[go: up one dir, main page]

JPS59201938A - Fuel injection control method - Google Patents

Fuel injection control method

Info

Publication number
JPS59201938A
JPS59201938A JP7531383A JP7531383A JPS59201938A JP S59201938 A JPS59201938 A JP S59201938A JP 7531383 A JP7531383 A JP 7531383A JP 7531383 A JP7531383 A JP 7531383A JP S59201938 A JPS59201938 A JP S59201938A
Authority
JP
Japan
Prior art keywords
signal
value
fuel injection
intake pipe
pipe pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7531383A
Other languages
Japanese (ja)
Other versions
JPH0733782B2 (en
Inventor
Mitsuharu Taura
田浦 光晴
Toshiaki Mizuno
利昭 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP58075313A priority Critical patent/JPH0733782B2/en
Publication of JPS59201938A publication Critical patent/JPS59201938A/en
Publication of JPH0733782B2 publication Critical patent/JPH0733782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve the drivability by controlling a judgement level of the increased volume of power to regard a pressure of a suction pipe lasting for a fixed time based on the output of the suction pipe sensor with driving condition of an engine revolution number being below a fixed value and an opening degree of a throttle valve being above a fixed value as an atmospheric pressure. CONSTITUTION:A control circuit taking in output signals of a suction pipe pressure sensor has a signal processing circuit consisting of the first low pass filter LPF10, the second LPF12 having a delay of response by twice, a subtracter 14 to subtract signals V1 and V2 of each LPF10 and 12, and an adder 16 to output V4 showing 2V1-V2 gained by inputting the output signal V3 of the subtracter 14 and the V2. When a driving state with an engine revolution number being below a fixed value and an opening degree of a throttle valve being above a fixed value lasts for the time till the signal V4 is nearly damped, the signal V4 is read as an atmospheric pressure. If this value is below a fixed value, a decisive value to correct the fuel injection volume is reduced.

Description

【発明の詳細な説明】 本発明は燃料噴射制御方法に関し、特に、吸気管内の圧
力とエンジン回、転数とに基づいて燃料噴射量を設定す
るようにした内燃機関の燃料噴射制御方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection control method, and more particularly to a fuel injection control method for an internal combustion engine, in which the amount of fuel injection is set based on the pressure in the intake pipe and the engine rotation speed. It is.

一般に、三元触媒を用いた、排気ガス浄化対策が施てれ
た自動車用エンジンにおいては、排気エミツショ全白土
芒せるため、エンジンの燃焼状態を示す空燃比を理論空
燃比近傍に制御する必要がある。
In general, in automobile engines that use three-way catalysts and are equipped with exhaust gas purification measures, the exhaust gas is completely blown out, so it is necessary to control the air-fuel ratio, which indicates the combustion state of the engine, to be close to the stoichiometric air-fuel ratio. be.

例えば、排気ガス中の残留酸素濃度により空燃比を検出
する。2センサの出方に応じて、空燃比を理論空燃比と
すべくフィードバック制御が従来から行なわれている。
For example, the air-fuel ratio is detected based on the residual oxygen concentration in the exhaust gas. Feedback control has conventionally been performed to adjust the air-fuel ratio to the stoichiometric air-fuel ratio depending on the output of the two sensors.

エンジン軽負荷運転状態においでは、排気ガス中の窒素
酸化物の排出量が少ないので、理論空燃比より希薄側に
空燃比を移行しても排気エミッションはそれほど悪化せ
ず、燃費を向上略せることができる。
When the engine is operating under light load, the amount of nitrogen oxides emitted from the exhaust gas is small, so even if the air-fuel ratio is shifted to a leaner side than the stoichiometric air-fuel ratio, the exhaust emissions will not deteriorate much, and fuel efficiency can be improved. I can do it.

このような点に立脚して、エンジンが理論空燃比で運転
されるように空燃比を制御するフィードバック制御と、
理論空燃比より希薄側で運転されるように空燃比をフィ
ードフォーワード制御するり−ン制御とを運転状態に応
じて切替え、これにより、燃費を向上はせるようにした
自動車用内燃機関が提案でれている。
Based on these points, feedback control controls the air-fuel ratio so that the engine is operated at the stoichiometric air-fuel ratio,
Proposed an internal combustion engine for automobiles that switches between feed-forward control of the air-fuel ratio and lean control according to operating conditions so that the air-fuel ratio is operated leaner than the stoichiometric air-fuel ratio, thereby improving fuel efficiency. It's visible.

このような内燃機関においては5例えば、エンジン冷却
水温が80℃以上、吸気管圧力が550mlI−1g以
下、吸気絞り弁開度30度以下、吸気絞り弁全閉または
全閉以外で車速15Km/h以上、および2秒間の車速
変化が0.7Km/h以下のときに。
In such an internal combustion engine, for example, the engine cooling water temperature is 80℃ or higher, the intake pipe pressure is 550mlI-1g or lower, the intake throttle valve opening is 30 degrees or lower, and the vehicle speed is 15km/h with the intake throttle valve fully closed or not fully closed. above, and when the vehicle speed change within 2 seconds is 0.7 km/h or less.

リーン制御が実行でれている。そして1例えば。Lean control is being executed. And one example.

リーン制御中でなく、エンジン冷却水温が40℃以上、
燃料カット中でなく、パワー増量中でなめときに、フィ
ードバック制御が笑行芒れでいる。
Lean control is not in progress and the engine cooling water temperature is 40℃ or higher.
The feedback control is ridiculous when I am not cutting fuel but increasing power.

しかしながら、高地を走行している場合は大気圧自体が
低下しており、平地でフィードバック制御てれるような
運転状態でも吸気管圧力が大気圧低下分だけ小さくなる
ので、リーン制御が実行される惧れがある。この場合に
は、出刃が低下してドライバビリティが悪化する。
However, when driving at high altitudes, the atmospheric pressure itself decreases, and even in driving conditions where feedback control is possible on flat terrain, the intake pipe pressure decreases by the atmospheric pressure drop, so there is a risk that lean control will be executed. There is. In this case, the cutting edge decreases and drivability deteriorates.

一方、上述したような触媒を有する内燃機関では、吸気
管圧力が所定以上の高負荷時にパワー増量補正をして燃
料噴射量を増量し、これにより。
On the other hand, in an internal combustion engine having a catalyst as described above, when the intake pipe pressure is at a predetermined level or higher and the load is high, power increase correction is performed to increase the fuel injection amount.

出力トルクの増大と触媒温度の低減化を図っている。The aim is to increase output torque and reduce catalyst temperature.

しかしながら、上述したと同様の理由により。However, for the same reasons as mentioned above.

平地走行であればパワー増量でれる運転状態でも。Even in driving conditions where you can increase the power when driving on flat ground.

高地走行ではパワー増量てれない運転領域がある。When driving at high altitudes, there is a driving range where power cannot be increased.

このような運転領域では出力トルクの増大および触媒温
度の低減が図れず、ドライバビリティが低下し、しかも
触媒の耐久性に問題が生ずる。このような問題は、フィ
ードバック制御、オープンループ制御、リーン制御等を
適宜択一的に実行するイスレのエンジンでも生ずるもの
である。
In such an operating range, it is impossible to increase the output torque and reduce the catalyst temperature, resulting in decreased drivability and problems with the durability of the catalyst. Such problems also occur in idle engines that selectively perform feedback control, open loop control, lean control, etc. as appropriate.

本発明の目的は、高度補償を行うことにより、吸気管圧
力により種々の燃料噴射制御方法う車両のドライバビリ
ティを向上1せるようにした燃料噴射制御方法を提案す
ることにある。
An object of the present invention is to propose a fuel injection control method that improves the drivability of a vehicle using various fuel injection control methods using intake pipe pressure by performing altitude compensation.

ところで、吸気管圧力とエンジン回転数とに基づいて燃
料噴射量を定めるエンジンにおいては。
By the way, in an engine that determines the fuel injection amount based on intake pipe pressure and engine speed.

