JPS59195095A - Stationary type total heat exchanger - Google Patents
Stationary type total heat exchangerInfo
- Publication number
- JPS59195095A JPS59195095A JP58066348A JP6634883A JPS59195095A JP S59195095 A JPS59195095 A JP S59195095A JP 58066348 A JP58066348 A JP 58066348A JP 6634883 A JP6634883 A JP 6634883A JP S59195095 A JPS59195095 A JP S59195095A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- total heat
- hollow fibers
- hollow
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012510 hollow fiber Substances 0.000 claims abstract description 33
- 239000011148 porous material Substances 0.000 claims abstract description 12
- 230000003068 static effect Effects 0.000 claims description 20
- -1 polyethylene Polymers 0.000 claims description 6
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 229920002301 cellulose acetate Polymers 0.000 claims description 2
- 239000002657 fibrous material Substances 0.000 claims 1
- 239000000835 fiber Substances 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 47
- 238000009423 ventilation Methods 0.000 description 8
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000005192 partition Methods 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000013872 defecation Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/06—Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
- F28F21/062—Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/56—Heat recovery units
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は新鮮な外気の給気と汚れ/ζ室内の空気の排
気を同時に行なう換気装置、あるいはビル等の空調機械
室の新鮮空気処[、jli装f&(外気と室内空気の全
熱交換)等に用いる全熱交換器Kl:5t、。[Detailed Description of the Invention] This invention is a ventilation system that simultaneously supplies fresh outside air and exhausts dirty/indoor air, or a fresh air outlet for an air conditioning machine room in a building. Total heat exchanger Kl: 5t, used for total heat exchange of indoor air), etc.
特に径の小さい多孔質性の中空tf5r 糸ffを多数
本束ねて用いることにより、伝全熱面の面積密度を大巾
(C増加でき、高い全熱交換効率と全熱交換器の小型化
を実現する静止式全熱交換器に7カ1−ろものである。In particular, by bundling and using a large number of porous hollow tf5r threads ff with small diameters, the areal density of the total heat transfer surface can be increased by a large width (C), resulting in high total heat exchange efficiency and miniaturization of the total heat exchanger. There are seven components to the static total heat exchanger.
近時、冷暖房効果を高めるために居住空間の断熱化、気
密化が仇むにつれて換気の重要性が丙認識されてきてい
る。冷暖房効果を損わずに喚気を行なう方法として、排
気と給気の間で熱交換する方法が有効である。この時温
度(顕熱)と共に湿度−’<潜熱)の交換も同時に行な
うことができればその効果は著しい。この要求に応える
ものとして。In recent years, as living spaces have become more insulated and airtight in order to improve heating and cooling effects, the importance of ventilation has been increasingly recognized. An effective method for ventilation without impairing the heating and cooling effect is to exchange heat between exhaust air and supply air. At this time, if temperature (sensible heat) and humidity -'<latent heat) can be exchanged at the same time, the effect will be significant. As a response to this request.
従来より第1図の斜視図に示すような給気と排気を仕切
板を介して全熱交換させる静止式全熱交換器C特許第9
30986号)がある。この静止式全熱交換器は第1図
に示すように平らな仕切板(1)と波形をした間隔板(
2)を交互に積層する際に1間隔板の方向を一段おきに
直交させることにより、給気の流路(3)と排気の流路
(4)を形成する。(イ)は吸気の流れ、呻ンは排気の
流れを示す。この時仕切板の間隔は狭くする程段数が増
加し、全熱交換面積が増大するので好ましく、現在は2
閂のものを市販されている。間隔板の波形のピッチも狭
い方が空気流と仕切板との間の熱伝達率が高くなるので
好1しく、現在は4 ramのものが市販されている。Conventionally, there is a stationary total heat exchanger C Patent No. 9, which exchanges total heat between supply air and exhaust air through a partition plate, as shown in the perspective view of Fig. 1.
No. 30986). As shown in Figure 1, this static total heat exchanger consists of a flat partition plate (1) and a corrugated spacer plate (1).
2) are alternately stacked, and the directions of the spaced plates are orthogonal to each other every other step, thereby forming an air supply flow path (3) and an exhaust air flow path (4). (A) indicates the flow of intake air, and ① indicates the flow of exhaust air. At this time, it is preferable to narrow the interval between the partition plates because the number of stages increases and the total heat exchange area increases.
Bolted ones are commercially available. It is preferable that the pitch of the waveform of the spacer plate be narrower, since this increases the heat transfer coefficient between the air flow and the partition plate, and 4 ram types are currently on the market.
