[go: up one dir, main page]

JPS59200475A - Composite photosemiconductor element - Google Patents

Composite photosemiconductor element

Info

Publication number
JPS59200475A
JPS59200475A JP58073802A JP7380283A JPS59200475A JP S59200475 A JPS59200475 A JP S59200475A JP 58073802 A JP58073802 A JP 58073802A JP 7380283 A JP7380283 A JP 7380283A JP S59200475 A JPS59200475 A JP S59200475A
Authority
JP
Japan
Prior art keywords
semiconductor
light emitting
semiconductor light
current path
photodetection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58073802A
Other languages
Japanese (ja)
Inventor
Koichi Nitta
康一 新田
Masaru Nakamura
優 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58073802A priority Critical patent/JPS59200475A/en
Priority to EP84100337A priority patent/EP0116304B1/en
Priority to DE8484100337T priority patent/DE3484443D1/en
Publication of JPS59200475A publication Critical patent/JPS59200475A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F55/00Radiation-sensitive semiconductor devices covered by groups H10F10/00, H10F19/00 or H10F30/00 being structurally associated with electric light sources and electrically or optically coupled thereto
    • H10F55/18Radiation-sensitive semiconductor devices covered by groups H10F10/00, H10F19/00 or H10F30/00 being structurally associated with electric light sources and electrically or optically coupled thereto wherein the radiation-sensitive semiconductor devices and the electric light source share a common body having dual-functionality of light emission and light detection

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 U発明の属する技術分野〕 この発明は半導体発光素子と半導体光検出素子とからな
る複合光半導体素子に係り、特に半導体発光素子と半導
体光検出素子の各電流径路を改善した複合光半導体素子
に関する。
[Detailed description of the invention] Technical field to which the invention pertains] The present invention relates to a composite optical semiconductor device consisting of a semiconductor light emitting device and a semiconductor photodetecting device, and in particular improves each current path of the semiconductor light emitting device and the semiconductor photodetecting device. The present invention relates to a composite optical semiconductor device.

[従来技術とその問題点] 半導体発光素子としての発光ダイオード(以下LEDと
略称する)の出力特性は、半導体レーザに比べ温度変化
が少く線形性も良く、応答性やパワーレベルの問題を除
けば非常に取り扱い易い光源である。
[Prior art and its problems] The output characteristics of a light emitting diode (hereinafter abbreviated as LED) as a semiconductor light emitting device has less temperature change and better linearity than a semiconductor laser, and apart from problems with response and power level, It is a very easy to use light source.

しかしながら、例えばアナログ伝送等で実際に使用する
際は、温度特性や線形性をさらに補償して用いることが
必要とされる。
However, when actually used in analog transmission, for example, it is necessary to further compensate for temperature characteristics and linearity.

この補償方法では、近時上として温度・線形性の両方を
同時に補償しかつ安定性に優れた広帯域光電気負帰還方
式(S56電子通信学会総合全国大会2226)が用い
られている。
In this compensation method, a broadband photoelectric negative feedback method (S56 Institute of Electronics and Communication Engineers General Conference 2226), which simultaneously compensates for both temperature and linearity and has excellent stability, has recently been used.

この方式は、半導体発光素子の光出力の一部を検出し半
導体発光素子の非線形ひずみの補償を行うものである。
This method detects a portion of the optical output of a semiconductor light emitting device and compensates for nonlinear distortion of the semiconductor light emitting device.

このような非線形ひずみの補償を行うためには半導体発
光素子と半導体光検出素子とをモノリシックに形成する
ことが望ましい。
In order to compensate for such nonlinear distortion, it is desirable to form the semiconductor light emitting device and the semiconductor photodetecting device monolithically.

