[go: up one dir, main page]

JPS59193551A - Controller for light focusing position - Google Patents

Controller for light focusing position

Info

Publication number
JPS59193551A
JPS59193551A JP6877083A JP6877083A JPS59193551A JP S59193551 A JPS59193551 A JP S59193551A JP 6877083 A JP6877083 A JP 6877083A JP 6877083 A JP6877083 A JP 6877083A JP S59193551 A JPS59193551 A JP S59193551A
Authority
JP
Japan
Prior art keywords
focusing
objective lens
disk
tracking
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6877083A
Other languages
Japanese (ja)
Inventor
Yoshikazu Fujii
義和 藤居
Tetsuya Inui
哲也 乾
Toshihisa Deguchi
出口 敏久
Hideyoshi Yamaoka
山岡 秀嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP6877083A priority Critical patent/JPS59193551A/en
Priority to US06/529,849 priority patent/US4660190A/en
Priority to CA000436653A priority patent/CA1208361A/en
Priority to DE8888119199T priority patent/DE3382580T2/en
Priority to DE8888119198T priority patent/DE3382609T2/en
Priority to DE8383305435T priority patent/DE3381527D1/en
Priority to EP19880119198 priority patent/EP0314200B1/en
Priority to EP83305435A priority patent/EP0115666B1/en
Priority to EP19880119199 priority patent/EP0318772B1/en
Publication of JPS59193551A publication Critical patent/JPS59193551A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/10576Disposition or mounting of transducers relative to record carriers with provision for moving the transducers for maintaining alignment or spacing relative to the carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10502Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed
    • G11B11/10504Recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0925Electromechanical actuators for lens positioning
    • G11B7/093Electromechanical actuators for lens positioning for focusing and tracking

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To perform both tracking control and focusing control by driving an objective lens with no tilt toward the vertical and horizontal axial directions via a parallel spring, respectively. CONSTITUTION:An objective lens 4 is moved in the thickness direction of a disk 8 to give a fine adjustment to the focusing position of an incident laser beam to the displacement of the disk in the optical axis direction of the incident laser, i.e., to the focusing control carried out by a light focusing position controller 5. While the lens 4 is moved in the radial direction of the disk 8 to give the tracking control, i.e., a fine adjustment of the focusing position of the incident laser to the displacement of the disk in the radial direction. An objective lens barrel 10 can be moved only in the vertical and horizontal axial directions by means of a focusing direction mobile elastic matter 12 which can move vertically and a radial mobile elastic matter 26 which can move horizontally.

Description

【発明の詳細な説明】 く技術分野〉 本発明は記録媒体にレーザ光等の光ビームを照射するこ
とによって光学的に情報の記録・再生・消去等を行なう
所謂光デイスク装置の光集束位置制御装置に関する。
[Detailed Description of the Invention] Technical Field> The present invention relates to light focusing position control of a so-called optical disk device that optically records, reproduces, erases, etc. information by irradiating a recording medium with a light beam such as a laser beam. Regarding equipment.

〈従来技術〉 従来、光デイスク装置においてディスクを作動させる場
合、その回転時に面振れによりディスク上の情報トラン
ク部が上下方向(即ち光軸方向)に変位した。芥だ、デ
ィスクの回転軸とディスクを回転させるモータ軸との間
の偏心によってディスク上の情報l・ランク部が、左右
方向(即ちディスク半径方向)に変位した。この為光ビ
ームの光集束位置を上記ディスク上の情報トラックの変
位に追従させ常に情報トランク上に位置するように調整
するべく、」二記光集東位置を光111]方向に位置制
御()A−カシング制御)すると共に、ディスク半径方
向に位置制御(ドラッギング制御)シていた。
<Prior Art> Conventionally, when operating a disk in an optical disk device, an information trunk portion on the disk is displaced in the vertical direction (ie, in the optical axis direction) due to surface wobbling during rotation. Unfortunately, the information l/rank section on the disk was displaced in the left-right direction (that is, in the disk radial direction) due to the eccentricity between the rotation axis of the disk and the motor shaft that rotates the disk. For this reason, in order to adjust the light focus position of the light beam to follow the displacement of the information track on the disk and always be positioned on the information trunk, the light focus east position is controlled in the light 111 direction (). A-Cussing control) and position control (dragging control) in the disk radial direction.