この静止式全熱交換器はその構造上給気と排気の流路を
対向させることができないが、温度および湿度の交換効
率は直交あるいは斜交流よシも対向流の方が優れろ。そ
こで本発明者らは静止式全熱交換器であシながら、伝全
熱面利tの面積密度が大きく。Due to its structure, this static total heat exchanger cannot have the supply air and exhaust air flow paths facing each other, but the efficiency of temperature and humidity exchange is better with counterflow than with orthogonal or oblique flow. Therefore, the present inventors developed a static total heat exchanger with a large area density of total heat transfer surface area t.
好ましくは給気と排気の流路が対向し、高い全熱交換効
率と全熱交換器の小型化を実現できるよりな全熱交換器
を開発すべく鋭意研究を重ねた。We have conducted intensive research to develop a total heat exchanger that preferably has air supply and exhaust air flow paths facing each other, achieving high total heat exchange efficiency and miniaturization of the total heat exchanger.
この発明は、上記目的の結果なされたもので。This invention was made as a result of the above object.
壁面に細孔を有する多孔質中空H・ν1tftを束ね、
中空部分を残して両端部を封止し、その一端から中空部
分を通]関するように1次気体を導入し、他端から排出
するとともに、上記他端側から中空C・ν組曲間隙を通
過するように2次気体を導入し、上記一端側から排出し
て、1次気体と2次気体の温度(顕熱)と湿度(潜熱)
交換をするようにすることによや、伝全熱面積の面積密
度を大きクシ、旨い全熱交換効率と小32化を実現でき
ろ静止式全熱交換器を提供しようと1−るものである。Bundle porous hollow H・ν1tft with pores on the wall,
Both ends are sealed leaving a hollow part, and the primary gas is introduced from one end through the hollow part and discharged from the other end, and passes through the hollow C/ν combination gap from the other end. Secondary gas is introduced so that the temperature (sensible heat) and humidity (latent heat) of the primary gas and secondary gas are
By doing so, we aim to provide a static total heat exchanger that can increase the area density of the total heat transfer area, achieve good total heat exchange efficiency, and achieve a small size. be.
又、2次気体を上記他端側から導入し中空粋維間間隙を
中空繊維に浴って流し、上記一端側に排出することによ
り、1次気体流と2次気体流を対向させ、さらに高い全
熱交換率を実現できる静止式全熱交換器を提供しようと
するものである。In addition, the secondary gas is introduced from the other end side, flows through the hollow fiber gaps, and is discharged to the one end side, so that the primary gas flow and the secondary gas flow are opposed to each other. The present invention aims to provide a static total heat exchanger that can achieve a high total heat exchange rate.
以Fこの発明の実施例を図に基いて謂、明する。Hereinafter, embodiments of the present invention will be explained based on the drawings.
第2図は中空綺維束を容器f収納した状態を示す)祈面
図である。図中(5)は壁面に細孔を有する多孔質中空
繊維で、細孔径が50〜1000 A 、内径が0、1
〜5 mm 、肉厚が10〜100 tirnのポリエ
チレン、ポリプロピレンあるいは酢酸セルロース等を素
材とする多孔質中空繊維が用いられる。(以下中空繊維
と記丁)中空繊維(5)壁面の微昶I孔は大きくなると
水蒸気のみならず空気の移行も起こるので、 u+oo
Xまでが実用的限界であゆ、又50A以下の孔は実η
的には孔がないと考えられる。そして内径は伝全熱向積
あるいは熱伝達率の立場から6丁細い方が紬ましく 、
511.m以上てなると伝全熱面(1tの面積密度が
小さくなりすぎるので5 mmが上限であり、又あまり
細くなると圧損が大きくなるため01mrnが下限であ
る。さらに肉厚は機械強度が許す範囲で薄い方が好まし
く、実用的[10μmから100μmが用いられろ。(
6)は中空−維(5)を容器に固定するとともに1次気
体と2次気体を分離するだめの樹脂層で、樹脂としては
常温で硬化するポリウレタン、エポキシ樹脂等が用いら
れる。Fig. 2 is a prayer view showing a state in which the hollow fiber bundle is housed in a container f. In the figure, (5) is a porous hollow fiber with pores on the wall surface, the pore diameter is 50 to 1000 A, and the inner diameter is 0 to 1.
