[go: up one dir, main page]

JPS59198419A - Production of fiber-shaped directional coupler - Google Patents

Production of fiber-shaped directional coupler

Info

Publication number
JPS59198419A
JPS59198419A JP7215483A JP7215483A JPS59198419A JP S59198419 A JPS59198419 A JP S59198419A JP 7215483 A JP7215483 A JP 7215483A JP 7215483 A JP7215483 A JP 7215483A JP S59198419 A JPS59198419 A JP S59198419A
Authority
JP
Japan
Prior art keywords
fiber
core
optical fiber
cores
directional coupler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7215483A
Other languages
Japanese (ja)
Inventor
Masao Kawachi
河内 正夫
Takao Edahiro
枝広 隆夫
Juichi Noda
野田 壽一
Yutaka Sasaki
豊 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7215483A priority Critical patent/JPS59198419A/en
Publication of JPS59198419A publication Critical patent/JPS59198419A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2835Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To facilitate producing a fiber-shaped directional coupler and make it possible to monitor the coupling state to prevent the loss accompanied with parallel melt-fixing of fibers by heating and stretching only a required part of an optical fiber incorporating two cores preliminarily to perform optical coupling. CONSTITUTION:An optical fiber which has 250mum outside diameter and has cores 21a and 21b which are 140mum apart from each other and have 8mum diameter is used as an optical fiber 21. A single mode optical fiber 23a of a passage having 125mum outside diameter and 8mum core diameter is connected to one end of the fiber 21 having about 10cm length, and a 1.15mum HeNe laser light is led to the core 21a through the fiber 23. The fiber 21 is set to a stretching device, and a part of the fiber 21 is heated locally with oxygen propane flame while observing a near field pattern of the exit end of the fiber 21 with an infrared-ray television to obtain a desired coupling ratio. The smallest diameter in the stretched part is about 10mum, and the length of the stretched part is about 5-10mm. including a tapered part.

Description

【発明の詳細な説明】 本発明は光通信や光フアイバセンサの分野で用いるファ
イバ形方向性結合器の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a fiber type directional coupler used in the fields of optical communications and optical fiber sensors.

従来、光ファイバを利用した方向性結合器としては、第
1図に示すような構造のものが知られている。第1図(
a)は2本の光ファイバ1,2の一部を加熱延伸した構
造であり、延伸部8で、コア1a。
Conventionally, as a directional coupler using an optical fiber, one having a structure as shown in FIG. 1 is known. Figure 1 (
A) is a structure in which parts of two optical fibers 1 and 2 are heated and stretched, and a core 1a is formed in a stretched portion 8.

2aは互いに光学的に結合し、ファイバ形方向性結合器
を構成するものである。この方向性結合器は、なるほど
簡便な構造を有しているが、2本の光ファイバ1,2を
融着し一体化するには高度の熟練を必要とし、結合比等
の再現性が劣るという欠点があった。
2a are optically coupled to each other to constitute a fiber type directional coupler. Although this directional coupler has a simple structure, it requires a high degree of skill to fuse and integrate the two optical fibers 1 and 2, and the reproducibility of the coupling ratio etc. is poor. There was a drawback.

第1図(b)は別の従来法を示し、あらかじめ隣接した
二つのコア4a、 4bを有する光ファイバ4を用意し
、その両端に光77 イ/< 5a、 5b、 6a、
 6bを接続して方向性結合器とするものである。
FIG. 1(b) shows another conventional method, in which an optical fiber 4 having two adjacent cores 4a, 4b is prepared in advance, and light 77 i/< 5a, 5b, 6a,
6b is connected to form a directional coupler.

コア4a、 4bの間隔は5μm程度であり、光ファイ
バ4の長さく通常は数cm長)を変えることにより、希
望の結合比を実現することができる。しかしこの方向性
結合器では、コア4a、 4bの間隔が5μm程度と小
さいので、両端に接続する光ファイバとしては、第1図
(b)に示したように著しく偏心・したコアを有する特
i、q光ファイバ5a、 5b、 aa。
The distance between the cores 4a and 4b is approximately 5 μm, and a desired coupling ratio can be achieved by changing the length of the optical fiber 4 (usually several cm). However, in this directional coupler, the spacing between the cores 4a and 4b is as small as about 5 μm, so the optical fiber connected at both ends must be a special fiber with a significantly eccentric core as shown in Figure 1(b). , q optical fibers 5a, 5b, aa.

