[go: up one dir, main page]

JPH0454054B2 - - Google Patents

Info

Publication number
JPH0454054B2
JPH0454054B2 JP58068753A JP6875383A JPH0454054B2 JP H0454054 B2 JPH0454054 B2 JP H0454054B2 JP 58068753 A JP58068753 A JP 58068753A JP 6875383 A JP6875383 A JP 6875383A JP H0454054 B2 JPH0454054 B2 JP H0454054B2
Authority
JP
Japan
Prior art keywords
intake
fuel injection
engine
correction coefficient
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58068753A
Other languages
Japanese (ja)
Other versions
JPS59194042A (en
Inventor
Hidetoshi Amano
Shinichi Abe
Mitsuharu Taura
Toshiaki Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP6875383A priority Critical patent/JPS59194042A/en
Priority to US06/588,101 priority patent/US4543937A/en
Publication of JPS59194042A publication Critical patent/JPS59194042A/en
Publication of JPH0454054B2 publication Critical patent/JPH0454054B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/061Introducing corrections for particular operating conditions for engine starting or warming up the corrections being time dependent

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関(以下、「エンジン」とい
うことがある。)の燃料噴射量制御方法に係り、
特に、吸気絞り弁の上流に燃料噴射弁を設けた内
燃機関の燃料噴射量制御方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fuel injection amount control method for an internal combustion engine (hereinafter sometimes referred to as an "engine").
In particular, the present invention relates to a fuel injection amount control method for an internal combustion engine in which a fuel injection valve is provided upstream of an intake throttle valve.

〔従来の技術〕[Conventional technology]

一般に従来の内燃機関における燃料噴射量制御
方法では、例えば吸気管内の絶対圧力とエンジン
の回転数とに基づいて基本燃料噴射時間、すなわ
ち、噴射弁の基本開弁時間を演算し、この基本開
弁時間に対して、エンジンの暖機状態、過渡状態
を含むエンジンの運転状態に応じて種々の補正演
算を施して、最終燃料噴射時間を求めている。
In general, in conventional fuel injection amount control methods for internal combustion engines, the basic fuel injection time, that is, the basic opening time of the injection valve is calculated based on, for example, the absolute pressure in the intake pipe and the engine rotational speed. The final fuel injection time is determined by performing various correction calculations on the time depending on the operating state of the engine, including the warm-up state and transient state of the engine.

そして、エンジンの暖機状態に応じた補正は、
例えば、エンジン冷却水温が70℃以下のときに、
その温度が高くなるにつれて小さくなるように定
められた増量係数を基本噴射量に乗算して行つて
いる。
Then, the correction according to the warm-up state of the engine is
For example, when the engine coolant temperature is below 70℃,
This is done by multiplying the basic injection amount by an increase coefficient that is determined to decrease as the temperature increases.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

冷却水温はエンジンの吸気ポート付近の温度を
よく反映した値であるから、各気筒の吸気ポート
に燃料噴射弁を設置したエンジンに対しては上述
の増量補正によつて暖機時の補正を行うことがで
きるが、吸気絞り弁上流に燃料噴射弁を一つ設置
した形式のエンジンにおいて、燃料噴射弁から燃
焼室までの吸気通路が長いことにより、燃料の気
化状態はその吸気通路の壁面温度に大きく依存す
るので、暖機状態に応じた増量補正にはその壁面
温度をも考慮しないと、特に極寒時に等において
は、燃焼室内に吸入される燃料量が最適値からず
れてしまうという問題がある。
The cooling water temperature is a value that closely reflects the temperature near the engine's intake port, so for engines with fuel injection valves installed in the intake port of each cylinder, the above-mentioned increase correction is performed during warm-up. However, in engines with one fuel injection valve installed upstream of the intake throttle valve, the intake passage from the fuel injection valve to the combustion chamber is long, so the vaporization state of the fuel depends on the wall temperature of the intake passage. Therefore, if the wall temperature is not taken into consideration when making fuel increase corrections according to the warm-up state, there is a problem that the amount of fuel drawn into the combustion chamber will deviate from the optimal value, especially in extremely cold weather. .

そこで、本発明は吸気絞り弁下流の吸気温度が
その付近の吸気通路壁面温度を反映しているとい
う事実、及び、暖機時の吸気通路壁面温度の上昇
が略直線的であるという事実に着眼し、従来の冷
却水温に加えて吸気温度をも考慮して暖機時の増
量補正を適正量だけ行うことによつて、上述の問
題を解決することを目的とする。
Therefore, the present invention focuses on the fact that the intake air temperature downstream of the intake throttle valve reflects the intake passage wall temperature in the vicinity, and that the increase in intake passage wall temperature during warm-up is approximately linear. However, it is an object of the present invention to solve the above-mentioned problem by performing an appropriate amount of increase correction during warm-up by taking into account the intake air temperature in addition to the conventional cooling water temperature.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による内燃機関の燃料噴射量制御方法
は、内燃機関の吸気絞り弁の上流に設置された燃
料噴射弁と、該燃料噴射弁から噴射されて吸入空
気と混合された混合気を内燃機関の燃焼室まで導
く比較的長い距離の吸気通路とを有する内燃機関
の燃料噴射量制御方法において、前記内燃機関の
回転数および負荷に基づいて基本燃料噴射量を算
出すると共に、前記吸気絞り弁の下流の前記吸気
通路内に突出するように設置された吸気温度セン
サの始動時の出力値に応じて選択され且つ始動後
は前記吸気温度センサの出力値とは無関係に所定
の周期で減衰される吸気絞り弁下流吸気温補正値
と、前記内燃機関の冷却水温に応じて選択される
暖機補正値とに基づいて、暖機中における前記基
本燃料噴射量の補正を行うことを特徴とする。
A fuel injection amount control method for an internal combustion engine according to the present invention includes a fuel injection valve installed upstream of an intake throttle valve of an internal combustion engine, and an air-fuel mixture injected from the fuel injection valve and mixed with intake air into the internal combustion engine. In a fuel injection amount control method for an internal combustion engine having a relatively long intake passage leading to a combustion chamber, a basic fuel injection amount is calculated based on the rotation speed and load of the internal combustion engine, and a basic fuel injection amount is calculated based on the rotation speed and load of the internal combustion engine. The intake air is selected according to the output value at the time of startup of an intake air temperature sensor installed so as to protrude into the intake passage of the engine, and is attenuated at a predetermined period after startup regardless of the output value of the intake air temperature sensor. The basic fuel injection amount during warm-up is corrected based on a throttle valve downstream intake temperature correction value and a warm-up correction value selected according to the cooling water temperature of the internal combustion engine.