Porous hollow fibers made of polyethylene, polypropylene, cellulose acetate, or the like and having a wall thickness of 10 to 100 tirne are used. (Hereinafter referred to as "hollow fiber") Hollow fiber (5) As the micropores on the wall become larger, not only water vapor but also air will migrate, so u+oo
Up to X is the practical limit, and holes below 50A are actual η
It is thought that there are no holes. And from the standpoint of total heat transfer ratio or heat transfer coefficient, it is better to make the inner diameter 6 cm smaller.
511. If the total heat transfer surface is more than mrn, the area density of 1t becomes too small, so the upper limit is 5 mm, and if it becomes too thin, the pressure loss increases, so the lower limit is 01 mrn.Furthermore, the wall thickness should be within the range allowed by mechanical strength. Thinner is preferable and practical [10 μm to 100 μm is used. (
6) is a resin layer that fixes the hollow fiber (5) to the container and separates the primary gas from the secondary gas; the resin used is polyurethane, epoxy resin, etc. that hardens at room temperature.
(7)は両;t:@ (8) 、 (9)が開口これ1
両端近くの全周面て2次気本の入口tJ樟と出口(11
)を設けだ円筒型の容器で、容器には圧力が那わらない
ので汎用のプラスチックの容器が用いられる。2次気体
の入口(10ニは1図で上下に入口通1格(秘、(1鎧
が設゛けられ、出口Iには図で上下に出口1川路が設け
られる。(7) is both; t: @ (8), (9) is opening this 1
Entrance tJ camphor and exit (11
) and is a cylindrical container.Since the pressure does not change in the container, a general-purpose plastic container is used. The secondary gas inlet (10 D is provided with 1 inlet channel (secret, (1 armor) at the top and bottom in Figure 1, and 1 outlet channel is provided at the top and bottom in Exit I in the figure.
この発明の一実施例の全熱交換器を9+、′N作する鳴
合、般初に壁面に細孔を有する多孔′U中空′・+p維
(5)を所定の長さて切!@L 、 !1Iii端を熱
融着して閉じた後1両端から1c7n位を樹脂処理し2
て太くする。この両、7i、I、4を太くした中空イ均
維(5)を少なくとも教千本以上束ねて容器(7)の中
に収納し2両端面を、t、l#脂のモノマー液に浸して
硬化させろ。硬化後円端面をカッターで切1所して(図
の一点鎖線の位植′で)中空繊維(5)の中空部を開口
する。次に容器(7)の両端に、中空繊維(5)の中空
部を通過する1次気体の出入口+14) 、 fl!9
を有するふた(lli) 、 (Iηを接着剤あるいは
ネジ溝を切って接合し、第3図の断面図に示す静止式全
熱交換器を得る。図中(5)は1次気体の一端から他端
への流れ、CB)は2次気体の上記他端から一端への流
れを表わf。2次気体は中空繊維間間隙を通すが、これ
らの間隔は中空繊維の両端を樹脂処理する時に太目にす
る度合によシ調整することができる。入口通路Q2+
、 azから入った2次気体は1円筒容器(7)の曲端
全周にわたって設けた入口Q(eから円筒容器(7)に
入り、中空繊維間間隙を中空繊維の長手方向に浴って流
れ2円筒容器(7)の一端全周にわたって設けた出口Q
l)から出[1通路0勅を通って出ていく。入ロ叫、出
口(Illを円筒容器の全周にわたって設けたのは、2
次気体の他端から一端への流れが、中空線41Fの長手
方向にできるだけ沿って流れるようにし、1次気体との
対向&fできろかぎり実:iするためである。When making a total heat exchanger according to an embodiment of this invention, first cut the porous 'U hollow' +p fiber (5) having pores on the wall to a predetermined length. @L,! After heat-sealing the ends of 1Iiii and closing them, treat 1c7n from both ends with resin. 2
Make it thicker. At least 1,000 hollow fibers (5) made of thickened 7i, I, and 4 are bundled together and stored in a container (7), and both ends of the fibers are soaked in a monomer solution of t, l# fat. Let it harden. After curing, the circular end face is cut at one place (at the position indicated by the dashed line in the figure) to open the hollow part of the hollow fiber (5). Next, at both ends of the container (7), there are inlets and outlets for the primary gas that pass through the hollow part of the hollow fiber (5) +14), fl! 9
The static total heat exchanger shown in the cross-sectional view of Fig. 3 is obtained by joining the lid (lli) and (Iη) with adhesive or by cutting a screw groove. Flow to the other end, CB) represents the flow of the secondary gas from the other end to the one end f. The secondary gas passes through the gaps between the hollow fibers, and these gaps can be adjusted depending on the degree of thickening when both ends of the hollow fibers are treated with resin. Entrance passage Q2+
The secondary gas entering from , az enters the cylindrical container (7) from the inlet Q (e) provided around the entire curved end of the cylindrical container (7), and passes through the gaps between the hollow fibers in the longitudinal direction of the hollow fibers. Outlet Q provided all around one end of the flow 2 cylindrical container (7)
l) Exit through [1 passage and 0 lines. The entrance and exit (Ill) were provided all around the cylindrical container was 2.
