JPS59195153A - Production of porous carrier - Google Patents
Production of porous carrierInfo
- Publication number
- JPS59195153A JPS59195153A JP58070602A JP7060283A JPS59195153A JP S59195153 A JPS59195153 A JP S59195153A JP 58070602 A JP58070602 A JP 58070602A JP 7060283 A JP7060283 A JP 7060283A JP S59195153 A JPS59195153 A JP S59195153A
- Authority
- JP
- Japan
- Prior art keywords
- carrier
- water
- porous
- silane
- porous carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J20/286—Phases chemically bonded to a substrate, e.g. to silica or to polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3042—Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3204—Inorganic carriers, supports or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3244—Non-macromolecular compounds
- B01J20/3246—Non-macromolecular compounds having a well defined chemical structure
- B01J20/3257—Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3244—Non-macromolecular compounds
- B01J20/3246—Non-macromolecular compounds having a well defined chemical structure
- B01J20/3257—Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
- B01J20/3263—Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such comprising a cyclic structure containing at least one of the heteroatoms nitrogen, oxygen or sulfur, e.g. an heterocyclic or heteroaromatic structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/50—Aspects relating to the use of sorbent or filter aid materials
- B01J2220/54—Sorbents specially adapted for analytical or investigative chromatography
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicon Compounds (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
【発明の詳細な説明】
クロマトグラフィー用に適した多孔性担体の製造方法に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a porous carrier suitable for chromatography.
従来、蛋白質等の生化学関連物質のクロマトグラフィー
用担体としては、架橋デキストラン、ポリアクリルアミ
ドなどが知られている。Conventionally, crosslinked dextran, polyacrylamide, and the like have been known as carriers for chromatography of biochemical substances such as proteins.
これらの担体は水溶性物質に対する吸着性が少ないため
、クロマトグラフィー用光填剤として分析及び精製用と
して使用されている。Since these carriers have low adsorption to water-soluble substances, they are used as optical fillers for chromatography for analysis and purification.
しかし、これらのゲルは機械的強度が少さいため、低流
速でしか使用出来ない。また、pH1イオン強度、溶離
液組成の変化によって担体の膨潤度が変化し、カラム効
率を低下させることが知られており、カラム安定性の高
い分離担体が待望されていた。そこでメタクリレート系
ゲル、ポリビニルアルコール系ゲル、スチレンジビニル
ベンゼン系ゲル等の有機ポリマーゲルが開発利用されて
きているが、最も重要な吸着性(疎水性吸N)及び分離
の点で劣っている。又、前記のゲルと同様、機械的強度
、溶離液組成の変化等の面で改良はなされているが、ま
だ不充分であった。However, these gels have low mechanical strength and can only be used at low flow rates. Furthermore, it is known that changes in pH 1 ionic strength and eluent composition change the degree of swelling of the carrier, reducing column efficiency, and a separation carrier with high column stability has been desired. Therefore, organic polymer gels such as methacrylate gels, polyvinyl alcohol gels, and styrene divinylbenzene gels have been developed and used, but they are inferior in the most important aspects of adsorption (hydrophobic N absorption) and separation. Also, similar to the gel described above, improvements have been made in terms of mechanical strength, changes in eluent composition, etc., but these are still insufficient.
最近、シリコン系クロマトグラフ支柱をアルコールでエ
ステル化する工程を含み基質と定常相とを化学的に結合
させることが提案されている(特開昭4’7−7222
号)。しかしながら、得られるS i −0” −C結
合は加水分解を受は易く、溶質を吸着させるばかりでな
く、クロマトグラフィー用
ポキシ基を有するシランカップリング剤を5i−0−8
i結合で一次的に化学結合させ、さらにこのエポキシ基
と反応しうる化学物質で二次的に反応をさせることによ
り細孔を有する多孔性担体を被覆する方法が提案された
(特開昭5!−!り≠7号、特開昭13−6t7jt号
)。これは−次的化学結合反応で反応にあずからなかっ
た表面シラノール基を二次的反応によりすい、吸着性シ
ラノールを表面に露出させないものである。しかし、”
J、Amer、Chem、Soc、”72 77 A
−7r、zFc4)、、(’りzo )、1.5HAP
IROAND 1.M、KoLTHOFF らによ
って報告されているメチルレッド吸着法を参考に表面シ
ラノール基を測定したところ、23μmail/gとか
なりのシラノール基が表面に露出しており、蛋白質、酵
素等の試料を吸着し、回収率も低下する。又、二次的反
応により担体表面に形成される高分子層が、基質である
多孔性担体が本来持つ微細な細孔径を狭くしてしまう。Recently, it has been proposed to chemically bond a substrate and a stationary phase by esterifying a silicon-based chromatographic column with alcohol (Japanese Patent Laid-Open No. 4'7-7222
issue). However, the resulting S i -0''-C bond is easily hydrolyzed and not only adsorbs solute but also 5i-0-8
A method was proposed for coating a porous carrier with pores by first chemically bonding with an i-bond and then secondarily reacting with a chemical substance that can react with this epoxy group (Japanese Patent Application Laid-Open No. 1989-1993). !-!ri≠7, JP-A-13-6t7jt). This is to remove the surface silanol groups that did not participate in the reaction in the secondary chemical bonding reaction, and to prevent the adsorptive silanol from being exposed on the surface. but,"
J, Amer, Chem, Soc,”72 77 A
-7r, zFc4), ('rizo), 1.5HAP
IROAND 1. When surface silanol groups were measured with reference to the methyl red adsorption method reported by M. KoLTHOFF et al., a considerable amount of silanol groups (23 μmail/g) were exposed on the surface, and they adsorbed samples such as proteins and enzymes. The recovery rate also decreases. In addition, the polymer layer formed on the surface of the carrier due to the secondary reaction narrows the fine pore diameter originally possessed by the porous carrier that is the substrate.