〔実施例〕〔Example〕

第1図は本発明に係る電子燃料噴射制御装置を
適用した自動車用内燃機関の構成例を示す。エア
フイルタ1はインレツトパイプ3を介してスロツ
トルボデイ5と接続されている。スロツトルボデ
イ5には、その上流側に燃料噴射弁7が設けら
れ、燃料噴射弁7の下流にはアクセルペダル(不
図示)と連動して吸入空気量を調節する吸気絞り
弁9が設けられ、吸気絞り弁9の下流には、その
部位の絶対圧力を測定する吸気管絶対圧力センサ
11が設けられている。更に、吸気絞り弁9の開
度位置を測定する弁開度位置センサ2と、吸気絞
り弁9を全閉しているときにのみオンするアイド
ルスイツチ4と、例えば吸気絞り弁9の開度が40
度以上のときにのみオンするパワースイツチ6と
が、吸気絞り弁9に関連して取付られている。
FIG. 1 shows a configuration example of an internal combustion engine for an automobile to which an electronic fuel injection control device according to the present invention is applied. Air filter 1 is connected to throttle body 5 via inlet pipe 3. The throttle body 5 is provided with a fuel injection valve 7 on its upstream side, and an intake throttle valve 9 that adjusts the amount of intake air in conjunction with an accelerator pedal (not shown) is provided downstream of the fuel injection valve 7. An intake pipe absolute pressure sensor 11 is provided downstream of the throttle valve 9 to measure the absolute pressure at that location. Furthermore, there is a valve opening position sensor 2 that measures the opening position of the intake throttle valve 9, an idle switch 4 that is turned on only when the intake throttle valve 9 is fully closed, and a valve opening position sensor 2 that measures the opening position of the intake throttle valve 9. 40
A power switch 6, which is turned on only when the temperature exceeds the temperature, is attached in conjunction with the intake throttle valve 9.

スロツトルボデイ5は、エンジンの各気筒と接
続された分岐管を有するインテークマニホルド1
3と接続され、インテークマニホルド13には、
その内の吸気温度を測定する吸気温センサ15が
設けられている。インテークマニホルド13の分
岐前の底壁13aには、エンジン冷却水が循環さ
れて混合気を加熱するためのライザ部17が設け
られている。
The throttle body 5 includes an intake manifold 1 having branch pipes connected to each cylinder of the engine.
3, and the intake manifold 13 has
An intake temperature sensor 15 is provided to measure the temperature of the intake air. A riser portion 17 is provided on the bottom wall 13a of the intake manifold 13 before branching, through which engine cooling water is circulated to heat the air-fuel mixture.

19は周知のエンジン本体であり、ピストン2
1とシリンダ23とシリンダヘツド25とにより
燃焼室27が画成されていて、吸気弁29を介し
て燃焼室27に吸入されて混合気が天下プラグ3
1により着火される。シリンダ23の周囲にはウ
オータジヤケツト33が形成され、そのウオータ
ジヤケツト33にエンジン冷却水が循環されてシ
リンダ23を含む部品が冷却される。そして、シ
リンダブロツク35の外壁にはウオータジヤケツ
ト33内のエンジン冷却水温を測定するエンジン
冷却水温センサ37が設けられている。
19 is a well-known engine body, and piston 2
1, a cylinder 23, and a cylinder head 25 define a combustion chamber 27. The air-fuel mixture is sucked into the combustion chamber 27 through an intake valve 29, and the air-fuel mixture flows into the air plug 3.
ignited by 1. A water jacket 33 is formed around the cylinder 23, and engine cooling water is circulated through the water jacket 33 to cool parts including the cylinder 23. An engine coolant temperature sensor 37 is provided on the outer wall of the cylinder block 35 to measure the temperature of the engine coolant in the water jacket 33.

シリンダヘツド25の図示しない排気ポートに
はエキゾーストマニホルド39が接続され、その
下流側に、排気ガス中の残留酸素濃度を測定する
O2センサ41が設けられている。エキゾースト
マニホルド39は、三元触媒43を介して排気管
45と接続されている。
An exhaust manifold 39 is connected to an exhaust port (not shown) of the cylinder head 25, and on the downstream side thereof, the residual oxygen concentration in the exhaust gas is measured.
An O 2 sensor 41 is provided. The exhaust manifold 39 is connected to an exhaust pipe 45 via a three-way catalyst 43.

47はエンジン本体19に接続された変速装置
であり、その最終出力軸の回転数により車両の速
度を測定する車速センサ49が取付られている。
また、51はキースイツチ、53はイグナイタ、
55はデイストリビユーアであり、デイストリビ
ユータ55には、所定のクランク角度θ1毎にオ
ン・オフ信号を出力するNeセンサ57が設けら
れ、その出力信号によりエンジン回転数と所定の
クランク角度位置を知ることができ、また、上記
角度θ1より大きい角度θ2毎にオン・オフ信号を出
力するGセンサ59が設けられ、その出力信号に
より気筒判別と上死点位置検出が行なわれる。ま
た、60はバツテリを示す。
47 is a transmission connected to the engine main body 19, and a vehicle speed sensor 49 is attached thereto to measure the speed of the vehicle based on the number of revolutions of its final output shaft.
Also, 51 is a key switch, 53 is an igniter,
55 is a distributor, and the distributor 55 is provided with a Ne sensor 57 that outputs an on/off signal at every predetermined crank angle θ1, and the output signal determines the engine rotation speed and the predetermined crank angle position. In addition, a G sensor 59 is provided which outputs an on/off signal at every angle θ2 larger than the angle θ1, and cylinder discrimination and top dead center position detection are performed based on the output signal. Further, 60 indicates battery.

制御回路61は、弁開度位置センサ2、アイド
ルスイツチ4、パワースイツチ6、吸気圧センサ
11、吸気温センサ15、エンジン冷却水温セン
サ37、O2センサ41、車速センサ49、キー
スイツチ51、Neセンサ57、Gセンサ59お
よびバツテリ60とそれぞれ接続されていて、弁
開度信号S1、アイドル信号S2、パワー信号S3、
吸気圧信号S4、吸気温信号S5、水温信号S6、空
燃比信号S7、車速信号S8、イグニツシヨン信号
S9、エンジン回転数信号S10、気筒判別信号S11
およびバツテリ電圧信号S14が各センサから入力
される。また、制御回路61は、燃料噴射弁7と
イグナイタ53にも接続されていて、所定の演算
に基づいて、燃料噴射信号S12および点火信号
S13を出力する。
The control circuit 61 includes a valve opening position sensor 2, an idle switch 4, a power switch 6, an intake pressure sensor 11, an intake temperature sensor 15, an engine coolant temperature sensor 37, an O 2 sensor 41, a vehicle speed sensor 49, a key switch 51, and a Ne sensor. 57, G sensor 59 and battery 60, respectively, and are connected to valve opening signal S1, idle signal S2, power signal S3,
Intake pressure signal S4, intake temperature signal S5, water temperature signal S6, air-fuel ratio signal S7, vehicle speed signal S8, ignition signal
S9, engine speed signal S10, cylinder discrimination signal S11
and battery voltage signal S14 are input from each sensor. The control circuit 61 is also connected to the fuel injection valve 7 and the igniter 53, and based on predetermined calculations, the control circuit 61 outputs a fuel injection signal S12 and an ignition signal.
Output S13.

