JPS59183291A - Heat exchanger of static type - Google Patents
Heat exchanger of static typeInfo
- Publication number
- JPS59183291A JPS59183291A JP58056736A JP5673683A JPS59183291A JP S59183291 A JPS59183291 A JP S59183291A JP 58056736 A JP58056736 A JP 58056736A JP 5673683 A JP5673683 A JP 5673683A JP S59183291 A JPS59183291 A JP S59183291A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- hollow fibers
- hollow
- container
- secondary gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003068 static effect Effects 0.000 title claims abstract description 26
- 239000012510 hollow fiber Substances 0.000 claims abstract description 49
- -1 polyethylene Polymers 0.000 claims abstract description 10
- 239000004698 Polyethylene Substances 0.000 claims abstract description 5
- 239000004743 Polypropylene Substances 0.000 claims abstract description 5
- 229920002301 cellulose acetate Polymers 0.000 claims abstract description 5
- 229920000573 polyethylene Polymers 0.000 claims abstract description 5
- 229920001155 polypropylene Polymers 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 3
- 238000012546 transfer Methods 0.000 abstract description 14
- 229920005989 resin Polymers 0.000 abstract description 8
- 239000011347 resin Substances 0.000 abstract description 8
- 239000000835 fiber Substances 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 42
- 238000009423 ventilation Methods 0.000 description 11
- 238000005192 partition Methods 0.000 description 8
- 125000006850 spacer group Chemical group 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000011550 stock solution Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/06—Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
- F28F21/062—Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/56—Heat recovery units
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は新鮮な外気の給気と汚れた室内の空気の排気
を同時に行なう換気装置、あるいはビル等の空調機械室
の新鮮空気処理装置(外気と室内空気の熱交換)等に用
いる熱交換器に関し、特に径の小さい中空繊維を多数本
束ねて用いることにより、伝熱面の面積密度を大巾に増
加でき、高い熱交換率と熱交換器の小型化を実現する静
止式熱交換器に関するものである。Detailed Description of the Invention This invention relates to a ventilation system that simultaneously supplies fresh outside air and exhausts dirty indoor air, or a fresh air processing system (heat exchanger between outside air and indoor air) for an air conditioning machine room in a building, etc. ), etc., by bundling a large number of hollow fibers with a particularly small diameter, the areal density of the heat transfer surface can be greatly increased, achieving a high heat exchange rate and miniaturization of the heat exchanger. This relates to a static heat exchanger.
近時、冷暖房効果を高めるために住居空間の断熱化、気
密化が進むにつれて換気の重要性が再認識されてきてい
る。冷暖房効果を損わずに換気を行なう方法としては、
排気と給気との間で熱交換する方法が有効である。この
要求に応えるものとして従来より第1図の斜視図に示す
ような給気と排気を仕切板を介して熱交換させる静止式
熱交換器(特許登録番号930986号)がある。静止
式熱交換器は第1図に示すように、平らな仕切板(1)
と波形をした間隔板(2)を交互に積層する際に間隔板
の方向を一段おきに直交させることにより、給気の流路
(3)と排気の流路(4)を形成する。(イ)は給気の
流れ、(ロ)は排気の流れを示す。この際、仕切板の間
隔は狭くする程段数が増加し、熱交換面積が増大するの
で好ましく、現在は2mのものが市販されている。間隔
板の波型のピッチも狭い方が空気流と仕切板との間の熱
伝導率が高くなるので好ましく、現在は4器のものが市
販されている。この静止式熱交換器は構造上給気と排気
の流路な対向させることができないが、熱交換効率は直
交あるいは斜交流よりも対向流の方が優れる。そこで本
発明者らは静止式熱交換器でありながら、伝熱面積の面
積密度が大きく、好ましくは、給気と排気の流路が対向
し、高い熱交換効率と熱交換器の小型化を実現できるよ
うな熱交換器を開発すべく、鋭意研究を重ねた。In recent years, as living spaces have become more insulated and airtight in order to improve heating and cooling effects, the importance of ventilation has been reaffirmed. As a way to ventilate without impairing the cooling and heating effects,
An effective method is to exchange heat between exhaust air and supply air. To meet this demand, there has been a static heat exchanger (Patent Registration No. 930986), which exchanges heat between supply air and exhaust air via a partition plate, as shown in the perspective view of FIG. A static heat exchanger has a flat partition plate (1) as shown in Figure 1.