従来、このような半導体発光素子と半導体光検出素子を
モノリシックに形成したものでは、一部を断面で示す第
1図のような構造が考案されている。即ち、例えばLE
D(1−10)からなる半導体発光素子の一方の表面の
ほぼ中央に、LED、(1−10)からの光出力を外部
に通過させる光通過部(1−30)を中心に設けた、例
えばフォトダイオード(以下FDと略称する)(1−2
0)からなる半導体光検出素子が層状にモノリシックに
形成されている。、LED(1−10)は、例えばP型
GaAsからなる基板(1−11)上に例えばN型Ga
Asからなる電流狭窄層(+−1,2)を介して、例え
ばP型GaAlAsからなる第1の組成層(1−13)
が形成されている。さらに、この第1の組成層(1−1
3)上に、例えばN型GaAlAsからなる活性層(1
−14)を介して、例えばN型GakllAsからなる
第2の組成層(1−15)が形成された構造となってい
る。
Conventionally, a structure in which a semiconductor light emitting element and a semiconductor photodetecting element are monolithically formed has been devised as shown in FIG. 1, which is partially shown in cross section. That is, for example, L.E.
A light passage part (1-30) for passing the light output from the LED (1-10) to the outside is provided at approximately the center of one surface of the semiconductor light emitting element consisting of D (1-10), For example, a photodiode (hereinafter abbreviated as FD) (1-2
A semiconductor photodetecting element consisting of 0) is monolithically formed in a layered manner. , the LED (1-10) is made of, for example, N-type GaAs on a substrate (1-11) made of, for example, P-type GaAs.
A first composition layer (1-13) made of, for example, P-type GaAlAs, via a current confinement layer (+-1, 2) made of As.
is formed. Furthermore, this first composition layer (1-1
3) On top, an active layer (1
-14), a second composition layer (1-15) made of, for example, N-type GakllAs is formed.

次にPD(1−20)は、上記N型GaAJAsからな
るN型層(1−15)上に、例えばGaAsからなる低
不−物濃度層(1−21)を介して、例えばP型GaA
sからなるP型層(1−22>が形成されて、P−1−
N構造となっておシ、またN型Ga1VAsからなるN
型層は、LED(]−10)の第2の組成層(1−15
)と共用されている。尚、LED (1−10)+7)
 一方o電iti、 (1−17> ハ、L E D 
(1−10)の一方の表面でかつPD(1−20)の受
光部の外側に設けられ、他方の電極(1−16)はLE
D(1−10)の他方の表面に設けられているりまだP
D(]−20)+7)一方(7)!極は、L E D 
(]−10)の一方の電極(1−17)が兼用されてお
シ、他方の電極(1−23)はFD(1−20)の受光
部の一方の表面に設けられている。
Next, the PD (1-20) is formed by applying, for example, a P-type GaA
A P-type layer (1-22> consisting of s is formed, and P-1-
It has an N structure, and it also has an N structure made of N-type Ga1VAs.
The mold layer is the second composition layer (1-15) of the LED (]-10).
) is shared with In addition, LED (1-10)+7)
On the other hand, (1-17> Ha, L E D
(1-10) and outside the light receiving part of the PD (1-20), and the other electrode (1-16) is the LE
The groove P provided on the other surface of D (1-10)
D(]-20)+7) On the other hand (7)! The pole is L E D
One electrode (1-17) of (]-10) is also used, and the other electrode (1-23) is provided on one surface of the light receiving section of the FD (1-20).

上述の構造により活性層(1−14)からの光出力は、
PD(1−20)で検出されるとともに、光通過部(1
−30)を通って外部にも一部出力され光ファイバ(1
−40)へ入射する。
Due to the above structure, the light output from the active layer (1-14) is
It is detected by the PD (1-20), and the light passing part (1-20)
-30) and is partially output to the outside through an optical fiber (1
-40).

さらにPI)(1−20)の出力は、外部に設けられた
電子回路へ導かれ前述の広帯域光・電気負帰還を構成し
ている。しかしながら、この様な従来の構造に於いては
、次の様な問題点を有していた。
Further, the output of the PI) (1-20) is guided to an external electronic circuit to constitute the above-mentioned broadband optical/electrical negative feedback. However, such a conventional structure has the following problems.

広帯域光・電気負帰還方式を成す為には、LED(1−
10)からの光出力の一部を検出するPD(1−20)
 KよりLED(x−10)の真ノモニタ電流を得るこ
とが必要であるが、上述の構造では正確々モニタ電流を
得ることは困難である。
In order to implement a broadband optical/electrical negative feedback system, LEDs (1-
PD (1-20) that detects a part of the optical output from 10)
Although it is necessary to obtain a true monitor current of the LED (x-10) from K, it is difficult to obtain an accurate monitor current with the above structure.

即ち、LED(1−10)およびPD(1−加)の各一
方の電極を兼用している電極(1−17)がFD(1−
20)の光検出部の外側に形成されているため、LED
(1−10)(DIE流径路(1−50)とFD (1
−20)(7)電流径路(1−60)とが接近或いは重
なシを生じている。
That is, the electrode (1-17), which also serves as the electrode for each of the LED (1-10) and the PD (1-addition), is the electrode for the FD (1-addition).
20), so the LED
(1-10) (DIE flow path (1-50) and FD (1
-20) (7) The current path (1-60) is close to or overlaps with the current path (1-60).