制御回路61は、第2図に示すように、各種機
器を制御する中央演算処理装置(CPU)61a、
予め各種の数値やプログラムが書き込まれたリー
ドオンリメモリ(ROM)61b、演算過程の数
値やフラグが所定の領域に書き込まれるランダム
アクセスメモリ(RAM)61c、アナログ入力
信号をデイジタル信号に変換するA/Dコンバー
タ(ADC)61d、各種デイジタル信号が入力
され、各種デイジタル信号が出力される入出力イ
ンタフエース(I/O)61e、エンジン停止時
に補助電源から給電されて記憶を保持するバツク
アツプメモリ(BU−RAM)61f、及びこれ
ら各機器がそれぞれ接続されるバスライン61g
から構成されている。後述するプログラムは
ROM61bに予め書き込まれている。
As shown in FIG. 2, the control circuit 61 includes a central processing unit (CPU) 61a that controls various devices;
A read-only memory (ROM) 61b in which various numerical values and programs are written in advance, a random access memory (RAM) 61c in which numerical values and flags for calculation processes are written in predetermined areas, and an analog input signal that converts analog input signals into digital signals. A D converter (ADC) 61d, an input/output interface (I/O) 61e to which various digital signals are input and output, and a backup memory (BU) which is supplied with power from the auxiliary power source and retains memory when the engine is stopped. -RAM) 61f, and bus line 61g to which each of these devices is connected.
It consists of The program described below is
It is written in the ROM 61b in advance.

上述したエンジンにおいては、第3図に示すフ
ローチヤートに従つて燃料が噴射される。第3図
を参照するに、手順P1において、基準位置信号
であるエンジン回転数信号S1に基づいてエンジ
ン回転数Neを読込むとともに吸気管圧力信号S4
に基づいて吸気管圧力PMを読込む。手順P2にお
いて、回転数Neと吸気管圧力PMとに基づいて、
第4図のマツプから基本噴射時間TPを求め、手
順P3において、エンジンの運転条件に応じて補
正演算処理を実行して補正後の噴射時間τを求め
る。
In the engine described above, fuel is injected according to the flowchart shown in FIG. Referring to FIG. 3, in step P1, the engine speed Ne is read based on the engine speed signal S1, which is a reference position signal, and the intake pipe pressure signal S4 is read.
Read the intake pipe pressure PM based on. In step P2, based on the rotational speed Ne and the intake pipe pressure PM,
The basic injection time TP is determined from the map shown in FIG. 4, and in step P3, a correction calculation process is executed according to the operating conditions of the engine to determine the corrected injection time τ.

ここで、手順P3の補正演算処理による補正噴
射時間τの演算について詳述する。
Here, the calculation of the corrected injection time τ by the correction calculation process in step P3 will be described in detail.

噴射時間τは、一般に次式により求められる。 The injection time τ is generally determined by the following formula.

τ=TP×FWL×FAF×(1×FTC)×FTHA
……(1) ここで:TP=基本燃料噴射時間 FWL=暖機増量係数 FAF=空燃比フイードバツク補正係数 FTC=過渡時空燃比補正係数 FTHA=吸気温補正係数 そこで、第5図に示すτ演算ルーチンに基づい
て各係数が算出されて噴射時間τが求められる。
すなわち、手順P11で暖機増量係数FWLの演算
処理を実行し、手順P12で空燃比フイードバツク
補正係数FAFの演算処理を実行し、手順P13で過
渡時空燃比補正係数FTCの演算処理を実行し、
手順P14で(TNA+k)を演算して補正係数
FTHAを求める。そして、手順P15において、上
記第(1)式を演算する。
τ=TP×FWL×FAF×(1×FTC)×FTHA
...(1) Where: TP = Basic fuel injection time FWL = Warm-up increase coefficient FAF = Air-fuel ratio feedback correction coefficient FTC = Transient air-fuel ratio correction coefficient FTHA = Intake temperature correction coefficient Therefore, the τ calculation routine shown in Fig. 5 Each coefficient is calculated based on , and the injection time τ is determined.
That is, in step P11, the warm-up increase coefficient FWL is calculated, in step P12, the air-fuel ratio feedback correction coefficient FAF is calculated, in step P13, the transient air-fuel ratio correction coefficient FTC is calculated,
In step P14, calculate (TNA+k) and calculate the correction coefficient.
Ask for FTHA. Then, in step P15, the above equation (1) is calculated.

手順P11〜P13の各演算処理について説明する
前に、本発明の特徴部分である始動温補正値
ADDの演算処理の一例および吸気管圧力PMの
演算処理の一例について説明する。
Before explaining each calculation process in steps P11 to P13, let us explain the starting temperature correction value, which is a feature of the present invention.
An example of the ADD calculation process and an example of the intake pipe pressure PM calculation process will be described.