By alternately stacking the wave-shaped spacer plates (2) and making the directions of the spacer plates perpendicular to each other every other step, a supply air flow path (3) and an exhaust air flow path (4) are formed. (a) shows the flow of air supply, and (b) shows the flow of exhaust air. At this time, it is preferable to narrow the interval between the partition plates because the number of stages increases and the heat exchange area increases, and 2 m partition plates are currently commercially available. It is preferable that the pitch of the corrugations of the spacer plates be narrower, since this increases the thermal conductivity between the airflow and the partition plates, and four pieces are currently on the market. Although this static heat exchanger cannot have supply air and exhaust air flow paths facing each other due to its structure, heat exchange efficiency is better with counterflow than with orthogonal or oblique flow. Therefore, the inventors of the present invention have developed a stationary heat exchanger that has a large area density of heat transfer area, preferably has air supply and exhaust air flow paths facing each other, and has high heat exchange efficiency and a compact heat exchanger. We conducted extensive research to develop a heat exchanger that would make this possible.
この発明は、上記目的の結果なされたもので。This invention was made as a result of the above objectives.
中空部分を残して両端部を封止した中空繊維束の一端か
ら、中空部分を通過するように1次気体な導入し、他端
から排出するとともに、上記他端側から中空繊維間間隙
を通過するように2次気体を導入8シ、上記一端側から
排出して、1次気体と2次気体の熱交換をするようにす
ることにより、伝熱面積の面積密度を大きくし高い熱交
換率と小型化を実現できる静止式熱交換器を提供しよう
とするものである。又、2次気体を上記他端側から導入
し中空繊維間間隙を中空繊維に沿って流し、上記一端側
に排出することにより、1次気体流と2次気体流を対向
させ、さらに高い熱交換率を実現できる静止式熱交換器
を提供しようとするものである。Primary gas is introduced from one end of the hollow fiber bundle with both ends sealed, leaving a hollow part, so as to pass through the hollow part, and is discharged from the other end, while passing through the gap between the hollow fibers from the other end. By introducing the secondary gas and discharging it from the one end side so as to exchange heat between the primary gas and the secondary gas, the areal density of the heat transfer area is increased and a high heat exchange rate is achieved. The purpose of this project is to provide a static heat exchanger that can be made smaller and more compact. In addition, by introducing the secondary gas from the other end side, flowing along the hollow fibers through the gaps between the hollow fibers, and discharging it to the one end side, the primary gas flow and the secondary gas flow are opposed to each other, and even higher heat is generated. The present invention aims to provide a static heat exchanger that can achieve a high exchange rate.
以下この発明の実施例を図に基いて説明する。Embodiments of the present invention will be described below with reference to the drawings.
第2図は中空繊維束を容器に収納した状態を示す断面図
である。図中(5)は中空繊維で、内径が0.1n〜5
11IIlのポリエチレン、ポリプロピレンあるいは酢
酸セルロース等から成るものが用いられる。中空繊維(
5)の内径は伝熱面積あるいは熱伝達率の立場からは細
い方が好ましく、5W!L以上になると伝熱面の面積密
度が小さくなりすぎるので限度であり、又、あまり細く
なると圧損が大きくなるため0.11111が下限であ
る。中空繊維(5)の肉厚は機械強度が許す範囲で薄い
方が好ましく、実用的には10μm〜100/jmが用
いられる。(6)は中空繊維(5)を容器に固定すると
ともに1次気体と2次気体を分離するための樹脂層、樹
脂としては常温で硬化するポリウレタン、エポキシ樹脂
等が用いられる。(7)は両端fil (91が開口さ
れ1両端近くの全周面に2次気体の入口+tgと出口(
111を設けた円筒型の容器で、容器には圧力が加わら
ないので汎用のプラスチックの容器が用いられる。2次
気体の入口(1αには1図で上下に入口通路aの02が
設けられ、出口+111には1図で上下に出口通路(1
31(131が設けられる。FIG. 2 is a sectional view showing a state in which the hollow fiber bundle is housed in a container. In the figure, (5) is a hollow fiber with an inner diameter of 0.1n to 5.