This is to allow the flow of the secondary gas from the other end to the one end to flow along the longitudinal direction of the hollow wire 41F as much as possible, and to face the primary gas as much as possible.
このようにして溝数された対向流型静止式全熱交換器に
1次気体として例えば冬期の戸外の冷たくて乾燥した空
気を通し、2次気体として例えば暖房された室内の暖か
くて湿度の高い空気を通すと、多孔質中空絣維の壁面を
介して温度(顕熱)と湿g(潜熱)の交換が同時に行な
われ、1次気体は暖められ、加湿されて室内に給気され
る。夏期においては同様の(幾構てより11次気は冷や
され、除湿されて室内に給気されろ。なおこの際壁面の
微細な孔を通して水蒸気ばかシでなく2次気体の排気が
僅かに1次気体の給気に移行するが。In this way, cold and dry air from outside in winter is passed as a primary gas through the counterflow type static total heat exchanger, and as a secondary gas, for example, warm and humid air from a heated room is passed. When air is passed through, temperature (sensible heat) and moisture (latent heat) are exchanged simultaneously through the walls of the porous hollow Kasumi fibers, and the primary gas is warmed, humidified, and supplied into the room. In the summer, the 11th-grade air is cooled, dehumidified, and then supplied into the room.In addition, at this time, not only water vapor but also secondary gas is exhausted through minute holes in the wall. Next, we move on to gas supply.
1次気体側を1次気体送風ファンrよる押込み。Push the primary gas side using the primary gas blower fan r.
2次気体側を2次気体送風ファンによる吸い出し方式と
することにより1次気体側の静fF、f僅かπ高くする
ことにより排便の移行を押えることができ、新鮮な外気
のみが室内に給気される。また水蒸気は水蒸気分圧の差
により波数するのでほとんど影響を受けない。By using a suction method on the secondary gas side using a secondary gas blowing fan, the static fF and f on the primary gas side can be raised by slightly π to suppress the transfer of defecation, and only fresh outside air is supplied into the room. be done. In addition, water vapor is hardly affected because the wave number changes due to the difference in water vapor partial pressure.
以下この発明を実施列および参考例を記して説明する。The present invention will be described below with reference to examples and examples.
実施例1
壁面に縦方向が5oon、横方向が100χ程度の微細
な孔を無数に持ち、内径が2mtn 、外径が2.2閂
のポリエチレン製の多孔質中空伊維(5)を長さ21m
に切断し9両端を熱融着した後、端部から1cmを樹脂
溶液に浸して僅かに太くした。この中空繊維(5)を約
1000本束ねて第2図に示すような形状の直径10C
m、長さ20C1nの容器(力に収納した。深さ2cn
1程にポリウレタンの原液を入れたシャーレに上記容器
(7)の一端を浸して常温で1時間で硬化させた。他端
も同様にして固める。端部から1(1mの所をカッター
で切断することにより中空繊維(5)の端部を開口した
。次に第3図のように両端面に空気の入口と出口を形成
するグラスチック製のふた(11 、07)を接着剤で
接合することにより対向流型静止式全熱交換器を作製し
た。Example 1 A porous hollow fiber made of polyethylene (5) with an inner diameter of 2 mtn and an outer diameter of 2.2 bar, which has countless fine pores of about 5 mm in the vertical direction and 100 χ in the horizontal direction on the wall surface, is made in length. 21m
After cutting it into sections and heat-sealing both ends, 1 cm from the end was immersed in a resin solution to make it slightly thicker. Approximately 1,000 of these hollow fibers (5) are bundled into a shape with a diameter of 10C as shown in Figure 2.
m, length 20C1n container (stored in force. Depth 2cn
One end of the container (7) was immersed in a Petri dish containing a stock solution of polyurethane at room temperature for 1 hour. Tighten the other end in the same way. The end of the hollow fiber (5) was opened by cutting 1 m from the end with a cutter. Next, as shown in Fig. A counterflow type static total heat exchanger was fabricated by joining the lids (11, 07) with adhesive.