(始動温補正値ADDの演算処理) 所定のタイミングで第6図に示す補正値ADD
演算処理ルーチンが起動されると、先ず手順P21
でエンジン始動中か否かが判断される。この判断
は、エンジン回転数信号S10に基づいて実行され
る。肯定判断されると、すなわち始動中である
と、手順P22において、そのときの吸気温信号S5
に基づいてエンジン始動温度としての始動吸気温
度THAを読込む。次いで、手順P23で、ROM6
1bに予め書き込まれている第7図に示す補正値
ADDと吸気温THAとのマツプから、読込まれた
始動吸気温度THAに基づいて補正値ADDを読込
む。手順P24においては、読込まれた補正値
ADDを所定数αだけ減衰させるべき一定の周期
で経過したか否かが判断され、肯定判断されれば
手順P25に進む。手順P25では、(ADD−α)を
求めてその結果を新たな補正値ADDとして所定
の記憶領域に格納する。次いで、手順P25におい
て、補正値ADDが零より小さいか否かを判断し
て肯定判断ならば手順P27で補正値ADDを零と
してADD演算ルーチンを終了し、否定判断なら
ば手順P27をスキツプしてADD演算ルーチンを
いつたん終了させる。エンジンが始動された後に
このルーチンが起動されたときには、手順P21で
否定判断されて手順P24にジヤンプし、その手順
で肯定判断されれば手順P25〜P27が実行され、
否定判断されれば手順P25〜P27がスキツプされ
て一連の手順が終了する。
(Calculation process of starting temperature correction value ADD) At a predetermined timing, the correction value ADD shown in Fig. 6 is calculated.
When the arithmetic processing routine is started, first step P21 is executed.
It is determined whether the engine is starting or not. This determination is performed based on the engine rotational speed signal S10. If an affirmative determination is made, that is, if starting is in progress, then in step P22, the intake temperature signal S5 at that time is
Read the starting intake air temperature THA as the engine starting temperature based on . Next, in step P23, ROM6
The correction value shown in FIG. 7 written in advance in 1b
From the map of ADD and intake air temperature THA, a correction value ADD is read based on the read starting intake air temperature THA. In step P24, the read correction value
It is determined whether a certain period in which ADD should be attenuated by a predetermined number α has elapsed, and if an affirmative determination is made, the process proceeds to step P25. In step P25, (ADD-α) is calculated and the result is stored in a predetermined storage area as a new correction value ADD. Next, in step P25, it is determined whether the correction value ADD is smaller than zero, and if the judgment is affirmative, the correction value ADD is set to zero in step P27 and the ADD calculation routine is ended, and if the judgment is negative, step P27 is skipped. Immediately terminate the ADD calculation routine. When this routine is started after the engine has been started, a negative determination is made in step P21 and the process jumps to step P24, and if an affirmative determination is made in that step, steps P25 to P27 are executed.
If the determination is negative, steps P25 to P27 are skipped and the series of steps ends.

上述したように、エンジン始動時の吸気温
THAに基づいて読込まれた始動温補正値ADD
は、第8図に示すように予め定められた周期毎に
一定数αが減衰される。これは、暖機時間の経過
に伴つて吸気通路の壁面温度が次第に上昇して行
くが、その上昇の仕方が略直線的であることを利
用して、始動時の壁面温度に対応している吸気温
に基づき、暖機中の任意の時刻における吸気通路
の壁面温度を経過時間の関数として予測すること
によつて行うものである。
As mentioned above, the intake temperature at engine start
Starting temperature correction value ADD read based on THA
is attenuated by a constant number α every predetermined period as shown in FIG. This corresponds to the wall temperature at startup by taking advantage of the fact that the wall temperature of the intake passage gradually rises as the warm-up time passes, but the rise is almost linear. This is done by predicting the intake passage wall temperature at any given time during warm-up as a function of elapsed time based on the intake air temperature.

(吸気管圧力PMの演算処理) 第9図に示す吸気管圧力PMの演算処理は、第
10図に示すように所定周期毎に繰返して実行さ
れるものであり、まず、手順P31では、吸気管絶
対圧力信号S4をデイジタル値に変換し、手順P32
においてその値PMjをレジスタR0〜R3に所定周
期毎に順次格納する。次いで手順P33では、例え
ば時点t−2において、レジスタR3に格納され
ている吸気管圧力PM-2から、時点t−4のタイ
ミングでレジスタR1に格納されている吸気管圧
力PM-4を減算し、その減算結果DPM2をレジス
タDR2に格納する。そして、手順P34に進み、例
えば時点t0において、レジスタDR0に格納されて
いるDPM0からレジスタDR1に格納されている
DPM1を減算し、その減算結果DDPMをレジス
タDDRに格納する。手順P35では、レジスタ
DDRに格納されている吸気管圧力PMの2回微分
値DDPMを基準値REF1と比較し、DDPM>
REF1ならば非同期噴射ルーチン(不図示)へジ
ヤンプする。DDPM<REF1ならばこの手順を終
了する。
(Calculation process of intake pipe pressure PM) The calculation process of intake pipe pressure PM shown in FIG. 9 is repeatedly executed at predetermined intervals as shown in FIG. Convert the pipe absolute pressure signal S4 to a digital value and follow step P32
The value PMj is sequentially stored in registers R 0 to R 3 at predetermined intervals. Next, in step P33, for example, the intake pipe pressure PM -4 stored in the register R 1 at time t-4 is calculated from the intake pipe pressure PM -2 stored in register R 3 at time t -2. Subtract and store the subtraction result DPM 2 in register DR 2 . Then, the process proceeds to step P34, and for example, at time t 0 , DPM 0 stored in register DR 0 is stored in register DR 1 .
Subtract DPM 1 and store the subtraction result DDPM in register DDR. In step P35, register
Compare the second differential value DDPM of the intake pipe pressure PM stored in the DDR with the reference value REF 1 , and find that DDPM>
If REF 1 , jump to an asynchronous injection routine (not shown). If DDPM<REF1, end this procedure.

このようにして各時点のタイミングで各レジス
タに格納されている吸気管圧力PMは基本燃料噴
射時間TPの演算に用いられ、吸気管圧力PMの
1回微分値DPMは同期加速増量の演算に用いら
れ、2回微分値DDPMは非同期加速増量の演算
に用いられる。
In this way, the intake pipe pressure PM stored in each register at each point in time is used to calculate the basic fuel injection time TP, and the one-time differential value DPM of the intake pipe pressure PM is used to calculate the synchronous acceleration increase. The second differential value DDPM is used to calculate the asynchronous acceleration increase.

次いで、第5図の各手順における各係数の演算
処理について説明する。
Next, the calculation processing of each coefficient in each procedure of FIG. 5 will be explained.

暖機増量係数FWLの演算処理 暖機増量係数FWLの演算手順の一例を第11
図に示す。手順P41で、水温信号S6に基づいてエ
ンジン冷却水温THWを読込み、エンジン回転数
信号S10に基づいてエンジン回転数Neを読込むと
共に、第6図に示すルーチンで演算された補正値
ADDをも読込む。手順P42では、読込まれた最
新の水温THWに基づいて、第12図に示すエン
ジン冷却水温と補正係数FWLφとのマツプから
補正係数FWLφを求める。次いで手順P43では、
読込まれた最新のエンジン回転数Neに基づいて、
第13図に示すエンジン回転数Neと補正係数
KWLとのマツプから補正係数KWLを求める。そ
して手順P44において、(補正係数FWLφ+補正
値ADD)×補正係数KWL+1.0の演算を実行して
暖機増量係数FWLを求めて、この一連の手順を
終了する。
Calculation process for warm-up increase coefficient FWL An example of the calculation procedure for warm-up increase coefficient FWL is shown in Part 11.
As shown in the figure. In step P41, the engine cooling water temperature THW is read based on the water temperature signal S6, the engine speed Ne is read based on the engine speed signal S10, and the correction value calculated by the routine shown in FIG. 6 is read.
Also loads ADD. In step P42, a correction coefficient FWLφ is determined from a map of engine cooling water temperature and correction coefficient FWLφ shown in FIG. 12, based on the latest water temperature THW that has been read. Next, in step P43,
Based on the latest engine speed Ne read,
Engine speed Ne and correction coefficient shown in Figure 13
Calculate the correction coefficient KWL from the map with KWL. Then, in step P44, the calculation of (correction coefficient FWLφ+correction value ADD)×correction coefficient KWL+1.0 is executed to obtain the warm-up increase coefficient FWL, and this series of steps ends.