従来の上述した光集束位置を制御する為の機構としてよ
く知られるものは、回転ミラーを用いてトラッキング制
御を行なうと共に対物レンズを電磁気力により上下移動
させてフォーカシング制御を行なう機構であったが、上
述した回転ミラーを用いたトラッキング制御ではディス
クに入射する光ビームが垂直方向から傾くという問題か
あった。
A well-known conventional mechanism for controlling the above-mentioned light focusing position is a mechanism that uses a rotating mirror to perform tracking control and also performs focusing control by moving the objective lens up and down using electromagnetic force. In the above-mentioned tracking control using a rotating mirror, there is a problem in that the light beam incident on the disk is tilted from the vertical direction.

その為近年では対物レンズ自体を電磁気力を用いて上下
左右の二軸方向に駆動して上述したトラッキング制御及
びフォーカシング制御を行なう機構装置が種々と提案さ
れている。
Therefore, in recent years, various mechanical devices have been proposed that perform the above-mentioned tracking control and focusing control by driving the objective lens itself in two axial directions (up, down, left and right) using electromagnetic force.

しかしこの機構装置においても色々な問題がある。例え
ば対物レンズ鏡筒を、固定支持体に一端を取り付けたコ
ム状弾性体によって支え、上記対物レンズ鏡筒側に取り
伺けられ/こコイルと上記固定支持体側に取り付けられ
た磁気回路との間の電磁気力によって上記対物レンズ鏡
筒を駆動するタイプの機構装置においては、上記対物レ
ンズ鏡筒の支持をゴム状弾性体で行なう為に対物レンズ
鏡筒の傾きに対する拘束力が弱く、従って上記電磁気力
に基ずく駆動力が対物レンズ鏡筒の重心位置に加えられ
ない場合において偶力が発生し、その為に対物レノズ鏡
筒が回転運動を生起するのである。そしてそのことによ
り光ビームの光軸が対物レンズの中心軸に対して傾き、
軸外収差やコマ収差の影響が出てディスク上の情報トラ
ンク部に光ビームが正しく集束しなくなり、情報の品質
が劣化するのである。
However, this mechanical device also has various problems. For example, an objective lens barrel is supported by a comb-shaped elastic body whose one end is attached to a fixed support, and the coil that extends to the objective lens barrel is connected to a magnetic circuit attached to the fixed support. In a mechanical device of the type that drives the objective lens barrel using an electromagnetic force, since the objective lens barrel is supported by a rubber-like elastic body, the restraining force against the tilt of the objective lens barrel is weak, and therefore the electromagnetic force When a force-based driving force is not applied to the center of gravity of the objective lens barrel, a force couple occurs, which causes the objective lens barrel to rotate. As a result, the optical axis of the light beam is tilted with respect to the central axis of the objective lens,
Due to the effects of off-axis aberrations and comatic aberrations, the light beam is no longer properly focused on the information trunk on the disk, degrading the quality of the information.

一方、対物レンズ鏡筒を互いに垂直な方向に可動なよう
に2Miの平行バネによって支え、」二記対物レンズ鏡
筒側に取り付けられたコイルと==固定支持体側に取り
伺けられた磁気回路との間の電磁気力によって対物レン
ズ鏡筒を駆動するタイプの機構装置においては、上記し
た対物レンズ鏡筒が傾くという欠点は防ぐことができる
か、対物レンズ鏡筒側に取り伺けられたトラッキング制
御用のコイルとフォーカシング制御用のコイルとが固定
支持体側に取り付けられたドラッギング制御用の磁気回
路とフォーカシング制御用の磁気回路の夫々の磁気ギヤ
ノブの中で夫々独立して二軸方向に動く為に、予め夫々
の磁気ギルノブのギャップ間隔を大きくしておく必要か
あり、この為機構装置全体か犬きくなって不利であると
いう欠点を有しているのである。
On the other hand, the objective lens barrel is supported by a 2Mi parallel spring so as to be movable in directions perpendicular to each other, and a coil attached to the objective lens barrel side and a magnetic circuit exposed to the fixed support side are connected. In mechanical devices of the type that drive the objective lens barrel by electromagnetic force between the objective lens barrel and The control coil and the focusing control coil move independently in two axial directions within the respective magnetic gear knobs of the magnetic circuit for dragging control and the magnetic circuit for focusing control, which are attached to the fixed support side. In addition, it is necessary to increase the gap distance between the respective magnetic gill knobs in advance, which disadvantageously makes the entire mechanical device stiffer.