吸気管圧力センサで検出嘔れた圧力信号の脈動成分を除
去すると同時に過渡時の応答性ケ向上埒ゼるようにした
信号処理回路が提案芒れでいる。
A signal processing circuit has been proposed that removes the pulsating component of the pressure signal detected by the intake pipe pressure sensor and at the same time improves the responsiveness during transients.

この信号処理回路は、第1図に示すように、圧力センサ
に接続式れる第1のローノくスフイルりIOと、第1の
ローパスフィルタ】0に後続する第2のローパスフィル
タ12と、第1のローノくスフイルタ10からの信号■
、および第2のロー/くスフィルタ12からの信号■、
か入力芒れて(V、−V21を演算する減算器14と、
減算器14からの信号V、と第1のローパスフィルタJ
Oからの信号V1が入力されて加算し、+2V、−V2
1を示す信号V4ffi出力する加算器16とから成る
As shown in FIG. 1, this signal processing circuit includes a first low-pass filter IO connected to the pressure sensor, a second low-pass filter 12 following the first low-pass filter 0, and a first low-pass filter IO. Signal from Ronokusu filter 10■
, and the signal ■ from the second low/cus filter 12,
a subtracter 14 that calculates (V, -V21) with the input awn;
The signal V from the subtractor 14 and the first low-pass filter J
Signal V1 from O is input and added, +2V, -V2
and an adder 16 which outputs a signal V4ffi indicating 1.

そして、第2のローパスフィルタ12は、第1のローパ
スフィルタ10に対して略2倍の応答遅れヲ有するもの
が選択される。
The second low-pass filter 12 is selected to have a response delay approximately twice that of the first low-pass filter 10.

吸気管圧力は、スロットル弁が比較的閉じている場合に
は20〜30門Hg程度の脈動成分であるが、エンジン
回転数が比較的小さく、スロットル弁が所定以上間いて
いる場合、すなわち、略大気圧に近い吸気管圧力時には
、ピークツーピークの値が100 rm Hgあるが、
このように構成された信号処理回路では、吸気管圧力の
立上り特性を改善でき、しかも、略大気圧に近い吸気管
圧力時の脈動成分の除去にも効果を有するものである。
The intake pipe pressure is a pulsating component of about 20 to 30 Hg when the throttle valve is relatively closed, but when the engine speed is relatively low and the throttle valve is open for a predetermined period or more, When the intake pipe pressure is close to atmospheric pressure, the peak-to-peak value is 100 rm Hg,
The signal processing circuit configured in this manner can improve the rise characteristics of the intake pipe pressure, and is also effective in removing pulsating components when the intake pipe pressure is close to atmospheric pressure.

cnら各信号V、 〜V4u、第4u、A) 、 (B
) K示すような特性を有する。こCで、信号■4が略
収束する捷でを減衰時間T1として示し2ている。
cn et al. each signal V, ~V4u, 4th u, A), (B
) It has the characteristics shown in K. In C, the point at which the signal 4 substantially converges is shown as the decay time T1.

なお、第1図に示した回路の具体例を第3図に示す。本
例では、三つのオペアンプOP1〜OP3 ト、 !抗
R,1〜R5(!:、 コンfンサC1−C3から構成
でれ、上記ブロック図により説明したと同様の信号処理
が実行芒れる。
Incidentally, a specific example of the circuit shown in FIG. 1 is shown in FIG. In this example, three operational amplifiers OP1 to OP3 are used. It is composed of resistors R, 1 to R5 (!:,), and performs the same signal processing as explained in the block diagram above.

第1〜第4の発明では、エンジン回転数が所定値以下で
あり、かつ、吸気絞り弁開度が所定以上の運転状態が、
少なくとも吸気管圧力センサの信号処理回路からの出力
信号の減衰時間だけ継続したときに読込んだ吸気管圧力
を大気圧とみなし。
In the first to fourth inventions, the operating state in which the engine speed is below a predetermined value and the intake throttle valve opening is above a predetermined value is:
The intake pipe pressure read after continuing for at least the decay time of the output signal from the signal processing circuit of the intake pipe pressure sensor is considered to be atmospheric pressure.

その大気圧データが所定以下のときに、第1の発明では
、パワー増量すべきか否かの判定レベルを小σ〈シ、第
2の発明では、その大気圧データが小さいほど大きな値
を吸気管圧力に加嘗4してパワー増量実行の要否を判定
し、第3の発明では、リーン制御において減少される基
本燃料噴射時間が所定値以下とならないようにし、第4
の発明では。
In the first invention, when the atmospheric pressure data is below a predetermined value, the determination level for determining whether or not to increase the power is set to small σ, and in the second invention, the smaller the atmospheric pressure data is, the larger the value is set in the intake pipe. In the third invention, the basic fuel injection time reduced in lean control is prevented from becoming less than a predetermined value, and the fourth invention
In the invention of.

上記大気圧データが小でいほど大きな呟を吸気管圧力に
加算してリーン制御実行の要否全判定するようにした。
The smaller the atmospheric pressure data is, the greater the pressure is added to the intake pipe pressure to determine whether lean control is necessary or not.

本発明によれば、高地走行時の出力トルク低下を防止で
き、かつ、触媒の耐久性の向上を図ることができる。
According to the present invention, it is possible to prevent a decrease in output torque during high-altitude driving, and to improve the durability of the catalyst.

以下5図面に基づいて本発明を説明する。The present invention will be explained based on the following five drawings.

第4図は本発明を適用した電子燃料噴射制御装置を含む
自動車用内燃機関の構成例を示す。エアフィルタ1はイ
ンレットバイブ3を介してスロットルボディ5と接続さ
れている。スロットルボディ5には、その上流側に燃料
噴射弁7が設けられ、燃料噴射弁7の下流にはアクセル
ペダル(不図示)と連動して吸入空気量を調節する吸気
絞り弁9が設けられ、吸気絞り弁9の下流には、その部
位の絶対圧力を測定する吸気管絶対圧力センサ11が設
けられている。更に、吸気絞り弁9の開度位置を測定す
る弁開度位置センサ2と、吸気絞り弁9が全開している
ときにのみオンするアイドルスイッチ4と、例えば吸気
絞り弁9の開度が50度以上のときにのみオンするパワ
ースイッチ6とが。
FIG. 4 shows a configuration example of an internal combustion engine for an automobile including an electronic fuel injection control device to which the present invention is applied. The air filter 1 is connected to a throttle body 5 via an inlet vibe 3. The throttle body 5 is provided with a fuel injection valve 7 on its upstream side, and an intake throttle valve 9 that adjusts the amount of intake air in conjunction with an accelerator pedal (not shown) is provided downstream of the fuel injection valve 7. An intake pipe absolute pressure sensor 11 is provided downstream of the intake throttle valve 9 to measure the absolute pressure at that location. Further, there is a valve opening position sensor 2 that measures the opening position of the intake throttle valve 9, an idle switch 4 that is turned on only when the intake throttle valve 9 is fully open, and a valve opening position sensor 2 that measures the opening position of the intake throttle valve 9, and an idle switch 4 that is turned on only when the intake throttle valve 9 is fully open. There is a power switch 6 that turns on only when the temperature exceeds the temperature.

吸気絞り弁9に関連して数句けられている。Several phrases are mentioned in relation to the intake throttle valve 9.

スロットルボディ5ば、エンジンの各気筒と接続された
分岐管ヲ廟するインテークマニホルド13と接続てれ、
インテークマニホルド13には、その内の吸気温度を測
定する吸気温センサ15が設ケラれている。インテーク
マニホルド】3の分岐前の底壁13aには、エンジン冷
却水が循還されて、混合気を加熱するためのライザ部1
7が設けられている。
The throttle body 5 is connected to the intake manifold 13, which has a branch pipe connected to each cylinder of the engine.
The intake manifold 13 is provided with an intake temperature sensor 15 that measures the intake air temperature within the intake manifold 13. [Intake manifold] The bottom wall 13a before the branch of intake manifold 3 has a riser section 1 for circulating engine cooling water and heating the air-fuel mixture.
7 is provided.