フイードバツク補正係数FAFの演算処理 フイードバツク補正係数FAFの演算手順の一
例を第14図に示す。
Calculation Process of Feedback Correction Coefficient FAF An example of the calculation procedure of the feedback correction coefficient FAF is shown in FIG.

第14図に示す空燃比フイードバツク補正係数
FAFの演算ルーチンが起動されると、手順P51に
おいて、フイードバツク条件が成立しているか否
かを判断する。例えば、始動状態でなく、始動後
増量中でなく、エンジン水温THWが40℃以上で
あり、パワー増量中でなく、リーン制御中でない
ときに、フイードバツク制御の条件で成立する。
フイードバツク制御の条件が成立していなけれ
ば、手順P52でフイードバツク補正係数FAFを
1.0としてフイードバツク制御が実行されないよ
うにして、この処理を終了する。条件が成立して
いれば手順P53に進む。
Air-fuel ratio feedback correction coefficient shown in Figure 14
When the FAF calculation routine is activated, it is determined in step P51 whether or not a feedback condition is satisfied. For example, the feedback control conditions are met when the engine is not in a starting state, is not increasing power after startup, the engine coolant temperature THW is 40°C or higher, is not increasing power, and is not under lean control.
If the conditions for feedback control are not satisfied, set the feedback correction coefficient FAF in step P52.
1.0 so that feedback control is not executed, and this process ends. If the conditions are satisfied, proceed to step P53.

手順P53では、空燃比信号S7を読込む。手順
P54では空燃比信号S7の電圧値を基準値REF2と
比較し、信号S7が基準値REF2より大きい場合に
は、空燃比が過濃であると判断して空燃比を希薄
側にすべく手順を実行する。すなわち、手順P55
でフラグCAFLを零として手順P56に進み、フラ
グCAFRが零か否かを判断する。初めて過濃側へ
移行した時にはフラグCAFRが零であるので手順
P58へ進み、RAM61Cに格納されている補正
係数FAFから所定の値α1を減じ、その結果を新
たな補正係数FAFとする。手順P59においては、
フラグCAFRを1とする。従つて、手順P54にお
いて連続して二回以上過濃と判断されれば、二回
目以降に通過する手順P56では必ず否定判定さ
れ、手順P57において、補正係数FAFから所定の
値β1を減じ、その結果を新たな補正係数FAFと
してFAF演算を終了する。
In step P53, the air-fuel ratio signal S7 is read. procedure
In P54, the voltage value of the air-fuel ratio signal S7 is compared with the reference value REF2, and if the signal S7 is larger than the reference value REF2, it is determined that the air-fuel ratio is too rich and steps are taken to make the air-fuel ratio lean. Execute. i.e. step P55
The flag CAFL is set to zero and the process proceeds to step P56, where it is determined whether the flag CAFR is zero. When moving to the over-concentrated side for the first time, the flag CAFR is zero, so the procedure
Proceeding to P58, a predetermined value α1 is subtracted from the correction coefficient FAF stored in the RAM 61C, and the result is set as a new correction coefficient FAF. In step P59,
Set flag CAFR to 1. Therefore, if excessive concentration is determined twice or more in succession in step P54, a negative determination will always be made in step P56 passed from the second time onwards, and in step P57, a predetermined value β1 is subtracted from the correction coefficient FAF, and the The FAF calculation is ended using the result as a new correction coefficient FAF.

一方、手順P54で信号S7が基準値REF2より小
さい場合には、空燃比が稀薄であると判断して空
燃比を過濃側にすべき手順を実行する。すなわ
ち、手順P90において、フラグCAFRを零として
手順P91に進み、フラグCAFLが零か否かを判断
する。初めて希薄側へ移行した時にはフラグ
CAFLが零であるので手順P92に進み、補正係数
FAFに所定の値α2を加算し、その結果を新たな
補正係数FAFとする。手順P93においてはフラグ
CAFLを1とする。従つて、手順P54において連
続して二回以上稀薄と判断されれば二回目以降に
通過する手順P91では必ず否定判定され、手順
P94において、補正係数FAFに所定の値β2を加算
し、その結果を新たな補正係数FAFとしてFAF
演算を終了する。
On the other hand, if the signal S7 is smaller than the reference value REF2 in step P54, it is determined that the air-fuel ratio is lean, and a procedure to make the air-fuel ratio rich is executed. That is, in step P90, the flag CAFR is set to zero, and the process proceeds to step P91, where it is determined whether or not the flag CAFL is zero. A flag is set when the transition to the dilute side occurs for the first time.
Since CAFL is zero, proceed to step P92 and set the correction coefficient.
A predetermined value α2 is added to FAF, and the result is set as a new correction coefficient FAF. In step P93, the flag
Let CAFL be 1. Therefore, if it is determined that it is diluted twice or more consecutively in step P54, a negative determination will be made in step P91 that passes from the second time onwards, and the procedure
In P94, a predetermined value β2 is added to the correction coefficient FAF, and the result is set as a new correction coefficient FAF.
Finish the calculation.

なお、手順P57,P58,P92,P94におけるα1,
α2,β1およびβ2は予め定められた値である。
In addition, α1 in steps P57, P58, P92, and P94,
α2, β1 and β2 are predetermined values.

この演算手順により求られるフイードバツク補
正係数FAFを空燃比信号S7とともに第15図に
示す。この図を参照するに、信号S7が基準値
REF2より大きくなる際および基準値REF2より
小さくなる際に、まず、補正係数FAFがα1ある
いはα2だけスツキプされ、その後、信号S7が基
準値以上であれば逐次所定数β1が減算され、信
号S7が基準値以下であれば逐次所定数β2が加算
される。
The feedback correction coefficient FAF obtained by this calculation procedure is shown in FIG. 15 together with the air-fuel ratio signal S7. Referring to this figure, signal S7 is the reference value
When the signal S7 becomes larger than REF2 or smaller than the reference value REF2, the correction coefficient FAF is first skipped by α1 or α2, and then, if the signal S7 is greater than or equal to the reference value, a predetermined number β1 is sequentially subtracted, and the signal S7 is If it is below the reference value, a predetermined number β2 is added one after another.