さらに反応する化学物質が均一に反応しないため細孔径
の孔径分布が広がり、ゲルクロマト担体としての性能が
低下する。さらに、J、Chromatog+SCi
、ムFj/l、−320(/り77)等でグリセロール
プロピルシラン結合を持った多孔性ガラスの性能が報告
されており、従来の担体より吸着性、操作性回収率がか
なり改良されているが、多孔性ガラス表面のシラノール
基とシランカップリング剤との反応が不充分のため未反
応シラノール基が残存し、シラノール基による吸着等で
蛋白質、酵素等の回収率が低い。そこで本発明者達は多
孔性担体の細孔表面のシラノール基をほぼ完全に有機シ
ラン化合物と反応させ、被覆する方法について鋭意検討
した結果本発明に至ったものである。Furthermore, since the reacting chemical substances do not react uniformly, the pore size distribution widens, resulting in a decrease in performance as a gel chromatography carrier. Furthermore, J, Chromatog+SCi
The performance of porous glass with glycerolpropylsilane bonds has been reported, such as Fj/l, -320 (77/l), etc., and the adsorptivity, operability, and recovery rate are considerably improved compared to conventional carriers. However, since the reaction between the silanol groups on the surface of the porous glass and the silane coupling agent is insufficient, unreacted silanol groups remain, and the recovery rate of proteins, enzymes, etc. is low due to adsorption by the silanol groups. Therefore, the present inventors conducted intensive studies on a method of almost completely reacting the silanol groups on the surface of the pores of a porous carrier with an organic silane compound to coat the carrier, and as a result, the present invention was achieved.
本発明の第1の目的は担体表面のシラ/−ル基をほぼ完
全に被覆し吸着性の低い多孔性担体を提供することにあ
る。The first object of the present invention is to provide a porous carrier that almost completely covers the silyl groups on the carrier surface and has low adsorption properties.
本発明の第コの目的は、多孔性担体が本来もつ微細な細
孔径を狭めないで優れた多孔性担体を提供することにあ
る。A third object of the present invention is to provide an excellent porous carrier without narrowing the fine pore diameter inherent in the porous carrier.
本発明の第3の目的は、機械的強度、再現性、カラム効
率(性能)、試料の回収率にすぐれたクロマトグラフィ
ー担体を提供することにある。A third object of the present invention is to provide a chromatography carrier with excellent mechanical strength, reproducibility, column efficiency (performance), and sample recovery rate.
すなわち、本発明の上記の目的は、シリカゲル、多孔性
ガラスの如き多孔性担体の細孔表面のシラノール基と、
有機シラン化合物を界面活性剤を用いて反応させること
によって達成される。That is, the above object of the present invention is to reduce the silanol groups on the pore surface of a porous carrier such as silica gel or porous glass,
This is achieved by reacting an organic silane compound with a surfactant.
本発明において最も重要な点は、多孔性担体表面のシラ
ノール基と有機シランとを化学結合させる際に、触媒と
して界面活性剤を反応系内に添加することである。界面
活性剤としては、カチオン系界面活性剤(例えば、ラウ
リルアミンアセテート、ラウリルトリメチルアンモニウ
ムクロライド、ステアリルトリメチルアンモニウムクロ
ライド、ジステアリルジメチルアンモニウムクロライド
、ポリオキシエチVンアルキルアミンなど)、アニオン
系界面活性剤(例えば、ラウリル硫酸ナトリウム、ラウ
リル硫酸トリエタノールアミン、ラウリル硫酸アンモニ
ウム、ポリオキシエチレンアルキルエーテル硫酸ナトリ
ウム、ポリオキシエチレンアルキルエーテル硫酸トリエ
タノールアミンなど)、ノニオン系界面活性剤(例えば
、ポリオキシエチレンラウリルエーテル、ポリオキシエ
チレンセチルエーテル、ポリオキシエチレンステアリル
エーテルンルビタンモノラウレートなど)が挙ケラれる
。本発明において、界面活性剤は多孔性担体表面のシラ
ノール基と有機シランとの化学結合反応を著しく促進さ
せ、かつ表面シラノール基をほぼ完全に被覆させる効果
がある。特に、アニオン系界面活性剤が最適である。シ
ラノール基と有機シランとの反応温度は20〜10O0
Cであるが、反応効率(速度)の面から反応温度はど5
〜タタ0Cが好ましい。The most important point in the present invention is to add a surfactant as a catalyst into the reaction system when chemically bonding the silanol groups on the surface of the porous carrier and the organic silane. Examples of the surfactant include cationic surfactants (e.g., laurylamine acetate, lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, distearyldimethylammonium chloride, polyoxyethyl alkylamine, etc.), anionic surfactants (e.g., Sodium lauryl sulfate, triethanolamine lauryl sulfate, ammonium lauryl sulfate, sodium polyoxyethylene alkyl ether sulfate, triethanolamine polyoxyethylene alkyl ether sulfate, etc.), nonionic surfactants (e.g., polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, rubitan monolaurate, etc.). In the present invention, the surfactant has the effect of significantly promoting the chemical bonding reaction between the silanol groups on the surface of the porous carrier and the organic silane, and almost completely covering the surface silanol groups. In particular, anionic surfactants are most suitable. The reaction temperature between silanol group and organic silane is 20 to 1000
C, but in terms of reaction efficiency (rate), what is the reaction temperature?