19は周知慣例のエンジン本体であり、ピストン21と
シリンダ23とシリンダヘッド25とにより燃焼室27
が画成芒れていて、吸気弁29を介して燃焼室27に吸
入でれた混合気が点火プラグ31により着火芒れる。シ
リンダ23の周囲にはウォータジャケット33が形成さ
れ、七〇〇オータジャケット33にエンジン冷却水が循
還芒れでシリンダ23を含む部品が冷却てれる。そして
Reference numeral 19 designates a well-known engine body, which includes a piston 21, a cylinder 23, and a cylinder head 25, and a combustion chamber 27.
The air-fuel mixture drawn into the combustion chamber 27 through the intake valve 29 is ignited by the spark plug 31. A water jacket 33 is formed around the cylinder 23, and engine cooling water is circulated through the 700 water jacket 33 to cool the parts including the cylinder 23. and.

シリンダブロック35の外壁にはウォータジャケット3
3内のエンジン冷却水温を測定するエンジン冷却水温セ
ンサ37が設けられている。
A water jacket 3 is provided on the outer wall of the cylinder block 35.
An engine coolant temperature sensor 37 is provided to measure the temperature of the engine coolant in the engine.

シリンダヘッド250図示しない排気ボートにはエキゾ
ーストマニホルド39が接続され、その下流側に、排気
ガス中の残留酸素濃度を測定するO、センサ41が設け
られている。エキゾーストマニホルド39は、三元触媒
43を介して排気管45と接続式れている。
An exhaust manifold 39 is connected to an exhaust boat (not shown) of the cylinder head 250, and an oxygen sensor 41 for measuring the residual oxygen concentration in the exhaust gas is provided downstream of the exhaust manifold 39. The exhaust manifold 39 is connected to an exhaust pipe 45 via a three-way catalyst 43.

47はエンジン本体19に接続式れた変速装置であり、
その最終出力軸の回転数により車両の速度を測定する車
速センサ49が数句けられている。
47 is a transmission connected to the engine body 19;
There are several vehicle speed sensors 49 that measure the speed of the vehicle based on the number of revolutions of its final output shaft.

また、51はキースイッチ、53はイグナイタ。Further, 51 is a key switch, and 53 is an igniter.

55はディストリビュータであり、ディストリビュータ
55には、所定のクランク角度θl毎にオン・オフ信号
を出力するNeセンサ57が設けられ。
55 is a distributor, and the distributor 55 is provided with a Ne sensor 57 that outputs an on/off signal at every predetermined crank angle θl.

その出力信号によりエンジン回転数と所定のクランク角
度位置を知ることができ、また、上記角度θ1より大き
い角度θ2毎にオン・オフ信号を出力するGセンサ59
が設けられ、その出力信号により気筒判別と−に死点位
置検出が行なわれる。捷た。60はバッテリを示す。
The G sensor 59 can determine the engine speed and a predetermined crank angle position from the output signal, and also outputs an on/off signal at every angle θ2 larger than the angle θ1.
is provided, and its output signal is used to determine the cylinder and to detect the dead center position. I cut it. 60 indicates a battery.

制御回路6Jは、弁開度位置センサ2、アイドルスイッ
チ4、パワースイッチ6、吸気圧センサ】1.吸気温セ
ンサ15.エンジン冷却水温センサ37.0□センサ4
1.車速センサ49.キースイッチ51.Neセンサ5
7.Gセンサ59およびバッテリ60とそれぞれ接続さ
れていて、弁開度信号Sl、アイドル信号S2、パワー
信号S3、吸気圧信号S4.吸気温信号S5.水温信号
S6゜空燃比信号S7.車速信号S8.スタート信号S
9、エンジン回転数信号S10.気筒判別信号S11お
よびバッテリ電圧信号S14が各センサから入力てれる
。また、制御回路61は、燃料噴射弁7とイグナイタ5
3にも接続はれていて、所定の演算に基づめて、燃料噴
射信号S12および点火信号813を出力する。
The control circuit 6J includes a valve opening position sensor 2, an idle switch 4, a power switch 6, an intake pressure sensor]1. Intake temperature sensor 15. Engine coolant temperature sensor 37.0□Sensor 4
1. Vehicle speed sensor 49. Key switch 51. Ne sensor 5
7. They are connected to the G sensor 59 and the battery 60, respectively, and receive a valve opening signal Sl, an idle signal S2, a power signal S3, an intake pressure signal S4 . Intake temperature signal S5. Water temperature signal S6° Air fuel ratio signal S7. Vehicle speed signal S8. Start signal S
9. Engine speed signal S10. A cylinder discrimination signal S11 and a battery voltage signal S14 are input from each sensor. The control circuit 61 also includes the fuel injection valve 7 and the igniter 5.
3, and outputs a fuel injection signal S12 and an ignition signal 813 based on predetermined calculations.

制御回路61は、第5図に示すよう[、各種機器全制御
する中央演算処理装置(CPU)61a。
As shown in FIG. 5, the control circuit 61 includes a central processing unit (CPU) 61a that controls all of the various devices.

予め各種の数値やプログラムが書き込せれたり一ドオン
リメモリ(ROM)6 lb、演算過程の数1直やフラ
グが所定の領域に書き込まれるランダムアクセスメモリ
(RAM)61 c、アナログ入力信号をディジタル信
号に変換するA/Dコンバータ(ADC) 61 d、
各種ディジタル信号が人力てれ、各種ディジタル信号が
出力される入出力インタフェース(Ilo)61e、エ
ンジン停止時に補助電源から給電嘔れて記憶を保持する
パンクアップメモリ(BU−RAM ) 61 f、及
びこれら各機器がそれぞれ接続式れるパスライン61g
から構成されている。後述するプログラムはROM61
bに予め書き込まれている。
One-drive only memory (ROM) 6 lb in which various numerical values and programs are written in advance, random access memory (RAM) 61 c in which numerical values and flags for calculation processes are written in predetermined areas, A/D converter (ADC) to convert 61 d,
An input/output interface (Ilo) 61e through which various digital signals are manually input and output, a puncture-up memory (BU-RAM) 61f that retains memory when powered from an auxiliary power source when the engine is stopped, and these. Pass line 61g that each device can be connected to
It consists of The program described below is in ROM61.
b is written in advance.

上述したエンジンにおいては、第6図に示すフローチャ
ートに従って燃料が噴射芒れる。第6図を参照するに5
手順P1において、基準位置信号であるエンジン回転数
信号S1に基づいてエンジン回転数Neを読込むととも
に吸気管圧力信号S4に基づいて吸気管圧力PMi読込
む。手順P2において5回転数1’Jeと吸気管圧力P
Mとに基づいて。
In the engine described above, fuel is injected according to the flowchart shown in FIG. Referring to Figure 6, 5
In step P1, the engine speed Ne is read based on the engine speed signal S1, which is a reference position signal, and the intake pipe pressure PMi is read based on the intake pipe pressure signal S4. In step P2, 5 revolutions 1'Je and intake pipe pressure P
Based on M.

第7図のマツプから基本噴射時間TPを求め5手順P3
において、エンジンの運転条件に応じて補正演算処理を
実行して補正後の噴射時間τを求める。
Determine the basic injection time TP from the map shown in Figure 7. 5 Steps P3
In this step, a corrected injection time τ is determined by executing a correction calculation process according to the operating conditions of the engine.

ここで1手順P3の補正演算処理による補正噴射時間τ
の演算について詳述する。
Here, the corrected injection time τ by the correction calculation process of step P3
The operation of is explained in detail.