従って、前述の構造ではLED(l−10)側からPD
(1−20)側へ電流の漏れが生じるためPD(1−2
0)−t’LED(1−10)の% ツだモニタ電流を
得ることがあり、高精度の広帯域光・電気負帰還を達成
することができなかった。
Therefore, in the above structure, the PD from the LED (l-10) side
Since current leakage occurs to the (1-20) side, PD (1-2
0)-t'LED (1-10)% of the LED (1-10) could obtain a monitor current that was too high, and it was not possible to achieve high-precision broadband optical-electrical negative feedback.

[発明の目的] この発明は、上述の問題点を考慮してなされたものであ
シ、その目的とするところは半導体装置素子から半導体
光検出素子への電流の漏れ込みを防ぎ半導体光検出素子
で半導体発光素子の真のモニタ電流を得て、有効な広帯
域光・電気負帰還を行うことができる複合光半導体素子
を提供することである。
[Object of the Invention] The present invention has been made in consideration of the above-mentioned problems, and its purpose is to prevent current leakage from a semiconductor device element to a semiconductor photodetector element. It is an object of the present invention to provide a composite optical semiconductor device capable of obtaining a true monitor current of a semiconductor light emitting device and performing effective broadband optical/electrical negative feedback.

[発明の概襞コ 本発明は、半導体発光素子とこの半導体発光素子からの
光出力の一部を検出する半導体光検出素子がモノリシッ
クに構成された複合光光半導体素子において、半導体発
光素子の駆動電流と半導体光検出素子の光検出電流が流
れる共通層内で、半導体発光素子の駆動電流と半導体光
検出素子の検出電流が互いに独立である複合光半導体素
子を提供することである。
[Overview of the Invention] The present invention provides a composite optical semiconductor device in which a semiconductor light emitting device and a semiconductor photodetection device that detects a part of the light output from the semiconductor light emitting device are monolithically configured, and a method for driving the semiconductor light emitting device. It is an object of the present invention to provide a composite optical semiconductor device in which a driving current of a semiconductor light emitting device and a detection current of a semiconductor photodetecting device are independent from each other in a common layer through which a current and a photodetection current of a semiconductor photodetecting device flow.

[発明の効果] この発明によシ半導体発光素子の駆動電流径路と半導体
光検出素子の光検出電流径路を独立にすることができ、
従って半導体発光素子から半導体光検出素子への電流の
漏れ込みを防ぎ半導体光検出素子で半導体発光素子の真
のモニタ電流を得て有効な広帯域光・電気負帰還を行う
複合光半導体素子を得ることができる。
[Effects of the Invention] According to the present invention, the driving current path of the semiconductor light emitting device and the photodetection current path of the semiconductor photodetecting device can be made independent,
Therefore, it is possible to obtain a composite optical semiconductor device that prevents current leakage from the semiconductor light emitting device to the semiconductor photodetection device, obtains a true monitor current of the semiconductor light emitting device from the semiconductor photodetection device, and performs effective broadband optical/electrical negative feedback. I can do it.

[発明の実施例] この発明の第1の実施例を一部を断面で示す第2図を参
照して説明する。
[Embodiments of the Invention] A first embodiment of the invention will be described with reference to FIG. 2, which partially shows a cross section.

即ち、発光部を形成するP−N接合を有する、例えばL
ED(2−10)からなる半導体発光素子の一方の表面
に、このLED(2−10)からの光出力の一部を検出
する、例えばFD(2−20)からなる半導体光検出素
子が環状にかつ層状にモノリシックに形成されている。
That is, for example, L has a PN junction forming a light emitting part.
On one surface of the semiconductor light emitting element consisting of ED (2-10), a semiconductor photodetecting element consisting of, for example, FD (2-20), which detects a part of the light output from this LED (2-10), is arranged in an annular shape. It is formed monolithically in layers.