実施例2
壁面て・縦方向がsea X、横方向が100A程度の
微細な孔を無数に持ち、内径がi、omyn、外径l、
2mmのポリプロピレン製の中21’l 維f5)を
長さ2(lcrnに切断し2両端を熱融着すると共に端
部からi(1m位を樹脂溶液に浸して僅かに太くした。Example 2 Wall surface - Vertical direction is sea
A 2 mm polypropylene medium fiber f5 of 21'L was cut into lengths 2 (lcrn), both ends were heat-sealed, and about 1 m from the end was immersed in a resin solution to make it slightly thicker.
この多孔質中空#維(5)ヲ約5oon本束ねて第2図
に示すような形状の直径10cm、長さ20cmの容器
(7)K収納した。深さ2m程にポリウレタンの原液を
入れたシャーレに上記の容器(7)の一端を浸して常温
で1時間で硬化させた。他端も同様(でして同めた。端
面から1 (”Illの所をカッターで切lf’liす
ることにより中空繊維(5)の端部を開口した。次に第
3図のように両端部て空気の入口、出口を形成するプラ
スチック製のふた(16) 、 Q7)を接着剤で接合
づ−ること鎖よシ対向流型静止式全然交換器を作′i(
J した。Approximately 5 ounces of these porous hollow fibers (5) were bundled and stored in a container (7) K having a diameter of 10 cm and a length of 20 cm as shown in FIG. One end of the container (7) was immersed in a Petri dish containing a polyurethane stock solution to a depth of about 2 m and hardened at room temperature for 1 hour. The other end was also opened in the same manner.The end of the hollow fiber (5) was opened by cutting 1 (Ill) with a cutter from the end surface.Next, as shown in Figure 3, By attaching the plastic lids (16) and Q7) that form the air inlet and outlet at both ends with adhesive, a chain counterflow type static exchanger was created (
J I did.
実施例3
壁面に平均孔径が100 A程+yの做訓な孔そカ仄F
K持ち、内径1): Q、 5 ’11.iil 、外
径がQ、 5 rrc−n ノ酢c142セルロース製
の中空fノ1シ糾バ5)を長さ20砿に切断し。Example 3 A large hole F with an average pore diameter of about 100 A + y on the wall surface
Holding K, inner diameter 1): Q, 5'11. iii, the outer diameter is Q, 5 rrc-n A hollow f-no.
両端を熱融着すると共に4al’ )It’i浴液に浸
して節11部を僅かに太くした。この多孔貿中空本&
1tifA (51そ約5aaa本束1つて第2図に示
すような形状の直径5crn長で20crury)容器
(1i Vc収納した。深さ2 cm 8Vcポリウレ
タン原液を入れたシャーレに上記容器(7)の一端を浸
して常温で゛1時間で硬化はせた。他端も同様式より搾
出した。Both ends were heat-sealed and immersed in a 4al') It'i bath solution to make the 11th section slightly thicker. This porous trading hollow book &
1tifA (one bundle of about 5AAA, 20 crury with a diameter of 5 crn and a length as shown in Fig. 2) was stored in a container (1i Vc. 2 cm deep, 8 Vc). One end was soaked and cured for 1 hour at room temperature.The other end was squeezed out in the same manner.
あるいは
25−10
理論的には上記のどちらの式を用いでも温度交換効率は
等しく出る筈であるが、実際には多少異なるためその平
均値を求めた。湿度交換率は下記の手1jjqを経て算
出される。空気の温度θにおける飽和水蒸気圧(P ’
)を求める。相対湿度RHVCおけろ水蒸気圧(Plは
次式で表わされろ。Or 25-10 Theoretically, the temperature exchange efficiency should be the same no matter which formula is used, but in reality they differ somewhat, so the average value was calculated. The humidity exchange rate is calculated through the following steps 1jjq. Saturated water vapor pressure (P'
). Relative humidity RHVC Water vapor pressure (Pl is expressed by the following formula.
H
(m7nH9)
100
大気圧(π)を測定することにより絶対湿度(X)が次
式より算出される。H (m7nH9) 100 By measuring atmospheric pressure (π), absolute humidity (X) is calculated from the following formula.