噴射時間τば、一般に次式により求められる。The injection time τ is generally determined by the following equation.

r=TPXFWLXFAFXFTHAX (FTC+F
PO+PSE+FLEAN)      ・・・(1)
ここで: TP−基本燃料噴射時間 FWL−暖機増量係数 F A、 F−空燃比フィードバック補正係数FTC−
過渡時空燃比補正係数 I!” T I−IA−吸気温補正係数FSE−始動後
増量係数 FPO=パワー増量係数 FLEAN−リーン補正係数 そこで、第8図に示すτ演算ルーチンに基づいて各係数
が算出埒れて噴射時間τが求められる。
r=TPXFWLXFAFXFTHAX (FTC+F
PO+PSE+FLEAN)...(1)
Where: TP - Basic fuel injection time FWL - Warm-up increase coefficient FA A, F - Air-fuel ratio feedback correction coefficient FTC -
Transient air-fuel ratio correction coefficient I! ” T I-IA - Intake temperature correction coefficient FSE - Post-start increase coefficient FPO = Power increase coefficient FLEAN - Lean correction coefficient Then, each coefficient is calculated based on the τ calculation routine shown in Fig. 8, and the injection time τ is determined. Desired.

すなわち、手順pHで暖機増量係数FWLの演算処理を
実行し1手順P12で空燃比フィードバック補正係数F
AFの演算処理を実行し2手順P13で過渡時空燃比補
正係数FTCの演算処理全実行し5手順P14でパワー
増量係数FPOの演算処理を実行し1手順P15で始動
後増量係数PSEの演算処理を実行し5手順P]6でリ
ーン補正係数FLEANの演算処理を実行し、手順P3
7で吸気温補正係数F T HAを求め、?′にいで手
順P18で、上記第(])式を演算して第6図の手順P
4に戻る。
That is, the warm-up increase coefficient FWL is calculated at step pH, and the air-fuel ratio feedback correction coefficient F is calculated at step P12.
The AF calculation process is executed, the transient air-fuel ratio correction coefficient FTC is completely calculated in the second step P13, the power increase coefficient FPO is calculated in the fifth step P14, and the post-start increase coefficient PSE is calculated in the first step P15. Execute the calculation process of the lean correction coefficient FLEAN in step P]6, and execute the calculation process of the lean correction coefficient FLEAN in step P3.
7 to find the intake temperature correction coefficient F T HA, ? ', and in step P18, calculate the above equation (]) and execute step P in Figure 6.
Return to 4.

手順P4では、バッテリ電圧に応じて補正噴射時間τを
補正して最終噴射時間Fτを求め1手順P5で噴射タイ
ミングと判断芒れ才しは手順P6のタイミングで燃料噴
射弁7から最終噴射時間Fτに相当する時間だけ噴射弁
7全開弁じて燃料を噴射する。
In step P4, the final injection time Fτ is determined by correcting the corrected injection time τ according to the battery voltage, and the injection timing is determined in step P5.Then, the final injection time Fτ is determined from the fuel injection valve 7 at the timing of step P6. Fuel is injected with the injection valve 7 fully open for a time corresponding to .

次に、第8図の各手順pH〜P17について説明する。Next, each step from pH to P17 in FIG. 8 will be explained.

第8図の手順pHの暖機増量係数FWLは。The procedure pH warm-up increase coefficient FWL in FIG. 8 is.

例えば、エンジン冷却水温THWとエンジン回転数Ne
に基づいて、水温THWが低くエンジン回転数Neが不
埒いほど大きな値が得られるものであり。
For example, engine cooling water temperature THW and engine speed Ne
Based on this, the lower the water temperature THW and the unreasonable engine speed Ne, the larger the value obtained.

基本燃料噴射時間TPを増量補正するものである。This is to increase the basic fuel injection time TP.

また1手順P12の空燃比フィードバック補正係数FA
Fは1例えば、Otセセン41からの空燃比信号S7が
基準値より太きいときに1.0より小でい値となり、基
準値より小でいときに1.0より大きくなる値である。
In addition, the air-fuel ratio feedback correction coefficient FA of step P12
F is 1, for example, a value smaller than 1.0 when the air-fuel ratio signal S7 from the sensor 41 is larger than the reference value, and a value larger than 1.0 when it is smaller than the reference value.

また、手順P13の過渡時空燃比補正係数FTCは、例
えば、吸気管圧力センサ11からの吸気圧力信号S4に
基づいて吸気管圧力の変化量全演算し、その変化量に基
づいて、変化量が大きいほど大きな値が得られるもので
あり、基本燃料噴射時間TPi増量補正するものである
In addition, the transient air-fuel ratio correction coefficient FTC in step P13 is calculated by calculating the total amount of change in intake pipe pressure based on the intake pressure signal S4 from the intake pipe pressure sensor 11, and based on the amount of change, the amount of change is large. The larger the value is obtained, the more the basic fuel injection time TPi is increased.

更に1手順P14のパワー増量係数FPOは次のように
して演算される。
Further, the power increase coefficient FPO of one step P14 is calculated as follows.

第9図を参照するに、所定のタイミングでこのプログラ
ムが起動されると5手Il@P 51でエンジン回転数
Neが400Orpmより大きいか否かを判断し、肯定
判断されれば、後述するようにして大気圧として読込ま
れているデータPMAが700tTBHgより小さいか
否かを判断する。大気圧PMAが700smHgより小
さければ、換言すると高地と判断されると手順P53に
進む。手順P53においては、吸気管圧力PMの最新デ
ータが4501Hgより大きいか否かを判断する。圧力
I) Mが450mmHgより太きければ2手順P55
において、パワー増量すべくパワー増量係数FPOk1
.15とする。一方、圧力PMが450 am I−I
gより不埒ければ1手順P56において、パワー増量芒
れないようにパワー増量係数FPOを零と1−る。
Referring to FIG. 9, when this program is started at a predetermined timing, it is determined in the fifth hand Il@P 51 whether or not the engine rotation speed Ne is greater than 400 Orpm. Then, it is determined whether the data PMA read as atmospheric pressure is smaller than 700tTBHg. If the atmospheric pressure PMA is less than 700 smHg, in other words, if it is determined that the area is at a high altitude, the process proceeds to step P53. In step P53, it is determined whether the latest data on the intake pipe pressure PM is greater than 4501 Hg. Pressure I) If M is thicker than 450mmHg, 2 steps P55
In order to increase the power, the power increase coefficient FPOk1
.. 15. On the other hand, the pressure PM is 450 am I-I
If it is worse than g, in step P56, the power increase coefficient FPO is set to 0 to prevent the power increase.

手順P52において、大気圧PMAが700■I−1g
よりも大きければ手順P54に進み、圧力PMが500
 arm Hgより大きいか否かを判断する。肯定判断
されると手順P55において、パワー増量係数FPO’
i=1.15とし、否定判断でれると手順P56におい
てパワー増量係数FPOを零とする。
In step P52, atmospheric pressure PMA is 700■I-1g
If the pressure PM is greater than 500, proceed to step P54.
Determine whether it is greater than arm Hg. If an affirmative determination is made, in step P55, the power increase coefficient FPO'
i=1.15, and if a negative determination is made, the power increase coefficient FPO is set to zero in step P56.

なお、回転数Neが400 Orpm以下の場合にも。In addition, even when the rotational speed Ne is 400 Orpm or less.

係数FPOtd零となる。The coefficient FPOtd becomes zero.

次に第10ノ[を参照して第8図の手順P16のリーン
補正係数FLEA、Nを求める手順について説明する。
Next, referring to No. 10, the procedure for determining the lean correction coefficients FLEA, N in step P16 of FIG. 8 will be explained.