6bが必要であり、通常の光ファイバとの接続が困難と
なる大きな欠点があった(第1図中)の育成例:宮永、
松本、昭和57年度電子通信学会光・電波部門全国大会
講演予稿集、分冊2 、 s12「単一モード光ファイ
バ方向性結合器の基礎検討」参照)。
6b was required, which had a major drawback that it was difficult to connect with ordinary optical fiber (see Figure 1): Miyanaga,
Matsumoto, Proceedings of the 1985 National Conference of the Optical and Radio Division of the Institute of Electronics and Communication Engineers, Volume 2, s12 (Refer to ``Basic Study of Single Mode Optical Fiber Directional Coupler'').

本発明は従来法の前記の欠点を除去するため、あらかじ
め二つのコアが接続すべきmhの−yフィバの外径以上
に離れた光ファイバを作製し、この光ファイバの一部を
加熱延伸し光結合を得るとともに、両端には通常のファ
イバの接続を可能にしようとするものである。以下図面
により本発明の詳細な説明する。
In order to eliminate the above-mentioned drawbacks of the conventional method, the present invention prepares in advance an optical fiber in which two cores are separated by a distance greater than the outer diameter of the mh -y fiber to be connected, and heat-draws a part of this optical fiber. The aim is to obtain optical coupling and to enable the connection of ordinary fibers at both ends. The present invention will be explained in detail below with reference to the drawings.

第2図(a)は、本発明の一実施例を示し、光ファイバ
22は二つのコア21a、 21bを有し、その一部2
2は延伸されている。光ファイバ22の両端には中心部
の一つのコアを有する通常の円形ファイ/< 28a、
 28b、 24a、 24bが接続されテイル。コア
 21a、 21b間の距離は、ファイ/< 28a、
 28b、 24a+・24bの外径以上であり、光フ
ァイバ21の端面でファイバ28a、 24aのコア部
はコア21aと整合するように、ファイバ28b+ 2
4bのコア部はコア21bと整合するように接続されて
いる。例えばファイバ23aより入射した光はコア21
aへと伝播し、延伸部22で、コア21bへと一部結合
し、最終的にファイバ24a、 24bへと出射する。
FIG. 2(a) shows an embodiment of the present invention, in which an optical fiber 22 has two cores 21a and 21b, and a part 2
2 is stretched. Both ends of the optical fiber 22 are ordinary circular fibers with one core in the center/<28a,
28b, 24a, and 24b are connected to form the tail. The distance between the cores 21a and 21b is phi/<28a,
The outer diameter of the fiber 28b+2 is greater than or equal to the outer diameter of the fibers 28b and 24a+24b, and the core portions of the fibers 28a and 24a are aligned with the core 21a at the end face of the optical fiber 21.
The core portion of 4b is connected in alignment with the core 21b. For example, the light incident from the fiber 23a is transmitted to the core 21
a, is partially coupled to the core 21b at the extending portion 22, and is finally emitted to the fibers 24a, 24b.

具体例を次に述べる。光ファイバ21としては外径25
0μ埠、コア21a、 21b間の距離(コア中心間の
距離) 140μm、 :7ア21a、 21bの直径
sμm。
A specific example will be described below. The optical fiber 21 has an outer diameter of 25
0μm, distance between cores 21a, 21b (distance between core centers): 140μm, diameter of 7A 21a, 21b sμm.