X =、 0.622 X (/′9−H2°
’Icg−dry a 1r )π−P
大気圧を760 gLmH9とすると1次気体および2
次気体の絶対湿度はそれぞれ3.19×10 および
1.60X10 となる。X =, 0.622 X (/'9-H2°
'Icg-dry a 1r) π-P If the atmospheric pressure is 760 gLmH9, the primary gas and
The absolute humidity of the following gases is 3.19×10 and 1.60×10, respectively.
上記手1ilfi Kより1次気体および2次気体の出
口における絶対湿度(XlおよびX2)を求め1次式よ
う湿度交1奥効率を算出した。The absolute humidity (Xl and X2) at the outlet of the primary gas and secondary gas was determined from the above-mentioned method 1ilfi K, and the humidity exchange efficiency was calculated using the linear equation.
あるいは
温度(顕熱)および湿度(潜熱)を同時に交換jる全熱
交換器の場合、これらをまとめてエンクルビーの交換効
率として表わすこともできろ。エンクルビー(を曇ま空
気の温度および絶対湿度を決めれば空気線図より求める
ことができる。1次気体および2次気体のエンタルピー
はそれぞれ41および15.8 K cal/lc9−
d ry a i rであろo +i+a−,’4にし
て1次気体および2次気体の出口におけるエンクルビー
(11および12)ヲ求め2次式よりエンタルビ−交換
効率(全熱交換効率)を算出した。Alternatively, in the case of a total heat exchanger that exchanges temperature (sensible heat) and humidity (latent heat) at the same time, these can also be collectively expressed as the Nckleby exchange efficiency. The enthalpy of the primary gas and the secondary gas are 41 and 15.8 K cal/lc9-, respectively, by determining the temperature and absolute humidity of the cloudy air.
The enthalpy exchange efficiency (total heat exchange efficiency) was calculated from the quadratic formula by determining the enclaves (11 and 12) at the outlet of the primary gas and secondary gas with d ry a i r o + i + a-, '4. .
あるいは
湿度交換効率およびエンタルピー交換効率の場合も上記
2式の平均値をとった。測定条件を同一にするため、参
考例の場合1次気体および2次気体の風量を1 ’OO
m”/fiとし、実施例の場合は通気断面請に比例した
風量を通した。風量および各交換効率の測定結果を表2
に示す。Alternatively, in the case of humidity exchange efficiency and enthalpy exchange efficiency, the average value of the above two equations was taken. In order to make the measurement conditions the same, in the reference example, the air volume of the primary gas and secondary gas was set to 1'OO
m"/fi, and in the case of the example, the air volume was proportional to the ventilation cross section. The measurement results of air volume and each exchange efficiency are shown in Table 2.
Shown below.
表 2
表2より明らかなようにこの発明の実施例で得だ温度交
換効率は参考例の15%に対して80条以上と優れてい
ることがわかる。湿度交換効率も参考例の65%に対し
て1〜5%の向上が認められ。Table 2 As is clear from Table 2, the temperature exchange efficiency obtained in the example of the present invention is superior to 80 or more, compared to 15% in the reference example. The humidity exchange efficiency was also improved by 1 to 5% compared to 65% in the reference example.
その結果、エンタルピー交換効率は参考例の72係に対
して4〜8チの向上が認められた。As a result, the enthalpy exchange efficiency was found to be improved by 4 to 8 times compared to the reference example of 72 times.
表1よシ中空橙維の内径が卸1くなる程伝全熱面積の面
積密度が増大するため各交換効率が大きく向上すること
がわかるが、内径が細くなる程送風における圧力損失が
大きくなるため、実用的には内径が1關以上の方が好ま
しい。From Table 1, it can be seen that as the inner diameter of the hollow orange fiber decreases, the area density of the total heat transfer area increases, so each exchange efficiency improves greatly.However, as the inner diameter becomes smaller, the pressure loss during air blowing increases. Practically speaking, it is preferable that the inner diameter is one diameter or more.
この発明による静止式全熱交換器はその構造上。The static total heat exchanger according to this invention has a unique structure.
円筒形に限定されず、直方体とすることもできる。It is not limited to a cylindrical shape, but can also be a rectangular parallelepiped.
特に通気断面の形状を幅の狭い直方体としても全熱交換
器としての性能は変化しないため、最近の換気装置に要
求される薄型化が可能であり、全熱交換器の容器を送風
器、あるいは送風ダクトと一体化することも可能であり
、換気装置の薄型化。In particular, the performance of the total heat exchanger does not change even if the cross-sectional shape of the ventilation section is a narrow rectangular parallelepiped, so it is possible to reduce the thickness required for recent ventilation systems, and the total heat exchanger container can be used as a blower or It can also be integrated with the ventilation duct, making the ventilation system thinner.
