
JPH02177583A (en) Semiconductor laser device
JP2011071562A (en) Optical semiconductor device, laser chip, and laser module
Bai et al. Very high wall plug efficiency of quantum cascade lasers