コア・クラッド間比屈折率差0.25%の石英系光ファ
イバ21を用いた。約IQcm長の光ファイバ21の一
端に、外径125μm1コア径8μm1コア・クラッド
間比屈折率差0・25%の通常の単一モード光ファイバ
28aを接続し、1 、15/jm HeNe レーザ
光を、光ファイバ28aを介してコア21aに導入した
。ファイバ21をファイバ延伸装置にセットし、ファイ
バ21の出射端のニア−フィールドパターンを赤外線テ
レビで観察しつつ、ファイバ21の一部を酸素プロパン
炎を用いたミニトーチで局所的に加熱し、徐々に延伸し
て所望の結合比を得たところで、延伸を止めた。延伸部
の直径は最も細い部分で10μm程度、延伸部の長さは
、テーバ状部を含めて5〜10園長程度であった。
A silica-based optical fiber 21 with a core-cladding relative refractive index difference of 0.25% was used. A normal single mode optical fiber 28a with an outer diameter of 125 μm, a core diameter of 8 μm, and a relative refractive index difference between the core and cladding of 0.25% is connected to one end of the optical fiber 21 having a length of approximately IQ cm, and a 1.15/jm HeNe laser beam is connected to the optical fiber 21. was introduced into the core 21a via the optical fiber 28a. The fiber 21 is set in a fiber drawing device, and while observing the near-field pattern at the output end of the fiber 21 with an infrared television, a part of the fiber 21 is locally heated with a mini-torch using an oxygen-propane flame, and gradually drawn. Once the desired bond ratio was obtained by stretching, the stretching was stopped. The diameter of the stretched part was about 10 μm at the narrowest part, and the length of the stretched part, including the tapered part, was about 5 to 10 lengths.

前記実施例において、ファイバ21は、第8図(a)に
示したように、円柱状石英ガラスに穴あけ加工したクラ
ッド母体81に、コアとなるべき部分を含んだコア母体
(コアガラス体) 82a、 32bを入れ、加熱一体
化して、線引の手法で作製したものである。またファイ
バ21とファイバ28aとの接続は、顕微鏡下の微動台
を操作して達成することができ、接続剤としてレンズボ
ンドを用いることができるが、より確実には、ファイバ
21のコア121aとファイバ28aとの位置合わせ後
、C02レーザやミニトーチもしくはアーク放電で融着
する方法が優れており、0゜2dB以下の接続損での接
続が可能である。これは本発明の方法では、第1図(′
b)の従来法と異なる光ファイバ28aとして通常の光
ファイバを用いることが可能だからである。
In the above embodiment, as shown in FIG. 8(a), the fiber 21 is made of a core matrix (core glass body) 82a that includes a portion to become a core in a clad matrix 81 made by drilling a hole in cylindrical quartz glass. , 32b, heated and integrated, and produced using a wire drawing method. Further, the connection between the fiber 21 and the fiber 28a can be achieved by operating a fine movement stage under a microscope, and lens bond can be used as a connecting agent, but it is more reliable to connect the core 121a of the fiber 21 and the fiber 28a. After alignment with 28a, a method of fusing using a C02 laser, mini-torch, or arc discharge is excellent, and connection can be made with a connection loss of 0°2 dB or less. In the method of the present invention, this is shown in Figure 1 ('
This is because a normal optical fiber can be used as the optical fiber 28a, which is different from the conventional method in b).

延伸工程終了後Oこは、ファイバ21の延伸部22・を
残して数cm長に切断した後、あらためて、4本の元フ
ァイバ28a、 z8b、 24a、 24bを接続し
、ハラケージ化してもよく、また必要であれば、レーザ
光源や、光検出器とレンズ系を介して結合させて用いる
こともできる。
After the drawing process is completed, the fiber 21 may be cut into a length of several centimeters, leaving the stretched portion 22, and then the four original fibers 28a, z8b, 24a, 24b may be connected again to form a cage. Further, if necessary, it can be used in combination with a laser light source or a photodetector via a lens system.

本発明の方法により作製した方向性結合器では、結合部
すなわち延伸部22では過剰損失はほとんどない。これ
は二つの別個の光ファイバを融着し一体化延伸する第1
図(a)の従来法では、0.5dB程度の過剰損失を伴
うのに比べて利点である。この理由は本発明では、二つ
のコア21a、 21bが1本の光ファイバ21に平行
度良くあらかじめ内蔵されており、ファイバの平行融着
の不完全性に伴う損失が生じないからである。
In the directional coupler manufactured by the method of the present invention, there is almost no excess loss at the joint portion, that is, the extension portion 22. This is the first step in which two separate optical fibers are fused and drawn together.
This is an advantage compared to the conventional method shown in Figure (a), which involves an excess loss of about 0.5 dB. The reason for this is that in the present invention, the two cores 21a and 21b are built into one optical fiber 21 in advance with good parallelism, and no loss occurs due to incomplete parallel fusion of the fibers.