- Tata 0C is preferred.
本発明の多孔性担体はシリカゲル、多孔性ガラス、ケイ
ソウ上等の細孔を有し、表面に7ラノール基を有する多
孔性担体である。The porous carrier of the present invention is a porous carrier having pores such as silica gel, porous glass, diatomaceous material, etc., and having 7 lanol groups on the surface.
本発明に用いられる多孔性担体は、細孔表面にシラノー
ル基をO0S個/mm2以上、好ましくはj個/mm2
以上有するものが最適である。また、多孔性担体の形状
は任意の形状を有するものを使用でき、さらに多孔性ガ
ラスの粒子径は1〜! 00 ttm、好ましくは30
−20θμm、細孔の大きさは平均細孔径夕〜tooo
Aの担体が適用できる。The porous carrier used in the present invention has silanol groups on the pore surface of O0S/mm2 or more, preferably j silanol groups/mm2.
Those having the above are optimal. Further, the porous carrier can have any shape, and the particle size of the porous glass is 1~! 00 ttm, preferably 30
-20θμm, pore size is average pore diameter ~too
A carrier is applicable.
本発明における有機シラン化合物はシランカップリング
剤として用いるものであり、7分子牛に低級アルコキシ
基原子を7〜3個持ち、水又はpHj〜10の水溶液あ
るいは水溶性有機溶剤を30wt%以下含む水溶液に可
溶なものが好ましい。例えば一般式(I)、(If)で
示される化合物がある。The organic silane compound in the present invention is used as a silane coupling agent, and has 7 to 3 lower alkoxy group atoms in 7 molecules, and is preferably water or an aqueous solution with a pH of ~10, or an aqueous solution containing 30 wt% or less of a water-soluble organic solvent. Preferably, those soluble in For example, there are compounds represented by general formulas (I) and (If).
(式中、R1、R2は特に限定しない、Xは炭素数/〜
λのアルコキシ基、Y%2はメチル基、エチル基、炭素
数7〜λのアルコキシ基を示す。)一般式(I)、(■
)で示される化合物で、例えばr−グリシジルオキシプ
ロピルトリメトキシシラン、γ−,グリシドキシプロピ
ルジメチルエトキシシラン、r−グリシドキシプロビル
メチルジェトキシシラン、r−アミノプロピルトリエト
キシシラン、r−メルカプトプロピルトリメトキシシラ
ン、N−β(アミノエチル)−ドアミノプロピルメチル
ジメトキシシラン、ビニルトリエトキシシラ/、ビス(
2−ヒドロキシエチル)アミノプロピルトリエトキシシ
ラン、などの水溶性シランカップリング剤(水又は塩酸
、水酸化カリウム、リン酸塩等で調整したp)(J〜I
Oの水溶液あるいは、3C)H(%以下の水溶性有機溶
剤を含む水に/wt%以上可溶なもの)が挙げられる。(In the formula, R1 and R2 are not particularly limited, and X is the number of carbon atoms/~
The alkoxy group of λ, Y%2 represents a methyl group, an ethyl group, or an alkoxy group having 7 to λ carbon atoms. ) General formula (I), (■
), such as r-glycidyloxypropyltrimethoxysilane, γ-, glycidoxypropyldimethylethoxysilane, r-glycidoxypropylmethyljethoxysilane, r-aminopropyltriethoxysilane, r- Mercaptopropyltrimethoxysilane, N-β(aminoethyl)-doaminopropylmethyldimethoxysilane, vinyltriethoxysilane/, bis(
Water-soluble silane coupling agents such as 2-hydroxyethyl)aminopropyltriethoxysilane (p prepared with water or hydrochloric acid, potassium hydroxide, phosphate, etc.) (J to I
An aqueous solution of O or 3C)H (one that is soluble in water containing a water-soluble organic solvent of % or more by weight) may be used.
本発明において多孔性担体に有機シラン化合物を反応さ
せる方法は、シラノニル基を有する多孔性担体を水溶媒
又は水−有機溶媒で希釈した有機シラン中に含浸させ、
さらに界面活性剤をこの溶液中に添加し、所定温度、所
定時間、通常の還流を行う0次に、生成したシラン処理
体を口別し、水溶媒、メタノール溶媒又はアセトン溶媒
で数回洗浄後、減圧乾燥するものである。In the present invention, the method of reacting an organic silane compound with a porous carrier is to impregnate a porous carrier having a silanonyl group in an organic silane diluted with a water solvent or a water-organic solvent,
Furthermore, a surfactant is added to this solution, and normal reflux is carried out at a predetermined temperature for a predetermined time.Next, the produced silanized product is separated and washed several times with a water solvent, a methanol solvent, or an acetone solvent. , dried under reduced pressure.