LED(2−10)は例えば不純物濃度が1×1018
cIIL−3で、厚さが200乃至300pmOP型G
aAsからなる基板(2−11)上に例えば不純物濃度
がI X 1018cm−1厚さが2μm乃至3μmの
N型GaAsからなる電流狭窄層(2−12)を介して
、例えば不純物濃度がI X 10”m 3で、厚さが
7prn乃至8μmのP型AJxGa+ −xAs (
x=0.3乃至0.4)から々る第1の組成層(2−1
3)が形成されている0 さらに、この第1の組成層(2−13)上には、例えば
不純物濃度がlX10a++ で、厚さが1μmのN 
fil )J xGa s −xAs (x = 0.
05乃至0.1)からなる活性層(2−14)を介して
、例えば不純物濃度が1×1018cIIL−3で、厚
さが5μmのN型All xGa 1−xAs (x 
= 0.3乃至0.4)からなる第2の組成層(2−1
5)が形成された構造となっている。
For example, the impurity concentration of LED (2-10) is 1×1018
cIIL-3, thickness 200 to 300 pm OP type G
A current confinement layer (2-12) made of N-type GaAs with a thickness of 2 μm to 3 μm is formed on a substrate (2-11) made of aAs, for example, with an impurity concentration of I P-type AJxGa+ -xAs (
The first composition layer (x=0.3 to 0.4) (2-1
Further, on this first composition layer (2-13), for example, an N layer with an impurity concentration of lX10a++ and a thickness of 1 μm is formed.
fil ) J xGa s −xAs (x = 0.
For example, N-type All xGa 1-xAs (x
= 0.3 to 0.4).
5) is formed.

尚、電流狭窄層(2−12)は、一部に電流集中を良く
して高発光効率を得るためK、形成されたものである。
Incidentally, the current confinement layer (2-12) is formed in order to improve current concentration in a part and obtain high luminous efficiency.

次に、PD(2−20)は、N型層上に、例えば厚さ4
μmのGaAsからなる低不純物濃度層(2−21)を
介して、例えば不純物汲度がI X 1010l8で、
厚さが0.5μmのP型GaAsからなるP型層(2−
22)が形成され、P−i−N構造となっている。尚、
この際のN型層は、LED(2−10)のM2”組成層
(2−15)(!:共用されている。
Next, PD(2-20) is placed on the N-type layer to a thickness of, for example, 4
For example, the impurity concentration is I x 1010 l8 through the low impurity concentration layer (2-21) made of GaAs of μm.
A P-type layer (2-
22) is formed and has a P-i-N structure. still,
The N-type layer at this time is shared by the M2'' composition layer (2-15) (!:) of the LED (2-10).

また、LED(2−10)の一方の電極(2−1?)は
、第2の組成層(2−15)の上部表面で、かつPD(
2−20)の光検出部の内側に環状に構成されておシ、
他方の電極(2−16)は、基板(2−11)の下部表
面に設けられているうまた、I) D(2−20)の一
方の電極(2−24)は、第2の組成層(2−15)の
上部表面で、かつPD(2−20)ノ光検出部(2−2
’))の外側に環状に構成されておシ、他方の電極(2
−23)は、jD(2−加)(7)P型層(2−22)
の上部表面に設けられている。
Further, one electrode (2-1?) of the LED (2-10) is connected to the upper surface of the second composition layer (2-15) and the PD (
2-20) is arranged in an annular manner inside the photodetection section,
The other electrode (2-16) is provided on the lower surface of the substrate (2-11), and one electrode (2-24) of I) D (2-20) is provided with a second composition. On the upper surface of the layer (2-15), and on the PD (2-20), the photodetecting portion (2-2
')) is arranged in a ring shape on the outside of the other electrode (2).
-23) is jD (2-addition) (7) P-type layer (2-22)
provided on the upper surface of the

ここで第2の組成層(2−15)の上部表面上にあるL
ED(2−10)の一方の電極(2−17)とPD (
2−20) O一方O11[(2−24) ノ輔U、例
エバ50μm乃至70μmとされている。
Here, L on the upper surface of the second composition layer (2-15)
One electrode (2-17) of ED (2-10) and PD (
2-20) On the other hand, O11 [(2-24) Nosuke U, Example Eva is said to be 50 μm to 70 μm.

上述の構造に於いて、活性層(2−14)からの光出力
はPD(2−20)で一部検出されるとともに、光通過
部(2−30)若しくは電極(2−17)の外側を通っ
て外部にも一部出カされ光ファイバ(1−40)へ入射
する。
In the above structure, the light output from the active layer (2-14) is partially detected by the PD (2-20), and is also detected by the light passing part (2-30) or the outside of the electrode (2-17). A portion of the light is also output to the outside through the light and enters the optical fiber (1-40).