第2図(blは本発明の他あ実施例であり、偏波保持性
方向性結合器の構造例を示す。光ファイバ25は二つの
コア25a、 25bのほかに、コア領域に応力複屈折
性を付与するための応力付与部26a、 26b。
FIG. 2 (bl is another embodiment of the present invention and shows an example of the structure of a polarization-maintaining directional coupler. The optical fiber 25 has two cores 25a and 25b as well as stress birefringence in the core region. Stress applying portions 26a and 26b for imparting stress.

260を有している。応力付与部26a、 26b、 
260は、コア25a、 251)に対しての対称性を
考慮して配置さ・れており、結果としてコア25a、 
25bは直線偏波保゛持性を有する。
It has 260. Stress applying parts 26a, 26b,
260 is arranged in consideration of symmetry with respect to the cores 25a, 251), and as a result, the cores 25a, 251)
25b has linear polarization maintaining property.

ファイバ25の両端には、やはり応力付与部を有スル偏
波保持性7フイ628a、 28b、 29a、 29
bが接続されており、コア25a、 25b間の距離は
ファイバ28’a、 28b、 29a、 29bの外
径以上の大きさである。
Polarization maintaining 7 fins 628a, 28b, 29a, 29 also have stress applying parts at both ends of the fiber 25.
b are connected, and the distance between the cores 25a, 25b is greater than the outer diameter of the fibers 28'a, 28b, 29a, 29b.

加熱延伸の工程は第2図(a)の場合と同機であるが、
偏波保持のためC7アイハ28 al 28b p 2
9 a + 29 bとの接続に際しては、ファイバの
主軸合わせの操作が必要であり、この操作は顕微鏡下で
行うことができる。
The heating and stretching process is the same as that shown in Fig. 2(a), but
C7 Aiha 28 al 28b p 2 for polarization maintenance
When connecting to 9a + 29b, it is necessary to align the main axis of the fiber, and this operation can be performed under a microscope.

ファイバ25は、第8図(′b)に示すように、穴あけ
加工したクラッド体83にコア部を含んだガラス体34
a、 34b %応力付与ガラス体85a、 35b、
 850を入れ、一体線引きするこ−とQこより作製す
ることができる。
As shown in FIG. 8('b), the fiber 25 is made of a glass body 34 that includes a core portion in a cladding body 83 with holes.
a, 34b % stressed glass body 85a, 35b,
It can be made by inserting 850 and drawing the wire integrally.

本発明のファイバ形方向性結合器の製造方法は、第4図
に示すように2連構造への拡張も容易である。第4 I
I (a)において二つのコアを有する光ファイバ41
41は、2m所45.46で延伸されており、延゛伸部
45.416の中間部は片側がコア部までエツチングさ
れ、光吸収体48がコートされている。この2連構造の
等価回路は、第4図(k))に示したが、コア部41に
半導体レーザを、コア部42に光検出器を接続し、また
コア部4.la、 41bの端に光フアイバコイルを接
続して、光ジヤイロスコープを構成することが可能で、
この種の方向性結合器は光フアイバセンサの分野に広い
応用を期待できる。
The method for manufacturing a fiber-type directional coupler of the present invention can be easily extended to a double-connected structure as shown in FIG. 4th I
Optical fiber 41 with two cores in I (a)
41 is stretched at 45.46 at a distance of 2 m, and the intermediate portion of the stretched portion 45.416 is etched on one side to the core portion and coated with a light absorber 48. The equivalent circuit of this double structure is shown in FIG. 4(k), in which a semiconductor laser is connected to the core part 41, a photodetector is connected to the core part 42, and the core part 4. It is possible to configure an optical gyroscope by connecting an optical fiber coil to the ends of la and 41b.
This type of directional coupler can be expected to find wide application in the field of optical fiber sensors.