本発明において、溶媒の存在下で反応を行うのは多孔性
担体のシラノール基に有機シランを化学結合させるとき
表面処理の均一性に対する安定度や操作性の点から好ま
しいからである。溶媒としては、水又は塩酸、水酸化カ
リウム、リン酸塩等で調整しrこp)(J〜IOの水溶
液、さらには、水溶性有機溶剤(例えば、メタノール、
エタノール、イソプロパツール、アセトン、ジオキサン
)を3(1)wt%以下含む水溶液等を挙げることがで
きる。In the present invention, it is preferable to carry out the reaction in the presence of a solvent from the viewpoint of stability and operability with respect to uniformity of surface treatment when chemically bonding the organic silane to the silanol groups of the porous carrier. Examples of solvents include water, hydrochloric acid, potassium hydroxide, phosphate, etc. (aqueous solutions of J to IO), and water-soluble organic solvents (e.g., methanol,
Examples include aqueous solutions containing 3 (1) wt % or less of ethanol, isopropanol, acetone, dioxane).
好ましくは塩酸、水酸化カリウムで調整したp I−(
t −4の水溶媒が最適である。Preferably p I-(
A water solvent at t-4 is optimal.
又、多孔性担体に対する有機シランの使用量は、担体中
に存在する表面シラノール基量に依存するため、本発明
者らは、多孔性担体表面のシラノール基量な測定する手
段として”J、Amer、ChemSoc″ 72 7
74−7r2Fed、、(/9!0 )、1.5HAP
IROAND 1.M、KoLTHOFFらによって
報告されている、メチルレッド吸着法を用いた。In addition, since the amount of organic silane used for a porous carrier depends on the amount of surface silanol groups present in the carrier, the present inventors used the "J. Amer. , ChemSoc″ 72 7
74-7r2Fed,, (/9!0), 1.5HAP
IROAND 1. The methyl red adsorption method reported by M. KoLTHOFF et al. was used.
この測定法から得られた表面シラノール基量を基に有機
シランの使用量を決定した。有機シラン使用量は、多孔
性担体の総シラノール基量に対し、/−10倍モルで可
能であるが、表面を完全に被覆する目的のために好まし
いのは、7〜5倍モルである。これより多すぎると細孔
径を狭(するなどの欠点が生じる。The amount of organic silane to be used was determined based on the amount of surface silanol groups obtained from this measurement method. The amount of organic silane to be used can be 1-10 times the total amount of silanol groups in the porous carrier, but for the purpose of completely covering the surface, it is preferably 7 to 5 times the amount by mole. If the amount is too large, disadvantages such as narrowing of the pore size will occur.
即ち、本発明で使用する有機シラン化合物の量は、反応
に使用する多孔性担体の細孔総表面積(m2で表示)に
対し7゜り〜り。gμモルフ rn 2である。これに
対して、前述゛したJ、Chromatog。That is, the amount of the organosilane compound used in the present invention is 7° to 7° relative to the total pore surface area (expressed in m2) of the porous carrier used in the reaction. gμmorph rn2. On the other hand, J, Chromatog mentioned above.
Sci″ /44 3/l〜320(/97A)によれ
ば多孔性担体に対し、22゜3μモル/m2であり、特
開昭11−49≠1号及び特開昭!!−6t7よ6号に
よれば/≠。/μモル/m2である。According to Sci″/44 3/l~320 (/97A), it is 22°3 μmol/m2 for the porous carrier, and JP-A-11-49≠1 and JP-A-11-6T7-6 According to the issue, /≠./μmol/m2.
特開昭≠6−72り6号でも!乙。3μモル/m2の有
機シラン化合物の量を使用している。このことから比較
しても本発明の詳細な説明白である。Tokukai Sho≠6-72ri No. 6 too! Otsu. An amount of organosilane compound of 3 μmol/m2 is used. From this comparison, the detailed explanation of the present invention is clear.
以上の様にして本発明により得られた担体は、従来の担
体に比較してクロマトグラフィー用担体、特にゲル濾過
用担体としてきわめて優れた性能を有している。その第
一の特徴は低吸着性にある。The carrier obtained according to the present invention as described above has extremely superior performance as a carrier for chromatography, especially as a carrier for gel filtration, compared to conventional carriers. Its first feature is low adsorption.
これは、担体表面シラノール基が有機シランでほぼ完全
に被覆されているため残存シラノール基による溶質(蛋
白質、生化学関連物質など)の吸着が極めて少ないこと
による。第2に、表面に導入される化学物質(有機シラ
ン)が少量で十分であるため多孔性担体の微細な細孔径
をそこなわず、さらに導入化学物質のもつアルキル基、
アリール基に起因すると推定される試料と担体表面との
疎水性相互作用(疎水佳吸着)も極めて少ないことによ
る。This is because the silanol groups on the surface of the carrier are almost completely covered with organic silane, so that the adsorption of solutes (proteins, biochemical related substances, etc.) by the remaining silanol groups is extremely small. Second, since a small amount of the chemical substance (organosilane) introduced onto the surface is sufficient, it does not damage the fine pore diameter of the porous carrier, and furthermore, the alkyl group of the introduced chemical substance,
This is because there is very little hydrophobic interaction (hydrophobic adsorption) between the sample and the carrier surface, which is presumed to be caused by the aryl group.
第3に、通常の方法で容易に作製できるシリカゲル、ポ
ーラスガラス等の無機の担体は有機ポリマー系の担体に
比べ細孔径の分布が非常に狭(、M媒が異っても膨潤度
−を変化させない硬質のゲルを与える。従って、分離能
が非常に高く、高速化も容易でカラム安定性の良いクロ
マトグラフィー用担体の製造も可能である。Third, inorganic carriers such as silica gel and porous glass, which can be easily produced by conventional methods, have a much narrower pore size distribution than organic polymer carriers (and the degree of swelling varies even with different M media). It provides a hard gel that does not change.Therefore, it is possible to produce a chromatography carrier with very high separation ability, easy speedup, and good column stability.