〈目 的〉 本発明は以上の点に鑑みなされたもので、光デイスク装
置のトラッキング制御とフォーカシング制御とを行なう
光集束位置制御装置において、対物レンズが傾くことな
く上下左右の二軸方向に駆動する機構装置を得、しかも
全体の形状のコンパクト化か可能な機構装置を得ること
を目的とするものである。
<Purpose> The present invention has been made in view of the above points, and is capable of driving an objective lens in two axes (up, down, left and right) without tilting, in a light focusing position control device that performs tracking control and focusing control of an optical disk device. The object of the present invention is to obtain a mechanical device that allows the overall shape to be made more compact.

〈実施例〉 以下本発明に係る光集束位置制御装置の実施例を図面を
用いて詳細に説明する。
<Example> Hereinafter, an example of the optical focusing position control device according to the present invention will be described in detail with reference to the drawings.

第1図は光デイスク装置の構造を示す構成説明図である
。1はレーザ光2を発射するレーザ光源であり、36ツ
、ミラー、4はレーザ光2をディスク記録媒体面に集束
せしめる対物レンズである。5は対物レンズ4を上下左
右に駆動して光集束位置をディスク記録媒体の記録トラ
ック」二に追従制御させる光集束位置制御装置であり、
6は以上の光学系を収納する光学ヘッドである。7は情
報の記録、消去時にディスク記録媒体面に磁界を付与す
る記録、消去用コイルである。8(は記録媒体8′を内
蔵するディスク、9は該ディスクを回転駆動するモータ
ーである。ここで上記光集束位置制御装置5による)副
−カシング制御即ち入射レーザの光軸方向のディスク変
位に対する入射レー′ザビームの集束位置の微調整は対
物レンズ4をディスク8の厚み方向に移動させることで
行なわれ、一方上記光集束位置制御装置5によるトラッ
キング制御即ちラジアル方向のディスク変位に対する入
射レーザビームの集束位置の微調整は対物レンズ4をデ
ィスク8のラジアル方向に移動させることで行なわれる
FIG. 1 is a configuration explanatory diagram showing the structure of an optical disk device. Reference numeral 1 is a laser light source that emits laser light 2, 36 is a mirror, and 4 is an objective lens that focuses the laser light 2 on the disk recording medium surface. 5 is a light focusing position control device that drives the objective lens 4 vertically and horizontally to control the light focusing position to follow the recording track of the disk recording medium;
6 is an optical head that houses the above optical system. Reference numeral 7 denotes a recording/erasing coil that applies a magnetic field to the surface of the disk recording medium when recording or erasing information. 8 is a disk containing a recording medium 8', and 9 is a motor for rotationally driving the disk. Here, sub-cushing control (by the optical focusing position control device 5), that is, the displacement of the disk in the optical axis direction of the incident laser is controlled. Fine adjustment of the focusing position of the incident laser beam is performed by moving the objective lens 4 in the thickness direction of the disk 8, while tracking control by the optical focusing position control device 5, that is, adjustment of the incident laser beam with respect to disk displacement in the radial direction, is performed by moving the objective lens 4 in the thickness direction of the disk 8. Fine adjustment of the focusing position is performed by moving the objective lens 4 in the radial direction of the disk 8.

第2図は光集束位置制御装置の構造を詳細に示した側面
断面図である。捷ずフォーカシング制御装置について説
明する。lOは対物レンズ4を収網支持するレンズ鏡筒
であり、該レンズ鏡筒10はホルダー11に対しフォー
カンング方向可動弾性体12によって上下方向に可動≠
に設置される。13はフォーカシング用永久磁石、14
はフォーカ/ング用ヨークプレート、15はフシ−力/
ング用ヨークであり、これらは閉磁路を形成し、ホルダ
ー11に固定的に取り付けられる。上記フォーカ/ング
用ヨークプレート14とフォーカシング用ヨーク15と
の間にはフぢ一力/ング用磁気空隙16が設けられる。
FIG. 2 is a side sectional view showing the structure of the light focusing position control device in detail. The non-switching focusing control device will be explained. IO is a lens barrel that supports the objective lens 4, and the lens barrel 10 is movable in the vertical direction with respect to the holder 11 by an elastic body 12 movable in the focusing direction.
will be installed in 13 is a permanent magnet for focusing, 14
is the focusing yoke plate, 15 is the focusing force/
These yokes form a closed magnetic path and are fixedly attached to the holder 11. A focusing magnetic gap 16 is provided between the focusing yoke plate 14 and the focusing yoke 15.