11III polyethylene, polypropylene, cellulose acetate, or the like is used. Hollow fiber (
The inner diameter of 5) is preferably smaller from the standpoint of heat transfer area or heat transfer coefficient, and is 5W! If it becomes more than L, the areal density of the heat transfer surface becomes too small, which is the limit, and if it becomes too thin, the pressure loss increases, so 0.11111 is the lower limit. The thickness of the hollow fibers (5) is preferably as thin as the mechanical strength allows, and practically, a thickness of 10 μm to 100/jm is used. (6) is a resin layer for fixing the hollow fiber (5) to the container and separating the primary gas from the secondary gas, and the resin used is polyurethane, epoxy resin, etc. that hardens at room temperature. (7) has both ends fil (91 opened and the secondary gas inlet + tg and outlet (
It is a cylindrical container provided with a 111, and since no pressure is applied to the container, a general-purpose plastic container is used. The secondary gas inlet (1α is provided with an inlet passage a 02 above and below in Figure 1, and the outlet +111 is provided with an outlet passage (1) above and below in Figure 1.
31 (131) is provided.
この発明の熱交換器を製作する場合、最初に中空部Hj
(51を所定の長さに切断し9両端を熱融着して閉じた
後9両端から10111位を樹脂処理して太くする。こ
の両端を太くした中空繊維(5)を少なくとも数千本以
上束ねて容器(7)の中に収納し1両端面を樹脂のモノ
マー液に浸して硬化させる。硬化後両端面をカッターで
切断して(図の一点鎖線の位置で)中空繊維(5)の中
空部を開口する。次に容器(7)の両端に中空繊維の中
空部を通過する1次気体の出入口α411151を有す
るふた061 (171を接着剤あるいはネジ溝を切っ
て接合し、第3図の断面図に示す静止式熱交換器を得る
。図中(5)は1次気体の一端から他端への流れ、(B
)は2次気体の上記他端から一端への流れを表わす。2
次気体は中空繊維間間隙を通すが、これらの間隔は中空
繊維の両端を樹脂処理する時に太目にする度合により調
整することができる。入口通路ag (121から入っ
た2次気体は円筒容器(7)の他端全周にわたって設け
た入口fiGから円筒容器(7)に入り、中空繊維間間
隙を中空繊維の長手方向に沿って流れ1円筒容器(7)
の一端全周にわたって設けた出口(Illから出口通路
(1鴇を通って出ていく。入口部出口(11)を円筒容
器の全周にわたって設けたのは、2次気体の他端から一
端への流れが、中空繊維の長手方向にできるだけ沿って
流れるようKL、1次気体との対向流をできるかぎり実
現するためである。When manufacturing the heat exchanger of this invention, first the hollow part Hj
(After cutting 51 to a predetermined length and closing both ends of 9 by heat-sealing, process the 10111th position from both ends of 9 with resin to make it thicker. At least several thousand hollow fibers (5) with thickened both ends The bundle is stored in a container (7), and both end faces are immersed in a resin monomer solution to cure it.After curing, both end faces are cut with a cutter (at the position indicated by the dashed-dotted line in the figure) to form hollow fibers (5). The hollow part is opened.Next, the lid 061 (171) having an inlet/outlet α411151 for the primary gas passing through the hollow part of the hollow fiber is attached to both ends of the container (7) with adhesive or by cutting a thread groove. A static heat exchanger is obtained as shown in the cross-sectional view. In the figure (5) is the flow of primary gas from one end to the other end, (B
) represents the flow of secondary gas from the other end to the one end. 2
The gas passes through the gaps between the hollow fibers, and these gaps can be adjusted by adjusting the degree of thickening when both ends of the hollow fibers are treated with resin. The secondary gas that entered from the inlet passage ag (121) enters the cylindrical container (7) from the inlet fiG provided all around the other end of the cylindrical container (7), and flows through the gaps between the hollow fibers along the longitudinal direction of the hollow fibers. 1 cylindrical container (7)
The outlet (11) is provided around the entire circumference of the cylindrical container from the outlet (11) provided all around the cylindrical container. This is to realize counterflow with KL and the primary gas as much as possible so that the flow follows the longitudinal direction of the hollow fiber as much as possible.
このようにして構成された対向流型の静止式熱交換器に
1次気体として例えば冬期の戸外の冷たい空気を通し、
2次気体として例えば暖房された室内の暖かい空気を通
すと熱交換が行なわれ、−次気流は暖められて室内に給
気される。夏期においては同様の機構により一次気流は
冷やされて室内に給気される。なおこの際、−次気流と
二次気流の間では空気の移行は起こり得す、新鮮な外気
のみが室内に給気される。For example, cold air from outdoors in winter is passed as a primary gas through the counterflow type static heat exchanger configured in this way.
When warm air from a heated room is passed through as a secondary gas, heat exchange takes place, and the secondary airflow is warmed and supplied into the room. In summer, a similar mechanism cools the primary airflow and supplies it into the room. Note that at this time, air may migrate between the secondary airflow and the secondary airflow, and only fresh outside air is supplied into the room.