本発明の実施例においてコアが二つの場合について述べ
たが、コアを三つもしくはそれ以上の複数コアを有する
場合でも、容易に拡張することができる。コア間の距離
が互いに該複数のコアを有するファイバの両端に接続さ
れるファイバの外径以上の大きさをもつようQこ設計、
作製すれば、本発明の主旨をそこなうことなく、方向性
結合器を実現することができる。
Although the embodiment of the present invention has been described with reference to the case where there are two cores, it is possible to easily expand the case where the number of cores is three or more. Q-designed so that the distance between the cores is greater than the outer diameter of the fiber connected to both ends of the fiber having the plurality of cores,
If manufactured, a directional coupler can be realized without deviating from the spirit of the present invention.

以上説明したように、本発明の方向性結合器の製造方法
によれば、あらかじめ二つのコアを内蔵した光ファイバ
の必要部分のみを加熱延伸し、光結合させるので、作製
が容易で光の結合状態をモ;りしながら作製でき、光フ
ァイバの平行融着に伴う損失を防止することができる。
As explained above, according to the method for manufacturing a directional coupler of the present invention, only the necessary portions of an optical fiber that has two cores built in are heated and stretched to perform optical coupling, so manufacturing is easy and optical coupling is possible. It can be manufactured while maintaining its condition, and losses associated with parallel fusion of optical fibers can be prevented.

また前記光フアイバ端面のコア間の距離は、通常の光フ
ァイバを接続できるよう十分に離れているので、特殊な
偏心ファイバを用いる必要がなく、接続に伴う損失も0
.2dB以下に押えることができ、また、レーザや光検
出器との接続も容易に行うことができる。また非延伸部
での光結合は全くないので、2連構造のカップラーもコ
ンiぐクトな形に実現することができ、光通信や、元フ
ァイバセンサの分野に応用してきわめて有効である。
In addition, the distance between the cores of the optical fiber end faces is sufficient to allow connection of ordinary optical fibers, so there is no need to use special eccentric fibers, and there is no loss associated with connection.
.. It can be suppressed to 2 dB or less, and can be easily connected to a laser or a photodetector. In addition, since there is no optical coupling in the non-stretched portion, a coupler with a double structure can be realized in a contiguous form, which is extremely effective when applied to the fields of optical communication and original fiber sensors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1 [1U(a) 、 (b)は従来法の方向性結合
器の構造例図、第2図(al 、 (t))は本発明の
方法により作製した方向性結合器の構造例図、第3図t
a) 、 (b)はそれぞれ第2 m (a) 、 (
b)で用いる二つコアの光ファイ/(用線引母材の購成
法を示す図、第4図(a)は本発明2連購造への応用例
図、第4図(b)は第4図(a)の等価回路図である。 1.2・・・光ファイバ、la、 2a・・・コア、3
・・・延伸部、4・・・隣接したコア4a、4bを有す
る光7アイハ、5a、 5b、 6a、 6b−・・偏
心:177フイバ、21・・・ニー)(7) ニア 7
21a、 21bを有する光ファイバ、22・・・延伸
部、28a、 28b、 24a、 24b−”IQ 
77 イハ、25 ””:Jl ツ(D コア 25a
、 25b (!: 応力’(”f 与fld 26a
、 26b。 260を有する偏波保持性元ファイバ、27・・・延伸
部、28a、 28b、 29a、 29b ・、、偏
波保持性7フイバ、31−・・り5 ツ)’母相、82
a、 32b・・・コア部を含むガラス体、83・・・
クラッド母体、84a、 84+b・・・コア部を含む
ガラス体、85a、 a5b、、 a5c −・・応力
付与jf 57.体、41゜41a、 42.42b・
・・コア部、48・・・光吸収体、44・・・二つのコ
アを有する光ファイバ、415.46・・・延伸部。 特許出願人 日本電信屯話公社 (a) 図
1 [1U (a), (b) are structural example diagrams of a directional coupler manufactured by the conventional method, and Figures 2 (al, (t)) are structural example diagrams of a directional coupler manufactured by the method of the present invention. , Figure 3 t
a) and (b) are the second m (a) and (
Fig. 4(a) is an example of the application of the present invention to double purchasing; Fig. 4(b) is an equivalent circuit diagram of Fig. 4(a). 1.2... Optical fiber, la, 2a... Core, 3
...Extension part, 4...Light 7 with adjacent cores 4a, 4b, 5a, 5b, 6a, 6b-...Eccentricity: 177 fibers, 21...knee) (7) Near 7
Optical fiber having 21a, 21b, 22... extension part, 28a, 28b, 24a, 24b-"IQ
77 Iha, 25 ””: Jl tsu (D core 25a
, 25b (!: Stress'("f given fld 26a
, 26b. polarization-maintaining original fiber having 260, 27...extended portion, 28a, 28b, 29a, 29b..., polarization-maintaining 7 fiber, 31-...5)' matrix, 82
a, 32b... Glass body including core portion, 83...
Clad matrix, 84a, 84+b...Glass body including core portion, 85a, a5b,, a5c -...Stress imparting jf 57. Body, 41°41a, 42.42b・
... Core part, 48... Light absorber, 44... Optical fiber having two cores, 415.46... Extension part. Patent applicant: Nippon Telegraph Tunchu Corporation (a) Figure