過渡時空燃比補正係数FTCの演算処理 補正係数FTCの演算手順の一例を第16図に
示す。なお、本実施例では、暖機中における加速
増量における補正係数FTCだけを考える。手順
P61で、第9図に示すルーチンで得られている吸
気管圧力PMの変化量DPMkを読込む。手順P62
では、その変化量DPMkに基づいて、第17図
に示す変化量DPMkと吸気管圧力変化量による
暖機加速補正係数△FTCφとのマツプから補正係
数△FTCφを求める。次いで手順P63において、
既に求められている補正係数FTCφに手順P62で
求められた補正係数△FTCφを加算し、この加算
結果を新たな補正係数FTCφとして手順P64に進
む。手順P64においては、得られた補正係数
FTCφを所定数αだけ減衰させるべき一定の周期
が経過したか否かが判断され、肯定判断されれば
手順P65に進む。手順P65では、(FTCφ−γ)を
求めてその結果を新たな補正係数FTCφとして所
定の記憶領域に格納する。次いで手順P66におい
て、補正係数FTCφが零より小さいか否かを判断
して肯定判断ならば手順P67で補正係数FTCφを
零として次の手順P68に進む。手順P64または手
順P66で否定判断された場合にも手順P68へジヤ
ンプする。
Calculation Process of Transient Air-Fuel Ratio Correction Coefficient FTC An example of the calculation procedure of the correction coefficient FTC is shown in FIG. 16. In this embodiment, only the correction coefficient FTC in the acceleration increase during warm-up is considered. procedure
At P61, the amount of change DPMk in the intake pipe pressure PM obtained by the routine shown in FIG. 9 is read. Step P62
Now, based on the change amount DPMk, a correction coefficient △FTCφ is determined from a map of the change amount DPMk shown in FIG. 17 and the warm-up acceleration correction coefficient △FTCφ based on the intake pipe pressure change amount. Then, in step P63,
The correction coefficient ΔFTCφ obtained in step P62 is added to the correction coefficient FTCφ that has already been obtained, and the process proceeds to step P64 using the addition result as a new correction coefficient FTCφ. In step P64, the obtained correction coefficient
It is determined whether a certain period for attenuating FTCφ by a predetermined number α has elapsed, and if an affirmative determination is made, the process proceeds to step P65. In step P65, (FTCφ-γ) is calculated and the result is stored in a predetermined storage area as a new correction coefficient FTCφ. Next, in step P66, it is determined whether the correction coefficient FTCφ is smaller than zero, and if the judgment is affirmative, the correction coefficient FTCφ is set to zero in step P67, and the process proceeds to the next step P68. If a negative determination is made in step P64 or step P66, the process also jumps to step P68.

手順P68では、水温信号S6に基づいてエンジン
冷却水温THWを読込み、手順P69において、こ
の冷却水温THWに基づいて、第18図に示す冷
却水温THWと水温による暖機加速補正係数
KTCとのマツプから補正係数KTCを読込む。次
いで手順P70では、第6図に示すルーチンで求め
られた始動温補正値ADDを読み込んで手順P71
に進む。手順P71では、上述の手順で求められた
補正係数FTCφ、KTCおよびADDにより、
FTCφ×(KTC+ADD+1.0)を演算して暖機加
速補正係数FTCを求める。
In step P68, the engine coolant temperature THW is read based on the water temperature signal S6, and in step P69, based on this coolant temperature THW, the warm-up acceleration correction coefficient according to the coolant temperature THW and water temperature shown in FIG. 18 is calculated.
Read the correction coefficient KTC from the map with KTC. Next, in step P70, the starting temperature correction value ADD obtained in the routine shown in Fig. 6 is read, and the process proceeds to step P71.
Proceed to. In step P71, using the correction coefficients FTCφ, KTC and ADD obtained in the above steps,
Calculate FTCφ×(KTC+ADD+1.0) to find the warm-up acceleration correction coefficient FTC.

上述の手順P61〜P65で求められる補正係数
FTCを吸気管圧力PMおよび吸気管圧力の変化量
DPMと共に第19図に示す。この図を参照する
に、各時点での変化量DPMが基準値REF1を越
える度毎にFTCφに所定の値△FTCφが加算さ
れ、各時点の間では、補正係数FTCφが所定周期
毎にγづつ減算される。
Correction coefficient found in steps P61 to P65 above
FTC is intake pipe pressure PM and change in intake pipe pressure
It is shown in Fig. 19 together with DPM. Referring to this figure, a predetermined value △FTCφ is added to FTCφ every time the amount of change DPM at each point exceeds the reference value REF1, and between each point, the correction coefficient FTCφ is increased by γ at each predetermined period. Subtracted.

以上のようにして第5図の手順P11〜P13にお
ける係数FWL,FAFおよびFTCが求められる
と、手順P14で、TP×FWL×FAF×(1+FTC)
×FTHAが演算されて補正後の噴射時間τが求
められ、第3図の手順P4に戻る。
When the coefficients FWL, FAF, and FTC in steps P11 to P13 of Fig. 5 are obtained as described above, in step P14, TP×FWL×FAF×(1+FTC)
×FTHA is calculated to obtain the corrected injection time τ, and the process returns to step P4 in FIG.

第3図を参照するに、手順P4において電圧補
正演算が実行される。すなわち、第20図に示す
電圧補正演算ルーチンが実行され、手順P81でバ
ツテリ電圧信号S14に基づいてバツテリ電圧BV
が読込まれ、手順P82において、そのバツテリ電
圧BVに基づいて、第21図に示すバツテリ電圧
BVと電圧補正係数τVのマツプから電圧補正係数
τVが求められる。そして、手順P83において、
(τ+τV)が実行されて最終噴射時間Fτが求めら
れる。そして、再び第3図の手順P5に戻り、噴
射タイミングであれば、手順P6において、制御
回路61から噴射弁7に向けて噴射信号S12が出
力され、これにより噴射弁7が駆動される。
Referring to FIG. 3, voltage correction calculation is performed in step P4. That is, the voltage correction calculation routine shown in FIG. 20 is executed, and in step P81 the battery voltage BV is adjusted based on the battery voltage signal S14.
is read, and in step P82, the battery voltage shown in FIG. 21 is calculated based on the battery voltage BV.
The voltage correction coefficient τV is obtained from the map of BV and the voltage correction coefficient τV. Then, in step P83,
(τ+τV) is executed to obtain the final injection time Fτ. Then, returning to step P5 in FIG. 3 again, if it is the injection timing, in step P6, the injection signal S12 is output from the control circuit 61 to the injection valve 7, thereby driving the injection valve 7.