17はフォーカシング用駆動コイルであり、該フォーカ
シング用駆動コイル17は上記フ乞−カンング用磁気空
隙16を横切るように配置されると共にレンズ鏡筒1o
に固着される。上記フォーカシング用駆動コイル17に
フォーカシング制御機構を流せば該コイル17に磁界が
発生し上記フォー力ノング用永久磁石13の発生する磁
界との相互作用によってフォーカシング用駆動コイル1
7及びレンズ鏡筒1o及び対物レンズ4は入射レーザの
光軸方向に変位する。
Reference numeral 17 denotes a focusing drive coil, and the focusing drive coil 17 is arranged to cross the focusing magnetic gap 16, and the lens barrel 1o.
is fixed to. When a focusing control mechanism is applied to the focusing drive coil 17, a magnetic field is generated in the coil 17, and due to interaction with the magnetic field generated by the permanent magnet 13 for focusing, the focusing drive coil 1
7, the lens barrel 1o, and the objective lens 4 are displaced in the optical axis direction of the incident laser.

以上、の構成によってフォーカシング制御装置18が形
成される。次にトラッキング制御装置について説明する
The focusing control device 18 is formed by the above configuration. Next, the tracking control device will be explained.

19はトラッキング用永久磁石、20はトラッキング用
ヨークプレート、21はトラッキング用ヨークであり、
これらは閉磁路を形成する。又これらは光集束位置制御
装置全体のホルダー(図示せず)に固定的に設置される
。上記トラッキング用ヨークプレー1・20とトラッキ
ング用ヨーク21との間にはトラッキング用磁気空隙2
2が設けられる。23はラジアル駆動コイルであり、該
ラジアル駆動コイル23は上記ドラッギング用磁気空隙
22を横切るように配置されると共にラジアル駆動コイ
ルホルダー24に固着される。該ラジアル駆動コイルホ
ルダー24は同図に示される如く性体によって左右方向
に可動に設置されているので、上記ラジアル駆動コイル
23にトランキング制御電流を流せば該コイル23に磁
界が発生し上記トラッキング用永久磁石I9の発生する
磁界との相互作用によってフォーカシング制御装置18
をラジアル方向に変位せしめる。
19 is a permanent magnet for tracking, 20 is a yoke plate for tracking, 21 is a yoke for tracking,
These form a closed magnetic path. Further, these are fixedly installed in a holder (not shown) of the entire optical focusing position control device. A tracking magnetic gap 2 is provided between the tracking yoke plates 1 and 20 and the tracking yoke 21.
2 is provided. Reference numeral 23 denotes a radial drive coil, and the radial drive coil 23 is disposed across the dragging magnetic gap 22 and is fixed to the radial drive coil holder 24. As shown in the figure, the radial drive coil holder 24 is installed to be movable in the horizontal direction by a magnetic body, so when a trunking control current is applied to the radial drive coil 23, a magnetic field is generated in the coil 23, and the tracking The focusing control device 18 is activated by interaction with the magnetic field generated by the permanent magnet I9.
is displaced in the radial direction.

以上の構成によってトラッキング制御装置25が形成さ
れる。
The tracking control device 25 is formed by the above configuration.

第3図は第2図に示しだ光集束位置制御装置の平面図で
ある。同図に示されるように上下方向に可動な7オ一カ
//グ方向可動弾性体12と左右方向に可動なラジアル
方向可動弾性体26によって対物レンズ鏡筒10が上下
及び左右の二軸方向にのみ可動な様に設定されている。
FIG. 3 is a plan view of the light focusing position control device shown in FIG. 2. As shown in the figure, the objective lens barrel 10 is moved in two axial directions, vertically and horizontally, by a seven-axis movable elastic body 12 that is movable in the vertical direction and a radially movable elastic body 26 that is movable in the horizontal direction. It is set so that it can only be moved.