以下この発明を実施例および参考例を記して説明する。This invention will be described below with reference to Examples and Reference Examples.
実施例1
内径が28.外径が2.2mのポリエチレン製の中空繊
維(5)を長さ20(mに切断し9両端を熱融着した後
、樹脂溶液に浸して端部から1crn位を僅かに太くし
た。この中空細管を約1000本を束ねて第2図に示す
ような形状の直径10cm、長さ20(mの容器(7)
に収納した。深さ2cIrL程にポリウレタンの原液を
入れたシャーレに上記の容器の一端を浸して常温で1時
間で硬化させた。他端も同様にして固めた。Example 1 The inner diameter is 28. A polyethylene hollow fiber (5) with an outer diameter of 2.2 m was cut into a length of 20 m, both ends of which were heat-sealed, and then soaked in a resin solution to make the fiber slightly thicker by about 1 crn from the end. Approximately 1,000 hollow tubes are bundled together to form a container (7) with a diameter of 10 cm and a length of 20 (m) as shown in Figure 2.
It was stored in. One end of the above container was immersed in a petri dish containing a polyurethane stock solution to a depth of about 2 cIrL, and was allowed to harden at room temperature for 1 hour. The other end was hardened in the same way.
端面から1cIrLの所をカッターで切断することKよ
り中空細管の中空部を開口した。次に第3図のように両
端面に空気の入口と出口を形成するブラ”スチクク製の
ふたQQ (171を接着剤で接合することにより対向
流型静止式熱交換器を作製した。The hollow part of the hollow tube was opened by cutting with a cutter at a distance of 1 cIrL from the end surface. Next, as shown in Fig. 3, a counter-flow type static heat exchanger was fabricated by bonding a lid QQ (171) made of brass material with an adhesive to form an air inlet and an outlet on both end faces.
実施例2゜
内径が1.Q m 、外径が1.2藷のポリプロピレン
製の中空繊維(5)を長さ20cmに切断し9両端を熱
融着すると共に端部から1α位を僅かに太くした。この
中空繊維を約5000本を束ね、第2図に示すような形
状の直径10 cm 、長さ20cmの容器(7)に収
納した。Example 2 The inner diameter is 1. A polypropylene hollow fiber (5) with Q m and an outer diameter of 1.2 cm was cut into a length of 20 cm, both ends were heat-sealed, and the fiber was made slightly thicker at 1α from the end. Approximately 5,000 of these hollow fibers were bundled and housed in a container (7) having a shape as shown in FIG. 2 and having a diameter of 10 cm and a length of 20 cm.
深さ2σ程にポリウレタンの原液を入れたシャーレに上
記の容器の一端を浸して常温で1時間で硬化させた。他
端も同様にして固めた。端面から11の所をカッターで
切断することにより中空繊維の中空部を開口した。次に
第3図のように両端面に空気の入口と出口を形成するプ
ラスチック類のふた(161(19を接着剤で接合する
ことにより対向流型静止式熱交換”器を作製した。One end of the container was immersed in a petri dish containing a polyurethane stock solution to a depth of about 2σ, and the solution was cured at room temperature for 1 hour. The other end was hardened in the same way. The hollow portion of the hollow fiber was opened by cutting with a cutter at 11 points from the end face. Next, as shown in FIG. 3, a counter-flow type static heat exchanger was fabricated by bonding a plastic lid (161 (19) with an adhesive to form an air inlet and an outlet on both end faces.
実施例3゜
内径が9.5m、外径が0.6mの酢酸セルロース製の
中空繊維(5)を長さ20crrLに切断し9両端な熱
融着すると共に端部を僅かに太くした。この中空繊維を
約5000本を束ね、第2図に示すような形状の直径5
ぼ、長さ20cmの容器(7)に収納した。深さ2cI
IL程のポリウレタンの原液を入れたシャーレに上記容
器の一端を浸して常温で1時間で硬化させた。他端も同
様にして固めた。端面から11111の所をカッターで
切断することにより中空繊維の中空部を開口した。次に
第3図のように両端面に空気の入口と出口を形成するプ
ラスチック類のふた叫0りを接着剤で接合することによ
り対向流型静止式熱交換器を作製した。Example 3 A cellulose acetate hollow fiber (5) with an inner diameter of 9.5 m and an outer diameter of 0.6 m was cut into a length of 20 crrL, and both ends were heat-sealed and the ends were made slightly thicker. Approximately 5,000 of these hollow fibers are bundled together to create a shape with a diameter of 5 mm as shown in Figure 2.