なお、第5図の手順P14による吸気温補正係数
FTHAは、温度により異なる吸入空気の密度を
補償するためである。
In addition, the intake temperature correction coefficient according to step P14 in Figure 5
FTHA is to compensate for the density of intake air, which varies depending on temperature.

また、以上の実施例では、基本燃料噴射時間
TPを、エンジン回転数と吸気管圧力とにより求
めるようにしているが、エンジン回転数と吸入空
気量とにより基本燃料噴射時間TPを求めるよう
にしてもよい。更に、上記実施例では、暖機増量
係数FWLを、エンジン回転数をも加味し求めて
いるが、エンジン回転数を加味しなくてもよい。
In addition, in the above embodiment, the basic fuel injection time
Although TP is determined based on the engine speed and intake pipe pressure, the basic fuel injection time TP may also be determined based on the engine speed and intake air amount. Further, in the above embodiment, the warm-up increase coefficient FWL is determined by taking into account the engine speed, but it is not necessary to take the engine speed into consideration.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、吸気絞り弁の上流に燃料噴射
弁を設置した内燃機関において、吸気絞り弁の下
流の前記吸気通路内に突出するように設置された
吸気温度センサの始動時の出力値に応じて選択さ
れ且つ始動後は前記吸気温度センサの出力値とは
無関係に所定の周期で減衰される吸気絞り弁下流
吸気温補正値と、前記内燃機関の冷却水温に応じ
て選択される暖機補正値とに基づいて、暖機中に
おける前記基本燃料噴射量の補正を行うので、始
動時の吸気通路壁面温度に対応しているその時の
吸気温と冷却水温から燃料噴射量の適切な増量補
正値を決定することができると共に、始動時の吸
気温から暖機中の実際の壁面温度の上昇の状況を
予測して、それに合わせて補正量を減衰させるの
で、燃料噴射弁から燃焼室までの吸気通路の壁面
温度を検出する必要もなく、多数のセンサやそれ
に関連する新たな配線、制御回路の高級化等を避
けて、過不足のない適切な暖機補正を低コストで
実施することができ、極寒時においても暖機状態
の運転性の向上が可能になる。
According to the present invention, in an internal combustion engine in which a fuel injection valve is installed upstream of an intake throttle valve, the output value at the time of startup of an intake air temperature sensor installed so as to protrude into the intake passage downstream of the intake throttle valve. an intake air temperature correction value downstream of the intake throttle valve, which is selected in accordance with the intake temperature sensor and is attenuated at a predetermined cycle after starting, regardless of the output value of the intake air temperature sensor; and a warm-up value, which is selected in accordance with the cooling water temperature of the internal combustion engine. Since the basic fuel injection amount is corrected during warm-up based on the correction value, the fuel injection amount can be appropriately increased based on the intake air temperature and cooling water temperature at that time, which correspond to the intake passage wall surface temperature at the time of startup. In addition to predicting the actual rise in wall temperature during warm-up from the intake air temperature at startup, the correction amount is attenuated accordingly. There is no need to detect the wall temperature of the intake passage, and it is possible to perform appropriate warm-up corrections at low cost, avoiding the need for multiple sensors, related new wiring, and sophisticated control circuits. This makes it possible to improve drivability in the warmed-up state even in extremely cold weather.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した自動車用内燃機関の
一例を示す構成図、第2図はその制御回路の一例
を示す詳細ブロツク図、第3図は燃料噴射の手順
の一例を示すフローチヤート、第4図はエンジン
回転数Neと吸気管圧力PMとから基本燃料噴射
時間TPを読出すためのマツプの一例を示す線図、
第5図は補正噴射時間τを求める手順の一例を示
すフローチヤート、第6図は始動温補正値ADD
を求める手順の一例を示すフローチヤート、第7
図は始動時吸気温THAと始動温補正値ADDとの
関係を示すグラフ、第8図はその始動温補正値
ADDの時間減衰を示す線図、第9図は吸気管圧
力PMの演算処理の一例を示すフローチヤート、
第10図は第9図の各手順を説明するための線
図、第11図は暖機増量係数FWLの演算処理の
一例を示すフローチヤート、第12図はエンジン
水温THWと暖機補正係数FWLφとの関係を示す
グラフ、第13図はエンジン回転数Neと暖機補
正係数KWLとの関係を示すグラフ、第14図は
フイードバツク補正係数FAFの演算処理の一例
を示すフローチヤート、第15図は空燃比信号
S7と補正係数FAFの時間変化を示すタイムチヤ
ート、第16図は暖機加速増量係数FTCの演算
処理の一例を示すフローチヤート、第17図は吸
気管圧力の変化量DPMと暖機加速補正係数△
FTCφとの関係を示すグラフ、第18図はエンジ
ン水温THWと暖機加速補正係数KTCとの関係
を示すグラフ、第19図は吸気管圧力PM、その
変化量DPMと補正係数FTCφの時間変化を示す
タイムチヤート、第20図は最終燃料噴射時間
Fτの演算処理の一例を示すフローチヤート、第
21図はバツテリ電圧BVと電圧補正係数τVとの
関係を示すグラフである。 7……噴射弁、9……吸気絞り弁、11……吸
気管圧力センサ、13……インテークマニホル
ド、15……吸気温センサ、17……ライザ部、
19……エンジン本体、27……燃焼室、33…
…ウオータジヤケツト、37……エンジン冷却水
温センサ、41……O2センサ、49……車速セ
ンサ、51……キースイツチ、53……イグナイ
タ、55……デイストリビユータ、57……Ne
センサ、59……Gセンサ、61……制御回路。
FIG. 1 is a block diagram showing an example of an automobile internal combustion engine to which the present invention is applied, FIG. 2 is a detailed block diagram showing an example of its control circuit, and FIG. 3 is a flowchart showing an example of a fuel injection procedure. FIG. 4 is a diagram showing an example of a map for reading out the basic fuel injection time TP from the engine speed Ne and the intake pipe pressure PM.
Figure 5 is a flowchart showing an example of the procedure for calculating the corrected injection time τ, and Figure 6 is the starting temperature correction value ADD.
Flow chart showing an example of the procedure for determining
The figure is a graph showing the relationship between the intake air temperature THA at startup and the starting temperature correction value ADD, and Figure 8 is the starting temperature correction value.
A diagram showing the time decay of ADD, FIG. 9 is a flowchart showing an example of calculation processing of intake pipe pressure PM,
Fig. 10 is a diagram for explaining each procedure in Fig. 9, Fig. 11 is a flowchart showing an example of the calculation process of the warm-up increase coefficient FWL, and Fig. 12 is the engine coolant temperature THW and the warm-up correction coefficient FWLφ. FIG. 13 is a graph showing the relationship between engine speed Ne and warm-up correction coefficient KWL, FIG. 14 is a flowchart showing an example of the calculation process of feedback correction coefficient FAF, and FIG. air fuel ratio signal
A time chart showing changes over time in S7 and the correction coefficient FAF. Fig. 16 is a flowchart showing an example of the calculation process for the warm-up acceleration increase coefficient FTC. Fig. 17 shows the amount of change in intake pipe pressure DPM and the warm-up acceleration correction coefficient. △
Figure 18 is a graph showing the relationship between engine water temperature THW and warm-up acceleration correction coefficient KTC. Figure 19 is a graph showing the relationship between engine coolant temperature THW and warm-up acceleration correction coefficient KTC. Figure 19 shows the time change of intake pipe pressure PM, its change amount DPM, and correction coefficient FTCφ. The time chart shown in Figure 20 is the final fuel injection time.
FIG. 21, which is a flowchart showing an example of the calculation process of Fτ, is a graph showing the relationship between the battery voltage BV and the voltage correction coefficient τV. 7... Injection valve, 9... Intake throttle valve, 11... Intake pipe pressure sensor, 13... Intake manifold, 15... Intake temperature sensor, 17... Riser section,
19...Engine body, 27...Combustion chamber, 33...
... Water jacket, 37 ... Engine coolant temperature sensor, 41 ... O 2 sensor, 49 ... Vehicle speed sensor, 51 ... Key switch, 53 ... Igniter, 55 ... Distributor, 57 ... Ne
Sensor, 59...G sensor, 61...Control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 内燃機関の吸気絞り弁の上流に設置された燃
料噴射弁と、該燃料噴射弁から噴射されて吸入空
気と混合された混合気を内燃機関の燃焼室まで導
く比較的長い距離の吸気通路とを有する内燃機関
の燃料噴射量制御方法において、前記内燃機関の
回転数および負荷に基づいて基本燃料噴射量を算
出すると共に、前記吸気絞り弁の下流の前記吸気
通路内に突出するように設置された吸気温度セン
サの始動時の出力値に応じて選択され且つ始動後
は前記吸気温度センサの出力値とは無関係に所定
の周期で減衰される吸気絞り弁下流吸気温補正値
と、前記内燃機関の冷却水温に応じて選択される
暖機補正値とに基づいて、暖機中における前記基
本燃料噴射量の補正を行うことを特徴とする内燃
機関の燃料噴射量制御方法。
1. A fuel injection valve installed upstream of an intake throttle valve of an internal combustion engine, and a relatively long intake passage that guides the air-fuel mixture injected from the fuel injection valve and mixed with intake air to the combustion chamber of the internal combustion engine. In the fuel injection amount control method for an internal combustion engine, the basic fuel injection amount is calculated based on the rotation speed and load of the internal combustion engine, and the fuel injection amount is installed so as to protrude into the intake passage downstream of the intake throttle valve. an intake air temperature correction value downstream of the intake throttle valve, which is selected according to the output value of the intake air temperature sensor at the time of starting the engine, and is attenuated at a predetermined period after the engine starts, regardless of the output value of the intake air temperature sensor; A fuel injection amount control method for an internal combustion engine, characterized in that the basic fuel injection amount is corrected during warm-up based on a warm-up correction value selected according to a cooling water temperature of the engine.
JP6875383A 1983-03-15 1983-04-19 Controlling method of fuel injection quantity and fuel injection control device for internal-combustion engine Granted JPS59194042A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6875383A JPS59194042A (en) 1983-04-19 1983-04-19 Controlling method of fuel injection quantity and fuel injection control device for internal-combustion engine
US06/588,101 US4543937A (en) 1983-03-15 1984-03-09 Method and apparatus for controlling fuel injection rate in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6875383A JPS59194042A (en) 1983-04-19 1983-04-19 Controlling method of fuel injection quantity and fuel injection control device for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS59194042A JPS59194042A (en) 1984-11-02
JPH0454054B2 true JPH0454054B2 (en) 1992-08-28