Claims (1)

【特許請求の範囲】 L 複数のコアが光結合を起こす間隔以下に近接して平
行する光結合部を有するファイ/〈形刃向性結合器の製
造方法において、コア中心間の距離が単心の光ファイバ
の外径以上である多コアファイバをあらかじめ作製し、
該多コアファイバの所望の部分を加熱延伸して、光結合
部を作製することを特徴とするファイバ形方向性結合器
の製造方法。 以 多コアファイバとしてコア部Gこ応力複屈折性を与
える応力付与部を有する多コアファイバを用いることを
特徴とする特許請求の範囲第1項記載のファイバ形方向
性結合器の製造方法。
[Claims] L A method for manufacturing a fiber/shape-edge directional coupler having optical coupling portions in which a plurality of cores are adjacent to each other and parallel to each other less than the distance at which optical coupling occurs, wherein the distance between core centers is a single core. A multi-core fiber with an outer diameter greater than or equal to that of an optical fiber is prepared in advance,
A method for manufacturing a fiber-type directional coupler, characterized in that a desired portion of the multi-core fiber is heated and stretched to produce an optical coupling portion. The method for manufacturing a fiber-type directional coupler according to claim 1, characterized in that a multi-core fiber having a stress-applying portion that imparts stress birefringence to the core portion G is used as the multi-core fiber.
JP7215483A 1983-04-26 1983-04-26 Production of fiber-shaped directional coupler Pending JPS59198419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7215483A JPS59198419A (en) 1983-04-26 1983-04-26 Production of fiber-shaped directional coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7215483A JPS59198419A (en) 1983-04-26 1983-04-26 Production of fiber-shaped directional coupler

Publications (1)

Publication Number Publication Date
JPS59198419A true JPS59198419A (en) 1984-11-10

Family

ID=13481052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7215483A Pending JPS59198419A (en) 1983-04-26 1983-04-26 Production of fiber-shaped directional coupler

Country Status (1)

Country Link
JP (1) JPS59198419A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219815A (en) * 1985-07-19 1987-01-28 Nippon Telegr & Teleph Corp <Ntt> Fiber type optical frequency demultiplexer and multiplexer
JPS6221042A (en) * 1985-07-19 1987-01-29 Nippon Telegr & Teleph Corp <Ntt> Dual core fiber sensor
JPS6239805A (en) * 1985-08-15 1987-02-20 コ−ニング グラス ワ−クス Low loss fiber optic coupler and manufacture thereof
JPS6240403A (en) * 1985-08-15 1987-02-21 コ−ニング グラス ワ−クス Method and apparatus for forming fiber optic coupler
JPS6295508A (en) * 1985-10-23 1987-05-02 Sumitomo Electric Ind Ltd Optical fiber type branching and merging device
WO1988009517A1 (en) * 1987-05-22 1988-12-01 Aster Corporation Electro-optical converter
JPS63316007A (en) * 1987-06-18 1988-12-23 Fujitsu Ltd Fused fiber type optical coupler
JPS6417505U (en) * 1988-07-14 1989-01-27
JPH0193707A (en) * 1987-10-06 1989-04-12 Fujitsu Ltd fiber optic coupler
JPH0216507A (en) * 1988-07-05 1990-01-19 Sumitomo Electric Ind Ltd Polarization maintaining optical fiber coupler and production thereof
JPH03505931A (en) * 1988-07-12 1991-12-19 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー light star coupler
CN103513337A (en) * 2012-06-28 2014-01-15 无锡万润光子技术有限公司 Dual-core optical fiber branching device and manufacturing method thereof
JP2019216162A (en) * 2018-06-12 2019-12-19 住友電気工業株式会社 Optical fiber amplifier