It was stored in a container (7) with a length of 20 cm. depth 2cI
One end of the container was immersed in a Petri dish containing an IL-sized polyurethane stock solution and allowed to harden at room temperature for 1 hour. The other end was hardened in the same way. The hollow portion of the hollow fiber was opened by cutting with a cutter at a point 11111 from the end face. Next, as shown in FIG. 3, a counter-flow type static heat exchanger was fabricated by bonding plastic covers forming air inlets and outlets on both end faces with adhesive.
参考例
坪量801/rr?、厚さ0.1諷の製紙を仕切板とし
て用い9坪量too p/rr?、厚さ015鰭のクラ
フト紙を間隔板として第1図の構造をした直交流型静止
式熱交換器を作製した。但し、仕切板の間隔は2wm。Reference example basis weight 801/rr? , 9 tsubo weight too p/rr? using paper with a thickness of 0.1 as a partition plate. A cross-flow type static heat exchanger having the structure shown in FIG. 1 was fabricated using kraft paper with a thickness of 015 fins as a spacer plate. However, the spacing between the partition plates is 2wm.
間隔板のピッチは4+++@とじ、−辺が15cmの立
方体とする。The pitch of the spacer plates is 4+++@bound, and the spacer is a cube with a negative side of 15 cm.
上記実施例および参考例で得た静止式熱交換器の通気断
面積2通気路長(−次気体と二次気体が熱交換できる通
気路の有効長さ)、素子の体積(通気断面積X通気路長
)、伝熱面積(熱交換に有効な面積を表わし、中空繊維
の場合は外径と内径の平均径を用いて伝熱面積を算出し
た。)、および伝熱面積の面積密度を求めた結果を表1
.に示す。The ventilation cross-sectional area of the static heat exchanger obtained in the above examples and reference examples 2 Ventilation path length (effective length of the ventilation path that allows heat exchange between the negative and secondary gases), the volume of the element (ventilation cross-sectional area (ventilation path length), heat transfer area (represents the effective area for heat exchange; in the case of hollow fibers, the heat transfer area was calculated using the average diameter of the outer diameter and inner diameter), and the areal density of the heat transfer area. Table 1 shows the obtained results.
.. Shown below.
表1゜
表1より明らかなように伝熱面積の面積密度は参考例に
比べて実施例は2〜10倍と大巾に増加している。次に
熱交換効率の測定を行なうために一次気体として温度1
0℃の空気を、二次気体として温度25℃の空気を通し
一次気体の出口温度(θl)および二次気体の出口温度
(θ2)を測定し1次式より算出した。Table 1 As is clear from Table 1, the areal density of the heat transfer area is 2 to 10 times greater in the Examples than in the Reference Examples. Next, in order to measure the heat exchange efficiency, the temperature of the primary gas is 1.
Air at 0° C. was passed through air at a temperature of 25° C. as a secondary gas, and the outlet temperature (θl) of the primary gas and the outlet temperature (θ2) of the secondary gas were measured and calculated from a linear equation.
あるいは
5−02
熱交換効率= −、−−−−−−−X 100 (チ
)25 − 10
理論的には上記のどちらの式を用いても熱交換効率は等
しく出る筈であるが、実際には多少異なるためその平均
値を求めた。測定条件を同一にするため、参考例の場合
に一次気体および二次気体の風量を100 r+?/h
とし、実施例の場合は通気断面積に比例した風量を通し
た。風量および熱交換効率の平均値を表2に示す。Or 5-02 Heat exchange efficiency = -, ---- Since there are some differences between the values, the average value was calculated. In order to make the measurement conditions the same, in the case of the reference example, the air volume of the primary gas and secondary gas was set to 100 r+? /h
In the case of the example, an air volume proportional to the ventilation cross-sectional area was passed through. Table 2 shows the average values of air volume and heat exchange efficiency.
表2゜
表2より明らかなようにこの発明の実施例で得た平均熱
交換効率は参考例の75優に対して80%以上と優れて
いることがわかる。平均熱交換効率の測定結果より、対
向流型とした場合、伝熱面の面積密度は800〜程度で
も十分効果がある。中空繊維の内径が細くなる程、圧力
損失が大きくなるため、実用的には内径が1震以上の方
が好ましい。Table 2 As is clear from Table 2, the average heat exchange efficiency obtained in the examples of the present invention is superior to 80% or more, compared to 75 in the reference example. From the measurement results of the average heat exchange efficiency, in the case of a counter-flow type, an area density of the heat transfer surface of about 800 or more is sufficiently effective. As the inner diameter of the hollow fiber becomes smaller, the pressure loss increases, so it is practically preferable that the inner diameter is one stroke or more.