それ故、本発明で得られた担体は、きわめて優れた性能
を有し、前に記載した有機シラン(シランカップリング
剤)を選択し反応に用いることにより親水性ゲル濾過用
担体、有機溶媒系ゲル濾過用担体、イオン交換クロマト
グラフィー用担体、アフィニティークロマトグラフィー
用担体、さらに酵素固定化用担体等の分離担体の基材と
して利用できる。Therefore, the carrier obtained in the present invention has extremely excellent performance, and by selecting the organic silane (silane coupling agent) described above and using it in the reaction, it can be used as a hydrophilic gel filtration carrier, an organic solvent-based carrier, etc. It can be used as a base material for separation carriers such as gel filtration carriers, ion exchange chromatography carriers, affinity chromatography carriers, and enzyme immobilization carriers.
以下、実施例によって本発明の詳細な説明するが、本発
明はこれに限定するものではない。Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.
実施例1
下記物性の多孔性ガラス209を/2o0c、≠時間乾
燥後、還流冷却器付きの3つ目フラスコに取り、ラウリ
ル硫酸ナトリウムQ、ゲタgを蒸留水!0rnlで溶解
した溶液中に含浸させ、75分間室温で攪拌した。Example 1 After drying porous glass 209 with the following physical properties at /2 o 0 c for ≠ hours, put it in a third flask equipped with a reflux condenser, add sodium lauryl sulfate Q and geta g to distilled water! It was immersed in a solution of 0rnl and stirred for 75 minutes at room temperature.
形 状:破砕形
粒子形:3タルフッμm
比表面積重♂Am2/g
平均細孔径:2110X
更に、r−グリシジルオキシプロビルトリメトキシシラ
ン3゜53gを蒸留水1.Qrnlで希釈した溶液を3
つロフラスコに投入し、この溶液のp I−(をINの
K OH水溶液でp Hを約7゜θに調整し30分間纜
ヰした。Shape: Crushed Particle form: 3 talf μm Specific surface area weight ♂ Am2/g Average pore diameter: 2110 The solution diluted with Qrnl is 3
The pH of this solution was adjusted to about 7°θ with an IN KOH aqueous solution, and the solution was heated for 30 minutes.
続いて油浴上でり000%を時間反応させた。冷却後、
上記のシラン処理多孔性ガラスを炉別し、M留水/ 、
t o rnlでオ回洗浄した。更にアセトンltom
lで2回洗浄し、to 0C,,2CmmHFでr時間
減圧乾燥することによりシラン処理多孔性ガラス約2/
gを得た。Subsequently, the mixture was allowed to react for 000% on an oil bath. After cooling,
The above silane-treated porous glass is separated into a furnace, and M distilled water/,
Washed twice with thornl. Furthermore, acetone ltom
The silanized porous glass was prepared by washing it twice with l and vacuum drying at 0C,,2CmmHF for r hours.
I got g.
この担体を内径7゜s mm 、長さtoommのス゛
テンレス製カラムに充填し、下記の条件で水溶媒系の
ゲル浸透クロマトグラフィー用充填剤としての性能を調
べた。This carrier was packed into a stainless steel column with an inner diameter of 7 s mm and a length of too mm, and its performance as a packing material for gel permeation chromatography in an aqueous solvent system was investigated under the following conditions.
測定条件
装 置:ALC/「GPc20り型」(商品名;ウォー
ターズ■)
検出器:紫外線吸収検出器(2♂Omm)溶離液ニリン
酸緩衝液(1713モル、pH7,0)(l/loモル
Nace含有)流速: / ml/m i n
試料注入量二〇、jG液、20μl又はs。Measurement conditions Equipment: ALC/"GPc20 model" (product name: Waters ■) Detector: Ultraviolet absorption detector (2♂Omm) Eluent diphosphate buffer (1713 mol, pH 7.0) (l/lo mol) Contains Nace) Flow rate: / ml/min Sample injection volume 20, JG solution, 20 μl or s.
μl(蛋白質)、soμl(デキス
トラン)
マス、各種デキストランを試料とし、シランカップリン
グ剤との反応前(未処理ポーラスガラス)と反応後(シ
ラン処理ポーラスガラス)で担体の細孔径変化を比較す
るためテキストラン溶出実技による1絞正曲線を作成し
第1図に示した。μl (protein), soμl (dextran) Mass, various dextran samples are used to compare the change in pore diameter of the carrier before (untreated porous glass) and after (silanized porous glass) reaction with the silane coupling agent. A 1-stop positive curve was created using the text run elution practice and is shown in Figure 1.
較′正曲線とは、多孔質担体をゲル・ξ−シイエイジョ
ン(GP C)として用いた場合、その担体のもつ分画
範囲を表わす検@線である。A calibration curve is a calibration line that represents the fractionation range of a porous carrier when it is used as a gel ξ-seaion (GPC).
即ち、物質の分子量に対しどの程度、どの範囲までを分
離してクロマトグラフィーが行なわれ6かを標準デキス
トランにより測定して表わす。That is, the degree and range of molecular weight of a substance that can be separated by chromatography6 is expressed by measuring with standard dextran.