一方、PD(2−20)の出力は、外部の電子回路へ導
かれ広帯域光・電気負帰還を構成している。
On the other hand, the output of the PD (2-20) is guided to an external electronic circuit to constitute broadband optical/electrical negative feedback.

即ち%LED(2−10)(D一方の電極(2−17)
をPD(1−1o)の光検出部(2−2”i)の内側例
形成し、かつFD(2−20)の一方の電極(2−24
)をPD(2−2(J)の光検出部(2−25)o外側
に設けた構造となっているため、LED (2−10)
’i7)電流径路(2−30)はPD (2−20)o
電流径路(2−40)の内側にあり互いに独立となって
いる。
i.e. %LED (2-10) (D one electrode (2-17)
is formed inside the photodetecting part (2-2"i) of the PD (1-1o), and one electrode (2-24" of the FD (2-20))
) is provided outside the photodetector (2-25) o of the PD (2-2(J)), so the LED (2-10)
'i7) Current path (2-30) is PD (2-20)o
They are located inside the current path (2-40) and are independent from each other.

従ッテ、LED(2−10)側からFD(2−20)側
への電流の漏れ込みを防ぐことができ、PD(2−20
)RUED(2−10)の真のモニタ電流を得ることが
できる。
Therefore, current leakage from the LED (2-10) side to the FD (2-20) side can be prevented, and the PD (2-20
)RUED(2-10) true monitor current can be obtained.

尚、この第1の実施例に於けるLED(2−10)の一
方の電極(2−17)とFD(2−20)の一方の電極
(2−24)との位置関係を逆にした場合にも、FD(
2−20)(7)[i径路はL E IM)tfi径路
の内側となシ互いに独立となる。
Note that the positional relationship between one electrode (2-17) of the LED (2-10) and one electrode (2-24) of the FD (2-20) in this first embodiment is reversed. Also in the case, FD(
2-20) (7) [i path is L E IM) inside the tfi path and are independent from each other.

また、この明細書内に於いて、LEDの駆動電流径路と
PDの光検出電流径路が独立であるとはLEDからPD
への漏れ電流がPDの光検出電流の1/100程度以下
であると見なせることを意味する。
In addition, in this specification, the term "the LED drive current path and the PD photodetection current path are independent" means that the LED drive current path and the PD photodetection current path are independent.
This means that the leakage current to the PD can be considered to be about 1/100 or less of the photodetection current of the PD.

また、PD(2−20)は、環状に形成されているが、
この形状は三角形、四角形等の多角形や楕円形であって
も良く、また完全な環状でなくその一部が形成されてい
れば良い。
In addition, PD(2-20) is formed in a ring shape,
This shape may be a polygon such as a triangle or a quadrangle, or an ellipse, and it is sufficient that the shape is not a complete annular shape but a part thereof.

次に、この発明の第2の実施例を第3図を参照して説明
する。
Next, a second embodiment of the invention will be described with reference to FIG.

即ち、例えばGaAsからなる基板(3−11)上に例
えばN型Al xGa 1−xAs (x = 0.2
 )からなる第1の組成層(3−12)が形成され、さ
らにこの第1の組成層(3−12)上には、例えばN型
All xGa 1−XAS(x=0.05)からなる
活性層(3−13)を介して、例えばNfi AJxG
al−xA、s (x=0.2 )からなる第2の組成
層(3−14)が形成されている。また、第2の組成層
(3−14)と活性層(3−13)の一部にはP+型の
拡散層(3−15)が形成されており、この拡散層(3
−15)の上部表面の一部に第1の電極(3−16)が
形成され、さらにこの第一の電極(3−16)形成部に
隣接する第2の組成層(3−14)の表面上の一部に第
2の電極(3−17)が形成されておりLEDを構成し
ている。
That is, for example, N-type Al x Ga 1-x As (x = 0.2
) is formed, and further on this first composition layer (3-12) is formed a first composition layer (3-12) consisting of, for example, N-type All xGa 1-XAS (x=0.05). Via the active layer (3-13), for example, Nfi AJxG
A second composition layer (3-14) consisting of al-xA,s (x=0.2) is formed. Further, a P+ type diffusion layer (3-15) is formed in a part of the second composition layer (3-14) and the active layer (3-13), and this diffusion layer (3-15) is formed in a part of the second composition layer (3-14) and the active layer (3-13).
A first electrode (3-16) is formed on a part of the upper surface of -15), and a second composition layer (3-14) adjacent to the first electrode (3-16) formation part. A second electrode (3-17) is formed on a part of the surface and constitutes an LED.