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219815A (en) * 1985-07-19 1987-01-28 Nippon Telegr & Teleph Corp <Ntt> Fiber type optical frequency demultiplexer and multiplexer
JPS6221042A (en) * 1985-07-19 1987-01-29 Nippon Telegr & Teleph Corp <Ntt> Dual core fiber sensor
JPS6239805A (en) * 1985-08-15 1987-02-20 コ−ニング グラス ワ−クス Low loss fiber optic coupler and manufacture thereof
JPS6240403A (en) * 1985-08-15 1987-02-21 コ−ニング グラス ワ−クス Method and apparatus for forming fiber optic coupler
JPS6295508A (en) * 1985-10-23 1987-05-02 Sumitomo Electric Ind Ltd Optical fiber type branching and merging device
US4844573A (en) * 1987-05-22 1989-07-04 Aster Corporation Electro-optical converter including ridgid support for optical fiber coupler, telephone set using the coupler and method of making same
WO1988009517A1 (en) * 1987-05-22 1988-12-01 Aster Corporation Electro-optical converter
US5067787A (en) * 1987-05-22 1991-11-26 Aster Corporation Electro-optical converter
JPS63316007A (en) * 1987-06-18 1988-12-23 Fujitsu Ltd Fused fiber type optical coupler
JPH0193707A (en) * 1987-10-06 1989-04-12 Fujitsu Ltd fiber optic coupler
JPH0216507A (en) * 1988-07-05 1990-01-19 Sumitomo Electric Ind Ltd Polarization maintaining optical fiber coupler and production thereof
JPH03505931A (en) * 1988-07-12 1991-12-19 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー light star coupler
JPS6417505U (en) * 1988-07-14 1989-01-27
CN103513337A (en) * 2012-06-28 2014-01-15 无锡万润光子技术有限公司 Dual-core optical fiber branching device and manufacturing method thereof
JP2019216162A (en) * 2018-06-12 2019-12-19 住友電気工業株式会社 Optical fiber amplifier

Similar Documents

Publication Publication Date Title
US4763976A (en) Connector employing mode field modification
KR20040015262A (en) Tapered lensed fiber for focusing and condenser applications
JP2008277582A (en) Multicore fiber for optical pumping device, manufacturing method therefor, optical pumping device, fiber laser, and fiber amplifier
JPS59198419A (en) Production of fiber-shaped directional coupler
JP4116479B2 (en) Tapered photonic crystal fiber, manufacturing method thereof, and connection method of photonic crystal fiber
JP2019095783A (en) Optical fiber core diameter converter and different optical fibers connector
US6701046B1 (en) Method for producing an optical coupler for extracting a signal from a polarization maintaining optical fiber, and corresponding coupler
JPS6083906A (en) Fiber type optical coupling element and its production
JPS60154215A (en) Fiber type directional coupler
JP3665738B2 (en) Laser diode module
JP3009746B2 (en) Optical fiber coupler and manufacturing method thereof
JP2980248B2 (en) Optical fiber coupler
JP7400152B2 (en) Optical fiber connection body and connection structure between the optical fiber connection body and optical device
JPH0882718A (en) Method for making core of elliptic core optical fiber completely round and production of optical fiber by using this method
JPS62249114A (en) Constant polarization fiber coupler and its manufacturing method
JPS60242406A (en) Single polarization optical fiber
JPH02201404A (en) Constant polarization optical fiber coupler and constant polarization optical fiber
JPH01154009A (en) Manufacturing method of fiber fusion type optical coupler
JPH02271306A (en) Production of optical fiber coupler
JPS6235307A (en) Optical coupler
JPH03287113A (en) Optical isolator
JPH06242336A (en) Optical fiber
AU7782200A (en) Method for producing an optical coupler for extracting a signal from a polarization maintaining optical fibre, and corresponding coupler
JPH0353205A (en) Optical fiber connecting part
JP2002023001A (en) Polarization-maintaining optical fiber coupler and method of manufacturing the same