比較例1
実施例1に於て、界面活性剤ラウリル硫酸ナトリウムを
添加しない以外は全く向−の条件で反応させて得られた
シラン処理釜fL性ガラス担体を実施例1と同一カラム
に充填し同一条件で性能を調べた。Comparative Example 1 The same column as in Example 1 was packed with a silane-treated fl-type glass carrier obtained by reacting under completely opposite conditions except that the surfactant sodium lauryl sulfate was not added. Performance was examined under the same conditions.
比較例2
実施例1と同じ多孔性ガラスを使用し、同じ有機シラン
をトルエン100m1で希釈した溶液中に含浸させた。Comparative Example 2 The same porous glass as in Example 1 was used and impregnated with the same organic silane in a solution diluted with 100 ml of toluene.
生成するメタノールを留出させなから速流下と時間反応
させた。7ラン処理多孔ガラスを戸別しトルエン10O
TLlで3回洗浄し、アセトン100m1で2回洗浄後
乾燥した。次に得られたシラン処理多孔性ガラスをp
)(3の塩酸水溶液2oomlに含浸し、1l−00C
172時間反応させて、ケイ素原子に結合しているアル
コキシ基を除去するとともに、エポキシ基を加水分解開
環変性しfこ。充分に水洗した後減圧乾燥して得た担体
を実施例1と同一カラムに充填し同一条件で性能を調べ
た。The reaction was carried out under rapid flow for a period of time without distilling off the methanol produced. 7-run treated porous glass door to door and toluene 100
It was washed three times with TLl, twice with 100 ml of acetone, and then dried. Next, the obtained silane-treated porous glass was
) (Impregnated with 2ooml of hydrochloric acid aqueous solution of 3, 1l-00C
The reaction was carried out for 172 hours to remove the alkoxy group bonded to the silicon atom and to hydrolyze and ring-open the epoxy group. The carrier obtained by thorough washing with water and drying under reduced pressure was packed into the same column as in Example 1, and its performance was examined under the same conditions.
また、本実施例におゆるシラン処理担体と、比較例1及
び比較例2の担体の乾燥状態における組成さらに、各種
蛋白質の溶出量(溶出位置)と回収率及びメチルレッド
法による担体表面被覆率を測定した。その結果を第1表
に示す。In addition, the dry compositions of all the silane-treated carriers and the carriers of Comparative Examples 1 and 2 are shown in this example, as well as the elution amount (elution position) and recovery rate of various proteins, and the carrier surface coverage by the methyl red method. was measured. The results are shown in Table 1.
なお、回収率の測定は、各試量溶液の紫外吸収log/
/T(λ、2fOmm)の値をioo%として、充填カ
ラムを通過した各試料の紫外吸収log//T値(試料
濃度を同一に調整)の百分率で表わした。この場合測定
は3回づつ行ないその平均を求めた。但し、各蛋白質の
失活はないものとした。The recovery rate was measured using the ultraviolet absorption log/
The value of /T (λ, 2fOmm) was expressed as ioo% and expressed as a percentage of the ultraviolet absorption log//T value (sample concentration was adjusted to be the same) of each sample that passed through the packed column. In this case, the measurements were performed three times and the average was determined. However, it was assumed that each protein was not inactivated.
実施例2〜6
実施例1と同じ多孔性ガラスを使用し各種有機シランと
各種界面活性剤を用いて実施例1と同一条件下で反応さ
せた後、得られた担体の特性値の測定結果を第2表に示
す。Examples 2 to 6 Using the same porous glass as in Example 1, and reacting it under the same conditions as in Example 1 using various organic silanes and various surfactants, measurement results of the characteristic values of the obtained carrier. are shown in Table 2.
実施例7
形 状:破砕形
粒子径:10−/2μm
比表面積:デ3m27g
平均細孔径:2≠OA
上記物性の多孔性ガラスを使用して実施例1と同じ有機
シランで同一条件下で7ラン処理した後、洗浄、乾燥し
て得られた担体を湿式充填し、同一条件で各種蛋白質を
測定した。求めた回収率とj8出チャートを第3表及び
第2図に示す。Example 7 Shape: Crushed Particle size: 10-/2 μm Specific surface area: 3m27g Average pore size: 2≠OA Using porous glass with the above physical properties, the same organic silane as in Example 1 was used under the same conditions. After the run treatment, the carrier obtained by washing and drying was wet-filled and various proteins were measured under the same conditions. The obtained recovery rate and j8 output chart are shown in Table 3 and Figure 2.
第3表
なお、本発明の方法による多孔性担体の有機シラン処理
に於てエポキシ基含有有機シランを使用する場合のエポ
キシ基の開環変性については、乾燥ゲルを塩化水素を溶
解した乾燥DMFを一定量入れ、該ゲルのエポキシ基を
開環しクロルヒドリン型とした後、残留塩化水素をナト
リウムメチラートで逆適定し、該ゲルに存在するエポキ
シ基量を定量した。Table 3 Regarding the ring-opening modification of epoxy groups when using an epoxy group-containing organic silane in the organic silane treatment of a porous carrier according to the method of the present invention, dry gel is mixed with dry DMF in which hydrogen chloride is dissolved. A certain amount of the gel was added to open the epoxy groups of the gel to form a chlorohydrin type, and residual hydrogen chloride was back determined using sodium methylate to quantify the amount of epoxy groups present in the gel.