次に、上述のLED形成部に近接する第2の組成層(3
−14)表面上の一部に、例えばGaAsからなる方形
状の低不純物濃度層(3−18)を介して、例えばGa
AsからなるP型層(3−19)が形成され、さらにこ
のP型層(3−19)上には第3の電極(3−20)が
形成されている。さらに、この低不純物濃度層(3−1
8)形成部とLEDの第2の電極(3−17)との間の
第1の組成層(3=14)上に形成された第4の電極(
3−21)とによりPDを構成している。
Next, a second composition layer (3
-14) A rectangular low impurity concentration layer (3-18) made of, for example, GaAs is formed on a part of the surface, for example, by using GaAs.
A P-type layer (3-19) made of As is formed, and a third electrode (3-20) is further formed on this P-type layer (3-19). Furthermore, this low impurity concentration layer (3-1
8) The fourth electrode (3=14) formed on the first composition layer (3=14) between the formation part and the second electrode (3-17) of the LED
3-21) constitutes the PD.

このような構造によりLEDを構成するf型の拡散層(
3−15)とN型層(3−13) 、 (3−14)に
よるP−N接合部から発光が行われ、その光出力の一部
は、第一の電極(3−16)が形成されていない第2の
組成層(3−14)表面よシ外部に出力される。
With this structure, the f-type diffusion layer (
3-15) and the N-type layers (3-13) and (3-14), light is emitted from the P-N junction, and part of the light output is absorbed by the first electrode (3-16) formed. The surface of the second composition layer (3-14) that is not coated is outputted to the outside.

また、前述の光出力の他の一部は、PDを構成するP−
i−N接合部より検出され、LEDのモニタを行ってい
る。尚、第2の組成層(3−14)は、LEDの拡散層
(3−15)形成部以外に於いて、LEDとPDの夫々
を構成する一半導体層として共用されている。
In addition, the other part of the above-mentioned optical output is
It is detected from the i-N junction and the LED is monitored. Note that the second composition layer (3-14) is commonly used as one semiconductor layer constituting each of the LED and PD in areas other than the portion where the LED diffusion layer (3-15) is formed.

以上、上述の第2の実施例により、PDの光検出電流径
路(3−22)はLEDの駆動電流径路(3−23)、
と並列となシ互いに独立となる。
As described above, according to the second embodiment described above, the photodetection current path (3-22) of the PD is the drive current path (3-23) of the LED,
are parallel and independent of each other.