第10図に示すプログラムが起動されると、先づ手順P
21で、モード条件XMODEが成立しているか否か全
判断する。この条件は、エンジンが始動状態でないとき
、始動後項量中でなめときおよび出力増量中でないとき
に満足てれ、始動状態はスタート信号S9およびエンジ
ン回転数信号S10に基づいて判断芒れ、始動後項量中
か否かは所定の記憶領域に格納てれている始動後増量係
数PSEに基づいて判断芒れ、出力増量中か否かは所定
の記憶領域に格納はれているパワー増量係数FPOに基
づいて判断嘔れる。この条件が満足てれると手順P22
において、リーン制御の実行条件が満足芒れているか否
かを判断し、満足芒れでいれば手順P23に進む。リー
ン制御の実行条件は1例えば、水温THWが80℃以上
、吸気管圧力PMが550m)(g以上、吸気絞り弁開
度が50度以下、お上び車速SPDの変化量とエンジン
回転数Neの変化量が所定値以下のときに満足嘔れる。
When the program shown in FIG. 10 is started, first step P
In step 21, a full judgment is made as to whether the mode condition XMODE is satisfied. This condition is satisfied when the engine is not in the starting state, when the engine is not in the initial state after starting, and when the output is not increasing.The starting state is determined based on the start signal S9 and the engine speed signal S10, Whether the output is being increased or not is determined based on the post-start increase coefficient PSE stored in a predetermined storage area, and whether or not the output is being increased is determined based on the power increase coefficient stored in the predetermined storage area. Judgment based on FPO is disgusting. If this condition is satisfied, step P22
In step P23, it is determined whether the lean control execution conditions are satisfied or not, and if they are satisfied, the process proceeds to step P23. The execution conditions for lean control are 1. For example, the water temperature THW is 80℃ or higher, the intake pipe pressure PM is 550m) (g or higher, the intake throttle valve opening is 50 degrees or lower, and the amount of change in vehicle speed SPD and engine rotation speed Ne Satisfied when the amount of change in is less than a predetermined value.

これらの条件は、それぞれ、水温信号S6.吸気管圧力
信号84.パワー信号S3.車速信号S8およびエンジ
ン回転数信号SIOに基づいて判断てれる。
These conditions are determined by the water temperature signal S6. Intake pipe pressure signal 84. Power signal S3. This determination is made based on the vehicle speed signal S8 and the engine speed signal SIO.

手順P23で1l−1:、後述するようにして予めRA
M61Cに格納でれている大気圧としてのデータPMA
が700顛Hg以下か否かを判、断し、700nnHg
以下であれば高地であると判断して手順P24に進み、
RAM61Cに格納されているリーン補正係数FLEA
Nが0.8より小さいか否かを判断し。
1l-1 in step P23: RA is set in advance as described later.
Data PMA as atmospheric pressure stored in M61C
700nnHg or less.
If it is below, it is determined that the area is at a high altitude and the process proceeds to step P24.
Lean correction coefficient FLEA stored in RAM61C
Determine whether N is smaller than 0.8.

08以下であれば手順P25で、リーン補正係数FLE
AN 全0.8としてこの演算ルーチン全終了する。
If it is less than 08, in step P25, the lean correction coefficient FLE
AN Total 0.8 and this arithmetic routine is completely terminated.

すなわち、高地走行におけるリーン制御においては、リ
ーン補正係数FLEANの最小値が0.8に制限される
That is, in lean control during high-altitude driving, the minimum value of the lean correction coefficient FLEAN is limited to 0.8.

手順P23において、大気圧PMAが700fiHg以
下でないと判断されると手順P26に進む。
In step P23, if it is determined that the atmospheric pressure PMA is not less than 700 fiHg, the process proceeds to step P26.

手順P26では、アイドル信号S2に基づいて吸気絞り
弁9が全閉力・否かを判断し、肯定判断されれば手順P
27に進み、否定判断されれば手順P28に進んで、R
AM61Cの所定領域に格納されているリーン補正係数
FLEAN=i0.92としてこのl”LEAN演算処
理全終了する。この場合。
In step P26, it is determined whether the intake throttle valve 9 has a fully closing force or not based on the idle signal S2, and if an affirmative determination is made, step P is performed.
Proceed to step P27, and if the determination is negative, proceed to step P28, and press R.
The lean correction coefficient FLEAN stored in a predetermined area of AM61C is set to i0.92, and this l''LEAN calculation process is completely completed. In this case.

リーン制御が実行坏れる。手順P27では、第11図に
示すような関係にある吸気管圧力PMとり一ン補正係数
FLEANのマツプから吸気管圧力PMに基づいてリー
ン補正係数FLEANを求めてAレジスタに一時格納す
る。
Lean control is implemented. In step P27, a lean correction coefficient FLEAN is determined based on the intake pipe pressure PM from a map of the intake pipe pressure PM and the lean correction coefficient FLEAN having the relationship shown in FIG. 11, and is temporarily stored in the A register.

次いて手順P29に進み、エンジン回転数Neが250
 Orpm以下か否かを判断し、肯定判断てれれば手順
P30で、Aレジスタの値にNe/2500を乗じ1手
順P31でその結果が1.0より大きいと判断芒れれば
手順P32でAレジスタのfi i 1.0とし、1.
0より不埒いと判断嘔れれば手順P32をスキツプして
手順P33に進む。手順P33では%RAM61Cの所
定領域に格納てれているリーン補正係数FLEANが1
.0であるか、すなわち。
Next, proceed to step P29, and the engine speed Ne is 250.
Orpm or less is judged, and if the judgment is affirmative, in step P30, the value of the A register is multiplied by Ne/2500, and in step P31, the result is judged to be greater than 1.0. Let fi i be 1.0, and 1.
If it is determined to be unscrupulous than 0, step P32 is skipped and the process proceeds to step P33. In step P33, the lean correction coefficient FLEAN stored in a predetermined area of %RAM61C is 1.
.. 0, i.e.

空燃比信号S7によるフィードバック制御が行なわれて
いるか否かを判断し、肯定判断ならば手順P34で車速
SPDが10Km/h以上か否か全判断する。肯定判断
嘔れれば1手順P35において、RA、M61Ct7)
所定領域FLEAN[AVレジスタ内容を格納してこの
処理を終了する。車速SPDが10Km/’h以下1回
転数Neが250Orpm以上、条件XMODEが満足
でれていないときおよびり一ン制御の条件が満足されて
いないときには、手順I)36においてhRAM61C
の記憶領域F L EANに1.0ヲ格納してこの演算
ルーチンを終了する。
It is determined whether or not feedback control based on the air-fuel ratio signal S7 is being performed, and if the determination is affirmative, a full determination is made in step P34 as to whether the vehicle speed SPD is 10 Km/h or more. If an affirmative judgment is made, in step P35, RA, M61Ct7)
Store the contents of the AV register in the predetermined area FLEAN and end this process. When the vehicle speed SPD is 10 Km/'h or less and the number of rotations Ne is 250 Orpm or more, and when the condition
1.0 is stored in the storage area FL EAN, and this arithmetic routine ends.

また5手順P l ’7の吸気温補正係数FTHAは、
温度により異なる吸入空気の密度を補償するために行な
われるもので、吸気温THAのディジタル瞳に所定値k
を加算して求められる。
In addition, the intake temperature correction coefficient FTHA of 5 steps P l '7 is:
This is done to compensate for the density of the intake air, which varies depending on the temperature, and a predetermined value k is set in the digital pupil of the intake air temperature THA.
It can be found by adding.

次シて、第12図を参照して上述した大気圧データPM
Aの読込みについて説明する。
Next, the atmospheric pressure data PM described above with reference to FIG.
Reading of A will be explained.

第12図に示すプログラムは4 Q m s毎に起動芒
れるもので1手順P41でパワー信号S3がオン(高レ
ベル)か否かを判断する。換言すると、吸気絞り弁9が
50度以上開いているか否か全パワー信号S3により判
断する。吸気絞り弁開度が50度以下であれば手順P4
2に進み、カウンタCOUをリセットして零とする。パ
ワー信号S3がオンしていれば手順P43に進み、エン
ジン回転数Neが200 Orpm以下か否かを判断す
る。否定判断されれば手順P42でカウンタCOU全リ
セットする。
The program shown in FIG. 12 is started every 4 Q m s, and in one step P41 it is determined whether the power signal S3 is on (high level) or not. In other words, it is determined based on the total power signal S3 whether the intake throttle valve 9 is opened by 50 degrees or more. If the intake throttle valve opening is 50 degrees or less, proceed to step P4.
Proceed to step 2 and reset the counter COU to zero. If the power signal S3 is on, the process advances to step P43, where it is determined whether the engine rotational speed Ne is 200 Orpm or less. If the determination is negative, all counters COU are reset in step P42.