この発明による静止式熱交換器はその構造上。The static heat exchanger according to this invention has a unique structure.
円筒形に限定されず、直方体とすることもできる。It is not limited to a cylindrical shape, but can also be a rectangular parallelepiped.
特に通気断面の形状を幅の狭い長方形としても熱交換器
の性能は変化しないため、最近の換気装置に要求される
薄型化が可能であり、熱交換器の容器を送風器、あるい
は送風ダクトと一体化することも可能であり、換気装置
の薄型化、小型化に対しても効果が太きい。In particular, the performance of the heat exchanger does not change even if the shape of the ventilation cross section is a narrow rectangle, so it is possible to reduce the thickness required for modern ventilation equipment, and the heat exchanger container can be used as a blower or a blower duct. It is also possible to integrate them, which is highly effective in making ventilation equipment thinner and smaller.
以上説明したように、この発明によれば、中空部分を残
して両端部を封止した中空繊維束の一端から、中空部分
を通過するように1次気体を導入し、他端から排出する
とともに、上記他端側から中空繊維間間隙を通過するよ
うに2次気体を導入し、上記一端側から排出して、1次
気体と2次気体の熱交換をするようにすることにより、
伝熱面積の面積密度を大きくすることができるので高い
熱交換率と小型化を実現できる静止式熱交換器を提供で
きる。又、2次気体を上記他端側から導入し、中空繊維
間間隙を中空繊維に沿って流し、上記一端側に排出する
ことにより、1次気体流と2次気体流を対向させること
ができるので、さらに高い熱交換率の静止式熱交換器を
提供することができる。As explained above, according to the present invention, primary gas is introduced from one end of the hollow fiber bundle whose both ends are sealed, leaving a hollow part, so as to pass through the hollow part, and is discharged from the other end. , by introducing secondary gas from the other end side so as to pass through the gap between the hollow fibers and exhausting it from the one end side, thereby exchanging heat between the primary gas and the secondary gas,
Since the areal density of the heat transfer area can be increased, it is possible to provide a stationary heat exchanger that can achieve a high heat exchange rate and be compact. Further, by introducing the secondary gas from the other end side, flowing through the gaps between the hollow fibers along the hollow fibers, and discharging it to the one end side, the primary gas flow and the secondary gas flow can be made to oppose each other. Therefore, a stationary heat exchanger with an even higher heat exchange rate can be provided.
第1図は従来の直交流型静止式熱交換器の構造を示す斜
視図で、第2図及び第3図はこの発明の一実施例の対向
流型静止式熱交換器を示す断面図で、第2図は製造工程
途中の、容器に中空繊維束を収納した状態を、第3図は
完成状態を表わす。
図において、(1)は仕切板、(2)は間隔板、(3)
は給気の流路、(4)は排気の流路、(イ)は給気の流
れ、(ロ)は排気の流れ、(5)は中空繊維、(6)は
樹脂層、(7)は容器、 +11+111は2次気体の
出入口、 111flsは1次気体の出入口、叫αりは
ふた。(A)は1次気体の流れ、(均は2次気体の流れ
を表わす。
なお1図中、同一符号は同−又は相当部分を示す。
代理人 葛 野 信 −
手続補正曹(自発)
58 7 15
1、事件の表示 特願昭58−56736号2、発明
の名称 静止式熱交換器
3 補正をする者
事件との関係 特許出願人
住 M 東京都千代田区丸の内二丁目2番3号名
2 称(601)三菱箪機株式会社
代表省片 山 仁へ部
4、代J!11人
住 Qi 東京′415千代田区丸の内二丁目2
番3号5、補正の対象
明細書の特許請求の範囲および発明の詳細な説明の梱
6、補正の内容
(11明細書の特許請求の範囲を別紙のとおり訂正する
。
(2)明細書の第3頁第8行の「熱伝導率」を「熱伝達
率」に訂正する。
(3) 同第9頁第14行の「製紙」を「1厭」に訂
正する。
7、添付書類
補正後の特許請求の範囲を記載した書面 1通以上
特許請求の範囲
+11 中空部分を残して両端部を封止した中空繊維
束の一端から中空部分を通過するように1次気体を導入
し、他端から排出するとともに、上記他端側から中空繊
維間間隙を通過するように2次気体を導入し、上記一端
側から排出して、1次気体と2次気体の熱交換をするよ
うにした静止式熱交換器。
(2、特許請求の範囲第1項記載のものにおいて。
上記他端側から導入された2次気体が中空繊維間間隙を
中空繊維の長手方向に沿って流れて上記一端側力νら排
出されるようにした静止式熱交換器。
(31特許請求の範囲第1項又は第2項記載のものにお
いて、中空繊維の内径が0.1 mJn〜5咽、肉厚が
10μm〜100μmである静止式熱交換器。
(4)特許請求の範囲第1項ないし第3項のいずれかに
記載のものにおいて、中空繊維の素材が。
ポリエチレン、ポリプロピレンあるいは酢酸セルロース
のいずれかである静止式熱交換器。
430−FIG. 1 is a perspective view showing the structure of a conventional cross-flow type static heat exchanger, and FIGS. 2 and 3 are cross-sectional views showing a counter-flow type static heat exchanger according to an embodiment of the present invention. , FIG. 2 shows the state in which the hollow fiber bundle is housed in the container during the manufacturing process, and FIG. 3 shows the completed state. In the figure, (1) is a partition plate, (2) is a spacing plate, (3)