これにより対物レンズ4が傾斜することを防止している
。また、フォーカシング用磁気空隙16を横切る方向に
のみフ副−カノング駆動コイル17が可動な様に設置さ
れ、ドラッギング用磁気空隙22を横切る方向にのみラ
ジアル駆動コイル23が可動な様に設置されているので
夫々の磁気空隙は十分狭くでき、その為電磁気力を効率
的に使うことができる。そしてその為永久磁石を小さく
でき光集束位置制御装置の全体形状をよりコンパクト化
することができるものである。
This prevents the objective lens 4 from tilting. Further, a sub-cannon drive coil 17 is installed so as to be movable only in the direction across the focusing magnetic gap 16, and a radial drive coil 23 is installed so as to be movable only in the direction across the dragging magnetic gap 22. Therefore, each magnetic gap can be made sufficiently narrow, and therefore electromagnetic force can be used efficiently. Therefore, the permanent magnet can be made smaller, and the overall shape of the light focusing position control device can be made more compact.

次に対物レンズ鏡筒lOのフォー力・/ング制御機構と
トラッキング制御機構に基づく運動特性について説明す
る。
Next, a description will be given of the motion characteristics of the objective lens barrel lO based on the force//ing control mechanism and the tracking control mechanism.

(I)  フォーカシング制御機構に基づく運動特性に
ついて。
(I) Regarding the motion characteristics based on the focusing control mechanism.

第2図及び第3図に示される如くフオーカ/ノグ制御の
駆動源は中間支持体11に固着され/こフォーカシング
用の閉磁路と対物レンズ鏡筒10に固着されたフメーカ
ノング駆動コイル17との間の電磁相互作用である。こ
こで上記中間支持体11て連結されている。以上の構造
からフォーカシング方向の可動部(対物レンズ4.対物
レンズ鏡筒10、フンーカゾング駆動コイル17からな
る。)の重量をM Fとし、フぢ一カシング方向可動平
行バネ12の上下方向のバネ定数をKr、とすると、対
物レンズ鏡筒10は上下方向の運動に際してて上記電磁
相互作用に基づくフ号−カンング駆動力Fr、が付与さ
れた時、対物レンズ鏡筒10のフォーカシング方向の変
位XFの運動位相遅れは、周波数をf(Hz)とすれば
、O<f<fFで00〜90゜であり、fr <fで9
00〜1800であり、f F << fでは+800
に収束する。従ってフォーカシング目標位置をYFとす
ればこのフォーカシング目標位置YFへの運動を行なう
際のフォーカシング駆動力FF の信号の位相を位相進
み補償回路によって進めることによってフォーカシング
目標位置YFに対するフォーカシング方向可動部の変位
XFの運動位相遅れを1800より小さくできる。これ
により安定なフォーカシング制御が可能である。
As shown in FIGS. 2 and 3, the drive source for focuser/nog control is fixed to the intermediate support 11/between the closed magnetic path for focusing and the focuser drive coil 17 fixed to the objective lens barrel 10. is an electromagnetic interaction. Here, the intermediate support 11 is connected. From the above structure, the weight of the movable part in the focusing direction (consisting of the objective lens 4, objective lens barrel 10, and hook drive coil 17) is M F, and the vertical spring constant of the parallel spring 12 movable in the focusing direction is Let Kr be the displacement XF of the objective lens barrel 10 in the focusing direction when the objective lens barrel 10 is subjected to a force Fr based on the above-mentioned electromagnetic interaction during vertical movement. If the frequency is f (Hz), the motion phase delay is 00 to 90° for O<f<fF, and 9 for fr<f.
00 to 1800, +800 for f F << f
converges to. Therefore, if the focusing target position is YF, by advancing the phase of the signal of the focusing driving force FF during movement to this focusing target position YF by the phase lead compensation circuit, the displacement XF of the movable part in the focusing direction with respect to the focusing target position YF is The motion phase delay of can be made smaller than 1800 degrees. This allows stable focusing control.

(■l)トラッキング制御機構に基づく運動特性につい
て。
(■l) Regarding motion characteristics based on the tracking control mechanism.

第2図及び第3図に示される如くトラッキング制御の駆
動源は固定支持体27側に固着されたトラッキング用の
閉磁路と、中間支持体11側に固着されたトラッキング
駆動コイルホルダー24に設置されたトラッキング駆動
コイル23との間の電磁相互作用である。上記固定支持
体27と上記径方向可動平行バネ26によって連結され
ている。
As shown in FIGS. 2 and 3, the drive source for tracking control is installed in a closed magnetic path for tracking fixed to the fixed support 27 side and a tracking drive coil holder 24 fixed to the intermediate support 11 side. This is an electromagnetic interaction between the tracking drive coil 23 and the tracking drive coil 23. The fixed support body 27 and the radially movable parallel spring 26 are connected to each other.