吸気絞り弁9が50度以上開いていて、かつ、エンジン
回転数Neが2000 rpm以下であれば手順P 4
4 K進む。手順P44ではカウンタCOUを+1だけ
歩進芒せる。そして1手順P45において、カウンタC
OUの目数値が250に等しいか否かを判断し、肯定判
断6れれば1手順P46において、最新の吸気管圧力の
データを大気圧と1 みなすべく RAM61 Cの所
定領域HMAに格納してこの演算ルーチンを終了する。
If the intake throttle valve 9 is open 50 degrees or more and the engine speed Ne is 2000 rpm or less, proceed to step P4.
4K advance. In step P44, the counter COU is incremented by +1. Then, in step P45, counter C
It is determined whether the value of OU is equal to 250 or not, and if an affirmative judgment is made (6), in step P46, the latest intake pipe pressure data is stored in a predetermined area HMA of RAM61C to be regarded as atmospheric pressure. End the calculation routine.

このように第1.第2の発明金倉む本実施例では、吸気
絞り弁開度が50度以上、かつ、エンジン回転数Neが
200Orpm以下のエンジン運転状態が1秒間継続し
て維持芒れたときに、最新の吸気管圧力データを大気圧
PMAとみ々し1ノくワー増量係数FPOおよびリーン
補正係数FLEANの演算時に、その大気圧PMAが7
’ OOmyx Hg  より小さければ高地であると
判断して、ノ<ワー増量すべきか否かの判定レベルf 
500 +o+Hgから450mI−Igにし、また、
リーン補正係数FLEANの最小呟を0.8に制限した
In this way, the first. Second Invention In this embodiment, when the engine operating state in which the intake throttle valve opening degree is 50 degrees or more and the engine speed Ne is 200 Orpm or less is maintained for 1 second, the latest intake air When calculating the pressure increase coefficient FPO and lean correction coefficient FLEAN by multiplying the pipe pressure data by 1 no. from the atmospheric pressure PMA, the atmospheric pressure PMA is 7.
' If it is smaller than OOmyx Hg, it is determined that the altitude is high, and the judgment level f is used to determine whether or not to increase the amount of water.
From 500 +o+Hg to 450mI-Ig, and
The minimum deviation of the lean correction coefficient FLEAN was limited to 0.8.

従って、高地走行時に出力が低下したり、触媒が過熱て
れてその耐久性に支障ケきたす惧れがなくなる。
Therefore, there is no possibility that the output will decrease during high-altitude driving or that the catalyst will become overheated and its durability will be affected.

第13図および第14図を参照して第3.第4の発明を
含む実施例について説明する。
3 with reference to FIGS. 13 and 14. An embodiment including the fourth invention will be described.

第13図に示すFPO演算プログラムが起動坏れると1
手順P6]でエンジン回転数Neが400Orpm以上
か否かを判断し、手順P62で大気圧として読込まれて
いるデータPMAが700mnHg以下か否かを判断す
る。これらの手順が肯定判断逼れて手順P63に進むと
5手順P63において。
When the FPO operation program shown in Fig. 13 is started, 1
In step P6], it is determined whether the engine speed Ne is 400 rpm or more, and in step P62, it is determined whether the data PMA read as atmospheric pressure is 700 mnHg or less. When these steps are answered in the affirmative and the process proceeds to step P63, the process proceeds to step P63.

平地における大気圧を示す1直76−.0τHg から
データ1) M Aを減算し、その結果を吸気管圧力P
Mに加算して新たな吸気管圧力PMとする。次いで。
1 straight 76-. Showing atmospheric pressure on flat ground. Subtract data 1) M A from 0τHg and use the result as intake pipe pressure P
It is added to M to obtain a new intake pipe pressure PM. Next.

手順P64において、その吸気管圧力PMが500+o
+Hgより大きいか否かを判断し肯定判断てれれば、パ
ワー増量係数FPOi1.15とする。手順P61、P
62またはP64において否定判断てれると。
In step P64, the intake pipe pressure PM is 500+o.
It is determined whether or not it is greater than +Hg, and if an affirmative determination is made, the power increase coefficient FPOi is set to 1.15. Steps P61, P
If a negative judgment is made in 62 or P64.

手順P66において、パワー増量係数F P O”(r
零とする。
In step P66, the power increase coefficient F P O”(r
Set to zero.

第14図に示すFLEAN演算プログラムが起動される
と1手順P71でXMODE条件が成立しているか否か
が判断され、肯定判断坏れると手順P72に進み、大気
圧PMAが700mHgより大きいか否かを判断する。
When the FLEAN calculation program shown in FIG. 14 is started, it is determined in step P71 whether or not the XMODE condition is satisfied, and if an affirmative determination is made, the process proceeds to step P72, in which it is determined whether the atmospheric pressure PMA is greater than 700 mHg. to judge.

PMAが700 mHgより不埒ければ手順P73に進
む。手順P73にお  ′いては、平地における大気圧
を示す値760鮎HgからデータPMAを減算し、その
結果を吸気管圧力PMに加算して新たな吸気管圧力PM
とする。
If the PMA is more than 700 mHg, proceed to step P73. In step P73, the data PMA is subtracted from the value 760Hg indicating the atmospheric pressure on flat ground, and the result is added to the intake pipe pressure PM to create a new intake pipe pressure PM.
shall be.

手順P74においては、第10図に示す手順P22と同
様にリーン制御の条件が満足嘔れているか否かを判断し
、肯定判断てれれば手順P 75 vこ進み、アイドル
スイッチ4がオフしてし)る力1否カー f 判断i1
−る。その後の手順については、第1O図の手110P
27〜P 36と同様であるので省略する。
In step P74, similarly to step P22 shown in FIG. 10, it is determined whether the lean control conditions are satisfied or not. If the judgment is affirmative, step P75 is proceeded to, and the idle switch 4 is turned off. ) power 1 no car f judgment i1
-ru. For the subsequent steps, see step 110 in Figure 1O.
Since it is the same as P.27 to P.36, it will be omitted.

パワー増量係数FPO,’J−ン補正係数I”LEAN
以外については、上述した第1の実施例と同様である。
Power increase coefficient FPO, 'J-on correction coefficient I'LEAN
The rest is the same as the first embodiment described above.

このように、第3、第4の発明を含む実施例においては
、大気圧として読込壕れた圧力PMA力(7oof)I
gより小烙ければ、平地における人気IEliを示す匝
760 m Hgから大気圧データPMA’に減算し、
その結果を吸気管圧力P Mに加算することにより高度
補償を行うようにした。なお、平地における大気圧を示
す760w+Hgとし)う値は、エンジンの仕様により
異なるものであり1例えは740mmHgという値とな
ることもある。
In this way, in the embodiments including the third and fourth inventions, the pressure PMA force (7oof) I read as atmospheric pressure is
If it is lighter than g, subtract atmospheric pressure data PMA' from 760 m Hg, which indicates the popular IEli on flat ground,
Altitude compensation is performed by adding the result to the intake pipe pressure PM. Note that the value (760w+Hg) indicating the atmospheric pressure on flat ground varies depending on the specifications of the engine, and may be, for example, 740mmHg.

万お、第12図の手順P45においてti、エンジン回
転数Neが200 Orpm以下であり、かつ。
By the way, in step P45 of FIG. 12, ti and engine rotational speed Ne are 200 Orpm or less, and.