is a supply air flow path, (4) is an exhaust flow path, (a) is a supply air flow, (b) is an exhaust flow, (5) is a hollow fiber, (6) is a resin layer, (7) is the container, +11+111 is the secondary gas inlet and outlet, 111fls is the primary gas inlet and outlet, and 111 is the lid. (A) represents the flow of primary gas, (yen represents the flow of secondary gas. In each figure, the same reference numerals represent the same or equivalent parts. Agent Shin Kuzuno - Procedural correction officer (self-motivated) 58 7 15 1. Indication of the case Japanese Patent Application No. 58-56736 2. Title of the invention: Static heat exchanger 3. Relationship with the case of the person making the amendment. Patent applicant residence: M. 2-2-3 Marunouchi, Chiyoda-ku, Tokyo. 2nd name (601) Mitsubishi Tanuki Co., Ltd. Representative Minister Hitoshi Yama Department 4, Generation J! 11 Resident Qi 2-2 Marunouchi, Chiyoda-ku, Tokyo '415
No. 3 No. 5, Claims of the specification to be amended and detailed description of the invention Pack 6, Contents of the amendment (11 The claims of the specification are corrected as shown in the attached sheet. (2) Description of the specification "Thermal conductivity" on page 3, line 8 is corrected to "heat transfer coefficient." (3) "Paper manufacturing" on page 9, line 14 of the same page is corrected to "1 厭." 7. Amend the attached documents. 1 or more documents stating the scope of subsequent patent claims Claims + 11 A hollow fiber bundle whose both ends are sealed leaving a hollow section in which a primary gas is introduced from one end to pass through the hollow section, and other At the same time, secondary gas was introduced from the other end so as to pass through the gap between the hollow fibers, and was discharged from the one end, thereby exchanging heat between the primary gas and the secondary gas. Static heat exchanger. (2. In the thing described in claim 1. The secondary gas introduced from the other end side flows through the gap between the hollow fibers along the longitudinal direction of the hollow fibers. A static heat exchanger configured to discharge side force ν. A static heat exchanger having a diameter of 10 μm to 100 μm. (4) In the product according to any one of claims 1 to 3, the hollow fiber material is polyethylene, polypropylene, or cellulose acetate. A static heat exchanger. 430-
Claims (1)
一端から中空部分を通過するように1次気体を導入し、
他端から排出するとともに、上記他端側から中空繊維間
間隙を通過するように2次気体を導入し、上記一端側か
ら排出して、1次気体と2次気体の熱交換をするように
した静止式熱交換器。 (2、特許請求の範囲第1項記載のものにおいて。 上記他端側から導入された2次気体が中空繊維間間隙を
中空繊維の長手方向に沿って流れて上記一端側から排出
されるようにした静止式熱交換器。 (3)特許請求の範囲第1項又は第2項記載のものにお
いて、中空繊維の内径が0.1器〜9.5wm 、肉厚
が10μm〜100μmである静止式熱交換器。 (4)%許請求の範囲第1項ないし第3項のいずれかに
記載のものにおいて、中空繊維の素材が。 ポリエチレン、ポリプロピレンあるいは酢酸セルロース
のいずれかである静止式熱交換器。[Claims] (1) A primary gas is introduced from one end of the hollow fiber bundle with both ends sealed leaving the hollow part so as to pass through the hollow part,
The secondary gas is discharged from the other end, and the secondary gas is introduced from the other end side so as to pass through the gap between the hollow fibers, and is discharged from the one end side, thereby exchanging heat between the primary gas and the secondary gas. static heat exchanger. (2. In the item described in claim 1, the secondary gas introduced from the other end side flows through the hollow fiber gap along the longitudinal direction of the hollow fibers and is discharged from the one end side. (3) In the static heat exchanger according to claim 1 or 