その結果、第3図に示すように、本発明の方法では、反
応時間’QJ時間とするところで該ゲルのエポキシ基を
100%開環変性することが出来ることがわかつfこ。As a result, as shown in FIG. 3, it was found that in the method of the present invention, 100% of the epoxy groups in the gel could be ring-opened and modified at a reaction time of 'QJ time'.
エポキシ基の開環にあたっては比J収例2のとと(シラ
ン処理した担体を酸性水溶液で充分含浸させ、よく水洗
してエポキシ基の開環処理をしなければならない。To open the epoxy group, the silane-treated carrier must be fully impregnated with an acidic aqueous solution and thoroughly washed with water to open the epoxy group.
さらに、エポキシ基含有有機シラン以外の有機シラン処
理の反応時間は、1時間で充分反応が進行し、クロマト
グラフィー担体としての性能も満足するものであった。Furthermore, the reaction time for treatment with organic silanes other than epoxy group-containing organic silanes was one hour, and the reaction proceeded sufficiently, and the performance as a chromatography carrier was also satisfactory.
実施例8
形 状:破砕型
粒子彫型10±λμm
比表面積:≠00m/g
平均細孔径:10OA
上記物性のシリカゲル担体209をラウリル硫酸ナトリ
ウムコ。C#、r−グリシジルオキシプロビルトリメト
キシシラン/≠。タg、蒸留水λ75m1を用い実施例
1と同一操作条件下で反応させた後、得られた担体の乾
燥状態におけろ組成分析の結果を以下に示す。Example 8 Shape: Crushed particle shape 10±λμm Specific surface area: ≠00m/g Average pore diameter: 10OA Silica gel carrier 209 having the above physical properties was prepared using sodium lauryl sulfate. C#, r-glycidyloxypropyltrimethoxysilane/≠. The results of compositional analysis of the obtained carrier in a dry state after the reaction was carried out under the same operating conditions as in Example 1 using distilled water λ75ml are shown below.
得られ定シラン処浬担体は多孔性ガラスと実施ヅ11と
同様に良好な性能を示したつ
以上、7ラン処理後の多孔性担体の物性(デキストラン
較正曲線、組成分析、蛋白質の回収率、メチルレッド法
による表面#2覆率)の結果から、本発明の方法はクロ
マトグラフィー光離担体として試料の吸着性がきわめて
低(、さらに多孔性担体が本来もつ微細な細孔径をそこ
なわず、担体表面を必要最少限の有機シラン処理剤でほ
ぼ単分子層に近い形で被覆処理されていることがわかる
。The obtained constant silane-treated support showed good performance similar to porous glass and Example 11.The physical properties of the porous support after seven runs of treatment (dextran calibration curve, composition analysis, protein recovery rate, methyl The method of the present invention has extremely low sample adsorption as a chromatography photoreparation carrier (in addition, it does not damage the fine pore diameter inherent in porous carriers, It can be seen that the surface is coated with the necessary minimum amount of organic silane treatment agent in a form close to a monomolecular layer.
第1図はデキストラン溶出実技による較正曲線であり、
未処理多孔性ガラス/及びシラン処理多孔性ガラス2を
示す。第2図は、本発明の多孔性担体による各種蛋白質
の溶出チャートである。第3図は乾燥ゲルのエポキシ基
を開環変性し、エポキシ基量の変化を示すグラフである
。
特許出願人 富士写真フィルム株式会社第2図
4
5 10
牙参豪(mJ)
第3図
及に:B今闇(hrs)
手続補正書
1、事件の表示 昭和sr年特願第 70t02
号2、発明の名称 多孔性担体の製造方法3、補正
をする者
事件との関係 待針出願人名 称(520
)富士写真フィルム株式会社連絡光 〒]06東京都港
区西麻布2丁目26番3o’;。
富士写真フィルム株式会社東京本社
電話(406) 2537
4゜補正の対像 明細書の「発明の詳細な説明」の欄
5゜補正の内容
BA細誉を次の通ν補正する。
/)り頁/弘行目の
rl、1vf、KoLTHOFFJ f「I 、I
vi、K(JLTHOFFjと補正する。
2)13頁l♂行目の
「0.5溶液」 を
「0.S俸浴准」
と補正する。
3)20頁′3行目の
「io 〜/2μyrJ k
1−70〜−i0μm」
と補正する。
弘〕 22頁13行目の
「エポキシ基の」 ?
「一般にエポキシ基の」
と補正する。Figure 1 is a calibration curve based on dextran elution practice.
Untreated porous glass/and silanized porous glass 2 are shown. FIG. 2 is an elution chart of various proteins using the porous carrier of the present invention. FIG. 3 is a graph showing the change in the amount of epoxy groups when the epoxy groups of the dried gel are subjected to ring-opening modification. Patent Applicant Fuji Photo Film Co., Ltd. Figure 2 4 5 10 Sango Fang (mJ) Figure 3 and To: B Konya (hrs) Procedural Amendment 1, Indication of Case Showa SR Year Patent Application No. 70t02
No. 2, Title of the invention Process for producing porous carrier 3, Relationship to the case of the person making the amendment Name of the applicant for the pin (520
) Fuji Photo Film Co., Ltd. Contact Light 〒]06 2-26-3o' Nishi-Azabu, Minato-ku, Tokyo;. Fuji Photo Film Co., Ltd. Tokyo Head Office Telephone: (406) 2537 4° Comparison of Amendment Contents of 5° Amendment in the "Detailed Description of the Invention" column of the specification BA honorary will be amended as follows. /) Page/Hiroyukime's rl, 1vf, KoLTHOFFJ f "I, I
vi, K (correct as JLTHOFFj. 2) Correct "0.5 solution" in line l♂ of page 13 to "0.S salary bath standard". 3) Correct as "io ~/2μyrJ k 1-70~-i0μm" on page 20, line 3. Hiroshi] “Epoxy group” on page 22, line 13? Corrected to "generally epoxy group".