吸気絞り弁開度が50度以上である状態か1秒以上継続
ちれたか否か全判断しているが、この時間は、第1図〜
第3図において説明した信号処理回路における出力信号
■4の減衰時間TIより大きい値である。
A full judgment is made as to whether the intake throttle valve opening is 50 degrees or more or has remained open for more than 1 second.
This value is larger than the decay time TI of the output signal 4 in the signal processing circuit explained in FIG.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は吸気管圧力センサからの信号を処理する回路の
一例を示すブロック図、第2図(A)、(B)はその処
理回路の各部信号波形を示すタイムチャート、第3図は
第1図の具体例を示す回路図、第4図は本発明全適用し
た自動車用内燃機関の一例を示す構成図、第5図はその
制御回路の一例を示す詳細ブロック図、第6図は燃料噴
射の手順の一例を示すフローチャート、第7図はエンジ
ン回転数Neと吸気管圧力1)Mとから基本燃料噴射時
間TPを読出すためのマツプの一例を示す線図、第8図
は補正噴射時間τを求める手順の一例を示すフローチャ
ート、第9図はパワー増量係数FPOの演算処理の一例
を示すフローチャート、第10図はり一ン補正係数FL
EANの演算処理の一例を示すフローチャート、第11
図は吸気管圧力PMとリーン補正係数FLEANの関係
金示すグラフ、第12図は大気圧としてのデータを読込
むための手順例を示すフローチャート、第13図はパワ
ー補正係数FPOの演算処理の他の例を示す70−チャ
ート、第14図はリーン補正係数FLEANの演算処理
の他の例を示すフローチャートである。 7・・・噴射弁、9・・・吸気絞り弁、11・・・吸気
管圧力センサ、13・・・インテークマニホルド% 1
5−゛。 吸気温センサ、17・−・ライザ部、19・・エンジン
本体h 27・・・燃焼室、33・・・ウォータジャケ
ット。 37・・・エンジン冷却水温センサ、41・・・02セ
ンサ、49・・・車速センサ、51・・・キースイッチ
。 53・・・イグナイタ、55・・・ディストリビュータ
。 57・・Neセセン% 59・・・Gセンサ、61・・
制御回路。 代理人 鵜 沼 辰 之 (ほか1名) 第 1 図 (A)              (B)日斉聞t 
−■脣h1 ↑− 第3図 ○P3 第 6 図 第8図 第9図 第 11  図
Figure 1 is a block diagram showing an example of a circuit that processes signals from an intake pipe pressure sensor, Figures 2 (A) and (B) are time charts showing signal waveforms of each part of the processing circuit, and Figure 3 is a 1 is a circuit diagram showing a specific example, FIG. 4 is a configuration diagram showing an example of an automobile internal combustion engine to which the present invention is fully applied, FIG. 5 is a detailed block diagram showing an example of its control circuit, and FIG. 6 is a fuel A flowchart showing an example of the injection procedure, Fig. 7 is a diagram showing an example of a map for reading out the basic fuel injection time TP from the engine speed Ne and the intake pipe pressure 1) M, and Fig. 8 is a diagram showing an example of the correction injection. A flowchart showing an example of the procedure for calculating the time τ, FIG. 9 is a flowchart showing an example of the calculation process for the power increase coefficient FPO, and FIG. 10 is a flowchart showing an example of the calculation process for the power increase coefficient FPO.
Flowchart showing an example of EAN calculation processing, No. 11
The figure is a graph showing the relationship between intake pipe pressure PM and lean correction coefficient FLEAN, Figure 12 is a flowchart showing an example of a procedure for reading data as atmospheric pressure, and Figure 13 is another example of the calculation process of power correction coefficient FPO. FIG. 14 is a flowchart showing another example of the calculation process of the lean correction coefficient FLEAN. 7...Injection valve, 9...Intake throttle valve, 11...Intake pipe pressure sensor, 13...Intake manifold% 1
5-゛. Intake temperature sensor, 17... Riser part, 19... Engine body h 27... Combustion chamber, 33... Water jacket. 37...Engine coolant temperature sensor, 41...02 sensor, 49...Vehicle speed sensor, 51...Key switch. 53...Igniter, 55...Distributor. 57...Ne sesen% 59...G sensor, 61...
control circuit. Agent: Tatsuyuki Unuma (and 1 other person) Figure 1 (A) (B) Nissaimont
-■脣h1 ↑- Figure 3○P3 Figure 6 Figure 8 Figure 9 Figure 11

Claims (4)

【特許請求の範囲】[Claims] (1)吸気通路に設けられた圧力センサからの出力信号
を第1のフィルタに供給して脈動成分をろ波して第1の
信号を得、この第1の信号を、前記第1のフィルタに対
して略二倍の応答遅れを有する第2のフィルタに供給す
るとともに、前記第1の信号を略二倍した値から前記第
二の信号の値を減じて第3の信号を得、この第3の信号
に基づいて吸気管圧力を読込み、読込まれた吸気管圧力
とエンジン回転数とに基づいて基本燃料噴射時間を演算
し、少なくとも前記吸気管圧力が第1の判定値以上のと
きに前記基本燃料噴射時間を増加すべくパワー補正をす
る燃料噴射制御方法において、エンジン回転数が所定以
下であり、がっ、吸気絞り弁の開度が所定以上の運転状
態が少なくとも前記第3の信号がほぼ減衰するまでの時
間だけ継続したときに、前記第3の信号を大気圧として
読込み。 その血が所定以下のときに、前記第1の判定値を小さく
することを特徴とする燃料噴射制御方法。
(1) The output signal from the pressure sensor provided in the intake passage is supplied to a first filter to filter out the pulsation component to obtain a first signal, and this first signal is transmitted to the first filter. , and subtracts the value of the second signal from the value obtained by approximately doubling the first signal to obtain a third signal. The intake pipe pressure is read based on the third signal, the basic fuel injection time is calculated based on the read intake pipe pressure and the engine speed, and at least when the intake pipe pressure is equal to or higher than the first judgment value, In the fuel injection control method that performs power correction to increase the basic fuel injection time, an operating state in which the engine rotation speed is below a predetermined value and the opening degree of the intake throttle valve is above a predetermined value is determined by at least the third signal. The third signal is read as atmospheric pressure when it continues for a period of time until it almost attenuates. A fuel injection control method characterized in that the first determination value is decreased when the blood level is below a predetermined level.
(2)吸気通路に設けられた圧力センサからの出力信号
を第1のフィルタに供給して脈動成分會ろ波して第1の
信号を得、この第1の信号を、前記第1のフィルタに対
して略二倍の応答遅れを有する第2のフィルタに供給す
るとともに、前記第1の信号を略二倍した値から前記第
二の信号の匝を減じて第3の信号を得、この第3の信号
に基づいて吸気管圧力を読込み、読込まれた吸気管圧力
とエンジン回転数とに基づいて基本燃料噴射時間を演算
し、少なくとも前記吸気管圧力が第1の判定値以上のと
きに前記基本燃料噴射時間な増加すべくパワー補正をす
る燃料噴射制御方法において、エンジン回転数が所定以
下であり、かつ、吸気絞り弁の開度が所定以上の運転状
態が少なくとも前記第3の信号がほぼ減衰するまでの時
間だけ継続したときに、前記第3の信号を大気圧として
読込み。 その値が所定以下のときに、前記大気圧として読込まれ
た直が不埒いほど大きな(vLを前記吸気管圧力に加算
することを特徴とする燃料噴射制御方法。
(2) The output signal from the pressure sensor provided in the intake passage is supplied to the first filter, the pulsation component is filtered to obtain the first signal, and this first signal is transmitted to the first filter. and a third signal is obtained by subtracting the value of the second signal from the value obtained by approximately doubling the first signal. The intake pipe pressure is read based on the third signal, the basic fuel injection time is calculated based on the read intake pipe pressure and the engine speed, and at least when the intake pipe pressure is equal to or higher than the first judgment value, In the fuel injection control method in which power is corrected to increase the basic fuel injection time, at least the third signal is detected in an operating state in which the engine rotation speed is below a predetermined value and the opening degree of the intake throttle valve is above a predetermined value. When the third signal continues for a period of time until it almost attenuates, the third signal is read as atmospheric pressure. A fuel injection control method characterized in that when the value is less than a predetermined value, the value (vL) read as the atmospheric pressure is added to the intake pipe pressure as the value is unreasonably large.
(3)吸気通路に設けられた圧力センサからの出力信号
を第1のフィルタに供給して脈動成分をろ波して第1の
信号を得、このilの信号を、前記第1のフィルタに対
して略二倍の応答遅れを有する第2のフィルタに供給す
るとともに、前記第1の信号を略二倍した値から前記第
二の信号の値を減じて第3の信号を得、この第3の信号
に基づいて吸気管圧力を読込み、読込まれた吸気管圧力
とエンジン回転数とに基づいて基本燃料噴射時間を演算
し、所定の運転条件下で、空燃比が理論空燃比よりも希
薄となるように、吸気管圧力に応じて前記基本燃料噴射
時間全減少するリーン補正を行う燃料噴射制御方法にお
いて、エンジン回転数が所定以下であり、かつ、吸気絞
り弁の開度が所定以上の運転状態が少なくとも前記第3
の信号がほぼ減衰するまでの時間だけ継続したときに、
前記第3の信号を大気圧として読込み、その直が所定以
下のときに、前記リーン補正において減少される基本燃
料噴射時間が所定匝以下にならないようにすることを特
徴とする燃、料噴射制御方法。
(3) Supply the output signal from the pressure sensor provided in the intake passage to the first filter to filter out the pulsation component to obtain the first signal, and send this il signal to the first filter. The second signal is supplied to a second filter having a response delay approximately twice that of the first signal, and a third signal is obtained by subtracting the value of the second signal from the value obtained by approximately doubling the first signal. The intake pipe pressure is read based on the signal in step 3, the basic fuel injection time is calculated based on the read intake pipe pressure and engine speed, and the air-fuel ratio is leaner than the stoichiometric air-fuel ratio under predetermined operating conditions. In the fuel injection control method that performs lean correction in which the basic fuel injection time is completely reduced according to the intake pipe pressure, when the engine speed is below a predetermined value and the opening degree of the intake throttle valve is above a predetermined value, The operating state is at least the third
When the signal continues for a period of time until it almost attenuates,
The fuel injection control is characterized in that the third signal is read as atmospheric pressure, and when the atmospheric pressure is below a predetermined value, the basic fuel injection time that is reduced in the lean correction is prevented from becoming less than a predetermined value. Method.
(4)吸気通路に設けられた圧力センサからの出力信号
を第1のフィルタに供給して脈動成分をろ波して第1の
信号を得、この第1の信号を、前記第1のフィルタに対
して略二倍の応答遅れを有する第2のフィルタに供給す
るとともに、前記第1の信号を略二倍した値から前記第
二の信号の([を減じて第3の信号を得・、この第3の
信号に基づいて吸気管圧力を読込み、読込捷れた吸気管
圧力とエンジン回転数とに基づいて基本燃料噴射時間全
演算し、所定の運転条件下で、空燃比が理論空燃比より
も希薄となるように、吸気管圧力に応じて前記基本燃料
噴射時間を減少するり一ン補Ek行う燃料噴射制御方法
において、エンジン回転数がt′Ir定以下であり、か
つ、吸気絞り弁の開度が所定以下の運転状態が少なくと
も前記第3の信号がほぼ減衰する捷での時間だけ継続し
たと@に、前記第3の信号を大気圧として読込み、その
Oliが所定以下のときに、前記大気圧として読込1れ
た値が不埒いほど大きな値を前記吸気管圧力に加算する
ことを特徴とする燃料噴射制御方法。
(4) The output signal from the pressure sensor provided in the intake passage is supplied to the first filter to filter out the pulsation component to obtain a first signal, and this first signal is transmitted to the first filter. , and a third signal is obtained by subtracting ([ of the second signal from a value that is approximately twice the first signal. The intake pipe pressure is read based on this third signal, and the basic fuel injection time is calculated based on the read intake pipe pressure and engine speed, and the air-fuel ratio is determined to be stoichiometric under predetermined operating conditions. In a fuel injection control method in which the basic fuel injection time is reduced or compensated for depending on the intake pipe pressure so that the fuel ratio is leaner than the fuel ratio, the engine rotation speed is below the t'Ir constant, and the intake air When the operating state in which the opening degree of the throttle valve is below a predetermined value continues for at least the time at which the third signal is almost attenuated, the third signal is read as atmospheric pressure, and the Oli is determined to be below the predetermined value. A fuel injection control method characterized in that, in some cases, the more unfavorable the value read as the atmospheric pressure, the larger a value is added to the intake pipe pressure.
JP58075313A 1983-04-28 1983-04-28 Fuel injection control method Expired - Lifetime JPH0733782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58075313A JPH0733782B2 (en) 1983-04-28 1983-04-28 Fuel injection control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58075313A JPH0733782B2 (en) 1983-04-28 1983-04-28 Fuel injection control method