2, the hollow fiber has an inner diameter of 0.1 mm to 9.5 wm and a wall thickness of 10 μm to 100 μm. (4) Percentage Permissible In the device according to any one of claims 1 to 3, the hollow fiber material is polyethylene, polypropylene, or cellulose acetate. vessel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58056736A JPS59183291A (en) | 1983-03-31 | 1983-03-31 | Heat exchanger of static type |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58056736A JPS59183291A (en) | 1983-03-31 | 1983-03-31 | Heat exchanger of static type |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59183291A true JPS59183291A (en) | 1984-10-18 |
Family
ID=13035798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58056736A Pending JPS59183291A (en) | 1983-03-31 | 1983-03-31 | Heat exchanger of static type |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59183291A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009110494A1 (en) * | 2008-03-04 | 2009-09-11 | 三菱製紙株式会社 | Heat exchange element and air conditioner or heating/cooling device using the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS546168A (en) * | 1977-06-17 | 1979-01-18 | Teijin Ltd | Humidification by gas-liquid heat exchange |
JPS5444134A (en) * | 1977-09-13 | 1979-04-07 | Mitsubishi Electric Corp | Engine throttle control system |
JPS5517319A (en) * | 1978-07-22 | 1980-02-06 | Sankin Kogyo Kk | Preparation of eugenol zinc salt |
JPS5611878A (en) * | 1979-07-10 | 1981-02-05 | Matsushita Electric Works Ltd | Heater |
-
1983
- 1983-03-31 JP JP58056736A patent/JPS59183291A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS546168A (en) * | 1977-06-17 | 1979-01-18 | Teijin Ltd | Humidification by gas-liquid heat exchange |
JPS5444134A (en) * | 1977-09-13 | 1979-04-07 | Mitsubishi Electric Corp | Engine throttle control system |
JPS5517319A (en) * | 1978-07-22 | 1980-02-06 | Sankin Kogyo Kk | Preparation of eugenol zinc salt |
JPS5611878A (en) * | 1979-07-10 | 1981-02-05 | Matsushita Electric Works Ltd | Heater |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009110494A1 (en) * | 2008-03-04 | 2009-09-11 | 三菱製紙株式会社 | Heat exchange element and air conditioner or heating/cooling device using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4609039A (en) | Counterflow heat exchanger | |
US5829513A (en) | Moulded baffle heat exchanger | |
US7025119B2 (en) | Heat exchanger, a method for producing the same and a dehumidifier containing the same | |
JPS5921641B2 (en) | plate type dialyzer | |
JP3090915B1 (en) | Heat exchanger, method of manufacturing the same, and dehumidifier including the same | |
JPS59183291A (en) | Heat exchanger of static type | |
JPS60238689A (en) | Heat exchanger | |
JPS6152594A (en) | Heat exchanger | |
JP2023174894A (en) | Heat exchange element and heat exchange ventilating device | |
JPS59195095A (en) | Stationary type total heat exchanger | |
JPS58213193A (en) | Heat exchanger | |
JPS6124995A (en) | Heat exchanger | |
JPS62242789A (en) | Heat exchanger with flexibility and manufacture thereof | |
WO2020012572A1 (en) | Heat exchanger and heat exchanger manufacturing method | |
JPS61175487A (en) | Heat exchanger | |
JPH0373796B2 (en) | ||
JPS61186795A (en) | Heat exchanger | |
JPS61202095A (en) | Heat exchanger | |
JPS58156193A (en) | Heat exchanger | |
JPS59109792A (en) | Heat exchanger | |
JPS5869393A (en) | Heat exchanger | |
JPS5612996A (en) | Heat exchanger | |
JPS5840117B2 (en) | Heat exchanger | |
JPH04155192A (en) | Total heat exchanging element | |
JPS6152595A (en) | Counter flow type heat exchanger |