Family

ID=13382834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6875383A Granted JPS59194042A (en) 1983-03-15 1983-04-19 Controlling method of fuel injection quantity and fuel injection control device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59194042A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018162748A (en) * 2017-03-27 2018-10-18 株式会社ケーヒン Internal combustion engine control device
CN114658541B (en) * 2022-03-18 2023-06-23 东风汽车集团股份有限公司 Temperature discharge determining method and device and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034757U (en) * 1983-08-10 1985-03-09 三菱電機株式会社 brush

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034757Y2 (en) * 1979-06-08 1985-10-16 株式会社デンソー Internal combustion engine with proper fuel metering

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034757U (en) * 1983-08-10 1985-03-09 三菱電機株式会社 brush

Also Published As

Publication number Publication date
JPS59194042A (en) 1984-11-02

Similar Documents

Publication Publication Date Title
US4543937A (en) Method and apparatus for controlling fuel injection rate in internal combustion engine
US4528956A (en) Method of and apparatus for controlling air-fuel ratio and ignition timing in internal combustion engine
US4535736A (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
JPH0454054B2 (en)
US4637364A (en) Method for controlling air-fuel ratio for internal combustion engine and apparatus therefor
JPS59176444A (en) Method of controlling air-fuel ratio of internal- combustion engine
JPS59168230A (en) Method of controlling injection quantity of fuel and fuel injection controlling apparatus for internal-combustion engine
JPH0610442B2 (en) Fuel injection control method for internal combustion engine
JPS58214632A (en) Electronically controlled fuel injection method for internal combustion engines
JPS6065245A (en) Air-fuel ratio controller for internal-combustion engine
JPH0733782B2 (en) Fuel injection control method
JPS59176427A (en) Fuel injection controller of internal-combustion engine
JP3187534B2 (en) Air-fuel ratio correction method for internal combustion engine
JPS6075737A (en) Air/fuel ratio control method for internal-combustion engine
JPS59168231A (en) Method of controlling injection quantity of fuel and fuel injection controlling apparatus for internal- combustion engine
JPS59170431A (en) Control of air-fuel ratio of internal-combustion engine
JPS60249637A (en) Air-fuel ratio control for internal-combustion engine
JPS58150045A (en) Electronically controlled fuel injection method for internal combustion engines
JP2966258B2 (en) Air-fuel ratio correction control method
JP2625984B2 (en) Air-fuel ratio control device for electronically controlled fuel injection type internal combustion engine
JPS62162742A (en) Air-fuel ratio control device
JPS59190435A (en) Fuel injection control device of internal-combustion engine
JPH0512541B2 (en)
JPH0587664B2 (en)
JPS60209646A (en) Electronic control type fuel injection device