Publications (2)

Publication Number Publication Date
JPS59201938A true JPS59201938A (en) 1984-11-15
JPH0733782B2 JPH0733782B2 (en) 1995-04-12

Family

ID=13572636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58075313A Expired - Lifetime JPH0733782B2 (en) 1983-04-28 1983-04-28 Fuel injection control method

Country Status (1)

Country Link
JP (1) JPH0733782B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219626A (en) * 1988-07-06 1990-01-23 Toyota Motor Corp Fuel injection control device for internal combustion engine
US5054451A (en) * 1988-03-25 1991-10-08 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion
US5383430A (en) * 1992-07-30 1995-01-24 Nippondenso Co., Ltd. Rotational speed control apparatus for internal combustion engines

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313739A (en) * 1976-06-08 1978-02-07 Kegg Jack P Caster
JPS5828618A (en) * 1981-07-24 1983-02-19 Toyota Motor Corp Fuel jetting device for internal combustion engine
JPS5848746A (en) * 1981-09-09 1983-03-22 Toyota Motor Corp Apparatus for controlling air-fuel ratio of internal-combustion engine
JPS5865950A (en) * 1981-10-14 1983-04-19 Nippon Denso Co Ltd Method of controlling internal-combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313739A (en) * 1976-06-08 1978-02-07 Kegg Jack P Caster
JPS5828618A (en) * 1981-07-24 1983-02-19 Toyota Motor Corp Fuel jetting device for internal combustion engine
JPS5848746A (en) * 1981-09-09 1983-03-22 Toyota Motor Corp Apparatus for controlling air-fuel ratio of internal-combustion engine
JPS5865950A (en) * 1981-10-14 1983-04-19 Nippon Denso Co Ltd Method of controlling internal-combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5054451A (en) * 1988-03-25 1991-10-08 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion
JPH0219626A (en) * 1988-07-06 1990-01-23 Toyota Motor Corp Fuel injection control device for internal combustion engine
US5383430A (en) * 1992-07-30 1995-01-24 Nippondenso Co., Ltd. Rotational speed control apparatus for internal combustion engines

Also Published As

Publication number Publication date
JPH0733782B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
JPH0328592B2 (en)
JPH0211729B2 (en)
JP3791032B2 (en) Fuel injection control device for internal combustion engine
JPS59201938A (en) Fuel injection control method
US4637364A (en) Method for controlling air-fuel ratio for internal combustion engine and apparatus therefor
JPS59176444A (en) Method of controlling air-fuel ratio of internal- combustion engine
JPH0610442B2 (en) Fuel injection control method for internal combustion engine
JPS6019934A (en) Method of controlling rotational speed of internal-combustion engine
JPS59176427A (en) Fuel injection controller of internal-combustion engine
JP2581033B2 (en) Fuel injection amount control method for internal combustion engine
JPS59168230A (en) Method of controlling injection quantity of fuel and fuel injection controlling apparatus for internal-combustion engine
JPH0454054B2 (en)
JPS59168233A (en) Electronic fuel injection controlling method
JP2873504B2 (en) Engine fuel control device
JP2873506B2 (en) Engine air-fuel ratio control device
JP3621258B2 (en) Power increase control method for internal combustion engine
JPS59170431A (en) Control of air-fuel ratio of internal-combustion engine
JPH0744748Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2830413B2 (en) Air-fuel ratio control device for internal combustion engine
JPS59168231A (en) Method of controlling injection quantity of fuel and fuel injection controlling apparatus for internal- combustion engine
JPS59170428A (en) Control of fuel injection in internal-combustion engine
JP2590942B2 (en) Fuel injection amount control method for internal combustion engine
JPS59176436A (en) Method and device for controlling fuel injection of internal-combustion engine
JPS6385235A (en) Fuel injection quantity control method for internal combustion engine
JPS59176437A (en) Method and device for controlling fuel injection of internal-combustion engine