さらには、LEDとこのLEDのモニタ用のPDとを従
来に比し2倍以上の集積度でモノリフツクに製作でき、
従ってLEDの駆動回路及びP 1)の光検出回路等の
電気回路素子も複合化することができる。
Furthermore, the LED and the PD for monitoring the LED can be manufactured in a monolift with more than twice the integration density compared to conventional methods.
Therefore, electric circuit elements such as the LED drive circuit and the photodetection circuit of P1) can also be combined.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はLEDとPDを七ノリシックに構成した従来例
の一部を断面で示す斜視図、第2図はこの発明の第一の
実施例の一部を断面で示す斜視図、第3図はこの発明の
第2の実施例の一部を断面で示す斜視図である。 1−40・・・光ファイバ、 2−10 、2−11乃至2−17 、3−13乃至3
−17・・・L E D、2−15及び2−21乃至2
−24.:3−14及び3−18乃至3−21・・・P
D、3−11・・基板、3−12・第1の組成層、2−
30.3−23・・・LEDの駆動電流径路、2−40
 、3−22・・・PDの光検出電流径路。 代理人 弁理士  則 近 憲 佑 (ほか1名) 第1図 第2図 第8図 手続補正書(自発) 1.事件の表示 昭和58年特願第73802号 2、発明の名称 複合光半導体素子 3、補正をする者 事件との関係 特許出願人 (307’)東京芝浦電気株式会社 4、代理人 〒100 東京都千代田区内幸町1−1−6 明細書の発明の詳細な説明の欄 図   面 6、補正の内容 (1)明細書第7頁第9行目の「複合光半導体素子(2
)明細書第9頁第13行目の「05μm」を「1μm」
と補正する。 (3)明細書第11頁第10行目乃至第11行目の1−
LED(2−10)の一方の電極(2−17)Jを[P
D(2−加)の光検出部(2−26)Jと補正する。 (4)明細書第11頁第14行目の「内側」を「外側」
と補正する。 (5)図面の内、第2図を別紙のとおり補正する。 以  上
Fig. 1 is a perspective view showing a part of a conventional example in which LEDs and PDs are configured seven-dimensionally, in cross section, Fig. 2 is a perspective view showing a part of a first embodiment of the present invention in cross section, and Fig. 3 FIG. 2 is a perspective view showing a part of a second embodiment of the invention in cross section. 1-40... Optical fiber, 2-10, 2-11 to 2-17, 3-13 to 3
-17... L E D, 2-15 and 2-21 to 2
-24. :3-14 and 3-18 to 3-21...P
D, 3-11..Substrate, 3-12.First composition layer, 2-
30.3-23...LED drive current path, 2-40
, 3-22...PD photodetection current path. Agent Patent attorney Kensuke Chika (and 1 other person) Figure 1 Figure 2 Figure 8 Procedural amendment (voluntary) 1. Case description Patent Application No. 73802 of 1982 2 Name of the invention Composite optical semiconductor device 3 Person making the amendment Relationship to the case Patent applicant (307') Tokyo Shibaura Electric Co., Ltd. 4 Agent address 100 Tokyo 1-1-6 Uchisaiwai-cho, Chiyoda-ku Detailed explanation of the invention in the specification Drawing 6 Contents of amendment (1) “Composite optical semiconductor device (2)” on page 7, line 9 of the specification
) Change "05μm" on page 9, line 13 of the specification to "1μm"
and correct it. (3) 1- from page 11, line 10 to line 11 of the specification
One electrode (2-17) J of the LED (2-10) is connected to [P
Correct with the photodetector (2-26)J of D (2-addition). (4) “Inside” on page 11, line 14 of the specification is “outside”
and correct it. (5)Amend Figure 2 of the drawings as shown in the attached sheet. that's all

Claims (6)

【特許請求の範囲】[Claims] (1)半導体発光素子とこの半導体発光素子からの光出
力の一部を検出する半導体光検出素子とがモノリシック
に構成された複合光半導体素子に於いて、前記半導体発
光素子の一半導体層と前記半導体光検出素子の一半導体
層とが共通層からなり、前記半導体発光素子の電極と前
記半導体光検出素子の電極とが独立に設けられかつ前記
半導体発光素子の駆動電流と前記半導体光検出素子の光
検出電流が流れる前記共通層内で、前記駆動電流径路と
前記光検出電流径路が互いに独立であることを特徴とす
る複合光半導体素子。
(1) In a composite optical semiconductor device in which a semiconductor light emitting device and a semiconductor photodetecting device that detects a part of light output from the semiconductor light emitting device are monolithically configured, one semiconductor layer of the semiconductor light emitting device and One semiconductor layer of the semiconductor light detecting element is a common layer, and the electrode of the semiconductor light detecting element and the electrode of the semiconductor light detecting element are provided independently, and the driving current of the semiconductor light detecting element and the electrode of the semiconductor light detecting element are independent of each other. A composite optical semiconductor device characterized in that the drive current path and the photodetection current path are independent from each other within the common layer through which the photodetection current flows.
(2)半導体光検出素子の光検出電流径路は、半導体発
光素子の駆動電流径路の外側にあることを特徴とする特
許請求の範囲第1項記載の複合光半導体素子。
(2) The composite optical semiconductor device according to claim 1, wherein the photodetection current path of the semiconductor photodetection device is located outside the drive current path of the semiconductor light emitting device.
(3)半導体光検出素子の光検出電流径路は、半導体発
光素子の駆動電流径路の内側にあることを特徴とする特
許請求の範囲第1項記載の複合光半導体素子。
(3) The composite optical semiconductor device according to claim 1, wherein the photodetection current path of the semiconductor photodetector is located inside the drive current path of the semiconductor light emitting device.
(4)半導体光検出素子の光検出電流径路は、半導体発
光素子の駆動電流径路と並列しであることを特徴とする
特許請求の範囲第1項記載の複合光半導体素子。
(4) The composite optical semiconductor device according to claim 1, wherein the photodetection current path of the semiconductor photodetection device is parallel to the drive current path of the semiconductor light emitting device.
(5)半導体発光素子及び半導体光検出素子の電極は全
てモノリシックに構成されたー主面に形成されているこ
とを特徴とする特許請求の範囲第1項記載の複合光半導
体素子。
(5) The composite optical semiconductor device according to claim 1, wherein the electrodes of the semiconductor light emitting device and the semiconductor photodetecting device are all monolithically formed on the main surface.
(6)半導体光検出素子は、環状に形成されていること
を特徴とする特許請求の範囲第1項記載の複合光半導体
素子。 (力学導体光検出素子は、方形状に形成されていること
を特徴とする特許請求の範囲第1項記載の複合光半導体
素子。
(6) The composite optical semiconductor device according to claim 1, wherein the semiconductor photodetecting device is formed in an annular shape. (The composite optical semiconductor device according to claim 1, wherein the dynamic conductor photodetecting device is formed in a rectangular shape.
JP58073802A 1983-01-14 1983-04-28 Composite photosemiconductor element Pending JPS59200475A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58073802A JPS59200475A (en) 1983-04-28 1983-04-28 Composite photosemiconductor element
EP84100337A EP0116304B1 (en) 1983-01-14 1984-01-13 Composite optical semiconductor device
DE8484100337T DE3484443D1 (en) 1983-01-14 1984-01-13 COMPOSED OPTICAL SEMICONDUCTOR ARRANGEMENT.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58073802A JPS59200475A (en) 1983-04-28 1983-04-28 Composite photosemiconductor element