以上の構造からトラッキング方向の可動部であるフォー
カシング制御装置18の重量をMTとし、ディスク半径
方向可動平行バネ26の左右方向のバネ定数をKTとす
れば、フォーカ/ング制御装共振周波数という)fTを
持つ。一方中間支持体11と対物レンズ鏡筒IOとはフ
ぢ一カシング方向可動平行バネ12によって連結されて
いるが、トラッキング制御の駆動がなされだ時フォーカ
シング方向可動平行バネ12は若干左右方向に弾性を有
する為該方向に移動する。この為フォーカシング方向可
動平行バネ12の左右方向のバネ定数下2次共振周波数
という)f’rを持つ0以上の様に対物レンズ鏡筒10
の左右方向の運動に際しては1次共振周波数と2次共振
周波数とが存在する。
From the above structure, if the weight of the focusing control device 18, which is a movable part in the tracking direction, is MT, and the horizontal spring constant of the disk radially movable parallel spring 26 is KT, then the focusing control device resonance frequency is called fT. have. On the other hand, the intermediate support 11 and the objective lens barrel IO are connected by a parallel spring 12 that is movable in the focusing direction, but when the tracking control is driven, the parallel spring 12 that is movable in the focusing direction slightly becomes elastic in the horizontal direction. Move in that direction to have it. For this reason, the objective lens barrel 10 has a spring constant f'r (referred to as a secondary resonance frequency under the horizontal spring constant of the parallel spring 12 movable in the focusing direction).
When moving in the left-right direction, there are a primary resonance frequency and a secondary resonance frequency.

但し、フォーカ/ノグ方向可動平行バネ12の左右方向
のバネ定fiKr、’は極めて大きく、KF’>>KT
である。従って2次共振周波数f’Tば1次共振周波数
fTに比べて充分高<f′T>1丁である。ここで上記
電磁相互作用に基つくトラッキング駆動力FTが付与さ
れた時、対物レンズ鏡筒10のトラッキング方向の変位
XTの運動位相遅れは周波数をfとすれば、o<f <
fTで0°〜90°であり、tr < f < f′T
で900〜270°であり、f’T<fで270゜〜3
60°である。尚トラッキング、駆動力FTが付与され
た時トラッキング制御信号の周波数帯域において、トラ
ノキノグ目標位置YTに向かう対物レンズ鏡筒10の変
位XTの運動位相遅れを180゜より小さくする必要が
あるが、前述の如くトランキング駆動力FTの信号の位
相を進める為に位相進み補償回路を用いたとしても位相
進み量に限界がある為上記した180°より大巾に超え
ない程度にしか補償てきない。従って更に補償を行なう
為には2次共振周波数f’Tをトラッキング制御信号の
周波数帯域より十分高く設定するようにするととが必要
になる。光デイスク装置においては、その用途によりト
ラッキング制御信号の周波数帯域が大きく異なるが一般
には1〜4KHzである。この点から2次共振周波数f
’Tを略8 KHz以上に設定することが適当であるこ
とが判明した。
However, the horizontal spring constant fiKr,' of the focus/nog direction movable parallel spring 12 is extremely large, and KF'>>KT
It is. Therefore, the secondary resonance frequency f'T is sufficiently higher than the primary resonance frequency fT by <f'T>1. Here, when the tracking driving force FT based on the electromagnetic interaction is applied, the motion phase delay of the displacement XT of the objective lens barrel 10 in the tracking direction is as follows, where f is the frequency, o<f<
fT is 0° to 90°, and tr < f <f'T
and 900 to 270°, and f'T<f, 270° to 3
It is 60°. Note that when the tracking and driving force FT is applied, it is necessary to make the motion phase delay of the displacement XT of the objective lens barrel 10 toward the Toranokinog target position YT smaller than 180° in the frequency band of the tracking control signal. Even if a phase lead compensation circuit is used to advance the phase of the signal of the trunking driving force FT, since there is a limit to the amount of phase lead, compensation can only be made to an extent that does not exceed the above-mentioned 180°. Therefore, in order to further compensate, it is necessary to set the secondary resonance frequency f'T sufficiently higher than the frequency band of the tracking control signal. In optical disk devices, the frequency band of the tracking control signal varies greatly depending on its use, but is generally in the range of 1 to 4 KHz. From this point, the secondary resonance frequency f
It has been found that it is appropriate to set 'T to approximately 8 kHz or higher.