Claims (1)
性剤の存在下で反応させることを特徴とする、多孔性担
体の製造方法。A method for producing a porous carrier, comprising reacting a silanol group of the porous carrier with an organic silane compound in the presence of a surfactant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58070602A JPS59195153A (en) | 1983-04-21 | 1983-04-21 | Production of porous carrier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58070602A JPS59195153A (en) | 1983-04-21 | 1983-04-21 | Production of porous carrier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59195153A true JPS59195153A (en) | 1984-11-06 |
JPH0410587B2 JPH0410587B2 (en) | 1992-02-25 |
Family
ID=13436277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58070602A Granted JPS59195153A (en) | 1983-04-21 | 1983-04-21 | Production of porous carrier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59195153A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62204844A (en) * | 1986-03-06 | 1987-09-09 | Ise Kagaku Kogyo Kk | Preparation of carrier for chromatograph and packing material for chromatography |
JPH0448263A (en) * | 1990-06-15 | 1992-02-18 | Hitachi Ltd | Analytical method and apparatus for catecholamines |
KR20030072652A (en) * | 2002-03-06 | 2003-09-19 | 이호재 | Bonding method to induce functional group for ion exchange |
JP2006312164A (en) * | 2005-04-04 | 2006-11-16 | Toyota Boshoku Corp | GAS ADSORBENT, ITS MANUFACTURING METHOD, AND GAS ADSORPTION FILTER |
WO2007037069A1 (en) * | 2005-09-27 | 2007-04-05 | Sumitomo Bakelite Company, Ltd. | Particle for medical use and process for producing the same |
-
1983
- 1983-04-21 JP JP58070602A patent/JPS59195153A/en active Granted
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62204844A (en) * | 1986-03-06 | 1987-09-09 | Ise Kagaku Kogyo Kk | Preparation of carrier for chromatograph and packing material for chromatography |
JPH0448263A (en) * | 1990-06-15 | 1992-02-18 | Hitachi Ltd | Analytical method and apparatus for catecholamines |
KR20030072652A (en) * | 2002-03-06 | 2003-09-19 | 이호재 | Bonding method to induce functional group for ion exchange |
JP2006312164A (en) * | 2005-04-04 | 2006-11-16 | Toyota Boshoku Corp | GAS ADSORBENT, ITS MANUFACTURING METHOD, AND GAS ADSORPTION FILTER |
JP4678864B2 (en) * | 2005-04-04 | 2011-04-27 | トヨタ紡織株式会社 | GAS ADSORBENT, ITS MANUFACTURING METHOD, AND GAS ADSORPTION FILTER |
WO2007037069A1 (en) * | 2005-09-27 | 2007-04-05 | Sumitomo Bakelite Company, Ltd. | Particle for medical use and process for producing the same |
JP5217437B2 (en) * | 2005-09-27 | 2013-06-19 | 住友ベークライト株式会社 | Medical particles and method for producing the same |
US9125822B2 (en) | 2005-09-27 | 2015-09-08 | Sumitomo Bakelite Company, Ltd. | Particle for medical use and process for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0410587B2 (en) | 1992-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5968652A (en) | Silane coated particle | |
Righetti | Capillary electrophoresis in analytical biotechnology: a balance of theory and practice | |
US4017528A (en) | Preparation of organically modified silicon dioxides | |
Ou et al. | Recent advances in preparation and application of hybrid organic‐silica monolithic capillary columns | |
EP0269447B1 (en) | Structures surface modified with bidentate silanes | |
US4835058A (en) | Packing material and process for its production | |
Ek et al. | Gas-phase deposition of aminopropylalkoxysilanes on porous silica | |
JPH0441305B2 (en) | ||
Wikström et al. | Gas phase silylation, a rapid method for preparation of high-performance liquid chromatography supports | |
US4894468A (en) | Substituted silica | |
JP3653798B2 (en) | New modified silica gel | |
CN105833849A (en) | Preparation method of reverse phase-strong cation exchange mixed mechanism chromatography stationary phase | |
CA1259312A (en) | Silane reagents containing a complexion grouping and inorganic material modified with these reagents | |
JPS59195153A (en) | Production of porous carrier | |
EP0161058B1 (en) | Dual surface materials | |
US7534352B2 (en) | Reversed endcapping and bonding of chromatographic stationary phases using hydrosilanes | |
JPH04212058A (en) | Manufacture of filling agent for liquid chromatography | |
Silva et al. | An overview of the chromatographic properties and stability of C18 titanized phases | |
Ohkubo et al. | Synthesis and characterization of a strong cation exchanger based on polymer-coated silica for high-performance liquid chromatography | |
JPS6233550B2 (en) | ||
JPS62246817A (en) | Silica gel filler | |
JPH0750085B2 (en) | Column packing material for liquid chromatography | |
JP3169318B2 (en) | Column packing material | |
CA1293083C (en) | Packing material and process for its production | |
JPS63218249A (en) | Filler for optical resolution and its production |