Publications (1)

Publication Number Publication Date
JPS59200475A true JPS59200475A (en) 1984-11-13

Family

ID=13528662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58073802A Pending JPS59200475A (en) 1983-01-14 1983-04-28 Composite photosemiconductor element

Country Status (1)

Country Link
JP (1) JPS59200475A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263086A (en) * 1975-11-18 1977-05-25 Matsushita Electric Ind Co Ltd Semiconductor coupling device
JPS5414691A (en) * 1977-07-06 1979-02-03 Fujitsu Ltd Liminous semiconductor device
JPS55145387A (en) * 1979-04-30 1980-11-12 Xerox Corp Hybrid semiconductor laser*detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263086A (en) * 1975-11-18 1977-05-25 Matsushita Electric Ind Co Ltd Semiconductor coupling device
JPS5414691A (en) * 1977-07-06 1979-02-03 Fujitsu Ltd Liminous semiconductor device
JPS55145387A (en) * 1979-04-30 1980-11-12 Xerox Corp Hybrid semiconductor laser*detector

Similar Documents

Publication Publication Date Title
JP2817703B2 (en) Optical semiconductor device
CN105655417B (en) Optical waveguide detector and optical module
JPS59129467A (en) Composite optical semiconductor device
JP7200721B2 (en) Surface emitting laser module, light source device, detection device
CN102651420A (en) Double-junction GaAs lamination laser photovoltaic cell and fabrication method thereof
TW384550B (en) Monolithic linear optocoupler
CN112817103B (en) High-density multichannel optical fiber communication system
JPS62188385A (en) Semiconductor light-emitting element
JPS59200475A (en) Composite photosemiconductor element
US4301463A (en) Demultiplexing photodetector
CN110061076B (en) Back incidence type coplanar electrode multi-unit chip and preparation method thereof
US11887999B2 (en) Photodetector
CN107895749A (en) Polysilicon LED/ monocrystalline silicon PD longitudinal directions optical interconnection system based on standard CMOS process
TW201439626A (en) Diode module and method for manufacturing same, and optically connecting device
CN104103725B (en) Diode modules and its production method and optical interconnection device
CN118249193B (en) Wafer-level silicon-based III-V group heterogeneous integrated device and preparation method thereof
JPH0155586B2 (en)
CN109659379B (en) Normal incidence type multi-unit photoelectric chip and preparation method thereof
CN120127495A (en) Semiconductor laser structure of waveguide coupling integrated photodiode
JP2850766B2 (en) Semiconductor device
CN108346711B (en) Improved Fabrication Method of Vertical Structure Photodetector
JPS62281381A (en) Photo-semiconductor element
JPS6114750A (en) Photosemiconductor composite element
CN103401614A (en) Optical transmission assembly for plastic optical fiber communication and preparation method thereof
US20080042080A1 (en) Multi-channel photocoupling device and producing method thereof