小型化に対しても効果が太きい。It is also very effective in miniaturization.
以上説明したように、この発明によれば壁面に細孔を有
する多孔質中空繊維を束ね、中空部分を残して両端部を
封止し、その一端から中空部分を通過するように2次気
体を導入し、上記一端側から排出して、1次気体と2次
気体の温#(顕熱)交換及び湿度(潜熱)交換をするよ
うにすることにより、伝全熱面積の面積密度を大きくす
ることができるので、高い全熱交換効率と小型化を実現
できる静止式全熱交換器を提供できる。又、2次気体を
上記他端側刃・ら導入し、中空絣維間間隙を中空繊維に
泊って流し、上記−妨、1f!llに排出することによ
り、1次気体流と2次気体流を対向させることができる
ので、さらに高い全熱交関率の静止式全熱交換器を提供
することができる。As explained above, according to the present invention, porous hollow fibers having pores on the wall are bundled, both ends are sealed leaving a hollow part, and secondary gas is introduced from one end to pass through the hollow part. The areal density of the total heat transfer area is increased by introducing and discharging from the one end side to exchange temperature (sensible heat) and humidity (latent heat) between the primary gas and the secondary gas. Therefore, it is possible to provide a static total heat exchanger that can realize high total heat exchange efficiency and miniaturization. Also, a secondary gas is introduced through the blade on the other end, and flows through the hollow fibers in the gaps between the hollow Kasumi fibers, and the above-mentioned - 1f! Since the primary gas flow and the secondary gas flow can be made to oppose each other by discharging the gas to 11, it is possible to provide a stationary total heat exchanger with an even higher total heat exchange coefficient.
第1図は従来の直交流型静止式全熱交換器の構造を示す
斜視図で、第2図及び第3図はこの発明の一実施例の対
向流型静止式全熱交喚器を示す断面図で、第2図は製造
工程途中の容器に中空繊組2束を収納した状態を、第3
図は完成状態を表わす。
図において、(1)は仕切板、(2)は間隔板、(3)
は給気の流路、(4)は排気の流路、(イ)は給気の流
れ9便)は排気の流れ、(5)は壁面に細孔を廟°する
多孔質中空繊維、(6)は樹脂層、(7)は容器、 f
lFl+ 、 tl++は2次気体の出入口、(1滲−
51は1次気体の出入口、 (16) 、 f+7)は
ふた、(A)は1次気体の流れ、(B)は2次気体の流
れを表わす。
代理人 太 岩 噌 雄FIG. 1 is a perspective view showing the structure of a conventional cross-flow type static total heat exchanger, and FIGS. 2 and 3 show a counter-flow type static total heat exchanger according to an embodiment of the present invention. This is a cross-sectional view, and Figure 2 shows a state in which two bundles of hollow fiber bundles are stored in a container in the middle of the manufacturing process, and a third one.
The figure shows the completed state. In the figure, (1) is a partition plate, (2) is a spacing plate, (3)
is the supply air flow path, (4) is the exhaust flow path, (a) is the supply air flow (9) is the exhaust flow, (5) is the porous hollow fiber with pores in the wall, ( 6) is a resin layer, (7) is a container, f
lFl+, tl++ are secondary gas inlets and outlets;
Reference numeral 51 represents the inlet and outlet of the primary gas, (16), f+7) represents the lid, (A) represents the flow of the primary gas, and (B) represents the flow of the secondary gas. Agent Masao Futaiwa
Claims (1)
分を通過するよう[1次気体を導入し他端から排出する
とともに、上記他端側から中空繊維間間隙を通過するよ
うに2次気体を導入し、上記一端側から排出して、1次
気体と2次気体の温度(顕熱)交換及び湿度(潜熱)交
換を1−ろようにした静止式全熱交換器。 (2)特許8rj求の範囲第1項記載のものにおいて。 中空終維壁面(である細孔の径が50〜1000 Aで
ある静止式全熱交換器。 (3)特許請求の範囲第1.IJ又は第2項記載のもの
において、上記他端側から導入された2次気体が、中空
繊維間間隙を中空繊維の長手方向に活って流れて上記一
端側から排出されるようにした静止式全熱交換器。 (4)特許請求の範囲第1jnないし第3頂のいずれか
に記載のものにおいて、中空繊維の内径が0.1朋〜Q
、 5 mm 、肉厚が10μm〜100μmである静
止式全熱交換器。 (5)特許請求の範囲第1f、白ないし第4項のいずれ
かに記載のものにおいて、中空部!維の素材がポリエチ
レン、ポリプロピレン及び酢酸セルロースのうちのいず
れかである静止式全熱交換器。[Claims] fi+ A bundle of porous hollow fibers containing pores on the wall surface. Both ends are sealed leaving a hollow part, and the primary gas is introduced from one end and discharged from the other end, and the second gas is passed through the gap between the hollow fibers from the other end. A static total heat exchanger in which temperature (sensible heat) and humidity (latent heat) exchange is performed between the primary gas and the secondary gas by introducing secondary gas and discharging it from the one end side. (2) In the matter described in item 1 of the scope of patent 8rj. A static total heat exchanger in which the diameter of the pores is 50 to 1000 A. A static total heat exchanger in which the introduced secondary gas flows in the longitudinal direction of the hollow fibers through the gaps between the hollow fibers and is discharged from the one end side. (4) Claim No. 1jn The hollow fiber has an inner diameter of 0.1 to Q
, 5 mm, and a static total heat exchanger with a wall thickness of 10 μm to 100 μm. (5) In the product described in any one of claims 1f and 4, the hollow portion! A static total heat exchanger whose fiber material is polyethylene, polypropylene, or cellulose acetate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58066348A JPS59195095A (en) | 1983-04-15 | 1983-04-15 | Stationary type total heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58066348A JPS59195095A (en) | 1983-04-15 | 1983-04-15 | Stationary type total heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59195095A true JPS59195095A (en) | 1984-11-06 |
Family
ID=13313262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58066348A Pending JPS59195095A (en) | 1983-04-15 | 1983-04-15 | Stationary type total heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59195095A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6132275A (en) * | 1997-09-12 | 2000-10-17 | Honda Giken Kogyo Kabushiki Kaisha | Lubricating oil managing arrangement for an outboard marine drive engine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS546168A (en) * | 1977-06-17 | 1979-01-18 | Teijin Ltd | Humidification by gas-liquid heat exchange |
JPS5437955A (en) * | 1977-08-30 | 1979-03-20 | Teijin Ltd | Total heat exchanger ventilator |
-
1983
- 1983-04-15 JP JP58066348A patent/JPS59195095A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS546168A (en) * | 1977-06-17 | 1979-01-18 | Teijin Ltd | Humidification by gas-liquid heat exchange |
JPS5437955A (en) * | 1977-08-30 | 1979-03-20 | Teijin Ltd | Total heat exchanger ventilator |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6132275A (en) * | 1997-09-12 | 2000-10-17 | Honda Giken Kogyo Kabushiki Kaisha | Lubricating oil managing arrangement for an outboard marine drive engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07504486A (en) | Molded baffle heat exchanger | |
CN105765309B (en) | Method and system for turbulence type corrosion-resistance heat exchanger | |
US10317095B2 (en) | Counter-flow energy recovery ventilator (ERV) core | |
US4051898A (en) | Static heat-and-moisture exchanger | |
KR890003897B1 (en) | heat transmitter | |
AU2006326947B2 (en) | Evaporative cooling device | |
US8486178B2 (en) | Cross-pleated membrane cartridges, and method and apparatus for making cross-pleated membrane cartridges | |
JPH0313515B2 (en) | ||
JP5110641B2 (en) | Total heat exchanger | |
US20080085437A1 (en) | Pleated heat and humidity exchanger with flow field elements | |
US6076598A (en) | Opposed flow heat exchanger | |
US10012444B2 (en) | Multiple opening counter-flow plate exchanger and method of making | |
EA009344B1 (en) | Heat exchanger and method of manufacture thereof | |
JPH06194093A (en) | Total enthalpy heat exchanger | |
CN106662342A (en) | Improved enthalpy exchanger | |
JPS5921641B2 (en) | plate type dialyzer | |
JPS60238689A (en) | Heat exchanger | |
JPS59195095A (en) | Stationary type total heat exchanger | |
JP2011145003A (en) | Total enthalpy heat exchange element | |
JPS6152594A (en) | Heat exchanger | |
JP2008070070A (en) | Total heat exchanger | |
JP5191877B2 (en) | Total heat exchanger | |
JPS59183291A (en) | Heat exchanger of static type | |
JPS6172949A (en) | Humidifier | |
JPS6124995A (en) | Heat exchanger |