この設定条件を満足せしめる為の機構の設計手法を以下
に述べる。
A mechanism design method to satisfy these setting conditions will be described below.

上記2次共振周波数f’Tは前述の如くフォーカシング
方向可動平行バネ12の左右方向のバネ定数KF’とフ
ォーカシング方向可動部重量Ml?とによって決定され
、バネ定数KF′を太きぐずれば犬となり、フォーカシ
ング方向の可動部の重量M Fを小さくすれば犬となる
。しかし上記フォーカシング方向可動部重量MFを小さ
くする手段は対物レンズ4及びレンズ鏡筒10の重量を
小さくすることに限界がある為多くは期待できない(通
常は0.5g〜l Og[設計される)。従ってフ同−
力7ング方向可動平行バネ12の左右方向のバネ定数K
F’を大きくする事を試みた。フォー力ソング方向可動
平行バネ12の巾をXF、厚さをyFとするとKF’/
KF −(xF/yF)2であることが判明した。
As mentioned above, the secondary resonance frequency f'T is determined by the horizontal spring constant KF' of the parallel spring 12 movable in the focusing direction and the weight M1 of the movable part in the focusing direction. If the spring constant KF' is increased, the result is a dog, and if the weight M of the movable part in the focusing direction is decreased, the result is a dog. However, the means for reducing the weight MF of the movable part in the focusing direction cannot be expected to do much because there is a limit to reducing the weight of the objective lens 4 and lens barrel 10 (usually 0.5 g to l Og [designed)] . Therefore, the same
Spring constant K in the horizontal direction of the force 7 movable parallel spring 12
I tried increasing F'. If the width of the four force song direction movable parallel spring 12 is XF and the thickness is yF, then KF'/
It turned out to be KF-(xF/yF)2.

よってフォーカシング方向可動平行バネ12の左右方向
のバネ定数KF′を大きくするにはフォーカシング方向
可動平行バネ12の巾XFを広く、且f’T−−i−f
、、である。以上の様な関係からフォーカシング方向可
動平行バネ12の厚さYFを20〜50μmとし、該バ
ネ12の巾をyF の50〜!00倍程度に設計すれば
よいことが判明した。
Therefore, in order to increase the horizontal spring constant KF' of the parallel spring 12 movable in the focusing direction, the width XF of the parallel spring 12 movable in the focusing direction must be widened, and f'T--i-f
,,is. Based on the above relationship, the thickness YF of the parallel spring 12 movable in the focusing direction is set to 20 to 50 μm, and the width of the spring 12 is set to 50 to 50 μm of yF! It has been found that it is sufficient to design it to about 00 times.

以上の様にフォー力/ング方向可動平行バネ12を役割
すればトラッキング制御信号の周波数帯域においてトラ
ッキング目標位置に対する対物レンズ4の変位XTの運
動位相遅れを180°より小さくすることが可能である
。その際位相進み補償回路による補償も用いる事は重要
である。
As described above, by using the parallel spring 12 movable in the force/ring direction, it is possible to make the motion phase delay of the displacement XT of the objective lens 4 with respect to the tracking target position smaller than 180° in the frequency band of the tracking control signal. At this time, it is important to also use compensation by a phase lead compensation circuit.

尚実験によれば上記フォーカソング方向可動平行バネ1
2に厚みが30〜50μmのベリリウム銅合金を使用し
たところ安定したフォーカシング制御及びドラッギング
制御が可能となった。
According to experiments, the above focus song direction movable parallel spring 1
When a beryllium copper alloy with a thickness of 30 to 50 μm was used for No. 2, stable focusing control and dragging control became possible.

〈効 果〉 以上詳細に説明した本発明によれば、光デイスク装置に
て用いられる光ビームを正しく記録媒体に追随させる光
集束位置制御装置において、対物レンズの位置が傾く危
険性が無く、しかも装置の全体形状をコンパクト化する
ことができるものである。
<Effects> According to the present invention described in detail above, there is no risk that the position of the objective lens will be tilted in a light focusing position control device that correctly tracks a light beam used in an optical disk device to a recording medium. This allows the overall shape of the device to be made more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光デイスク装置の構造を示す構成説明図、第2
図は光集束位置制御装置の構造を詳細に示した側面断面
図、第3図は第2図に示した光集束位置制御装置の平面
図を示す。 図中、4・対物レンズ 8′ 記録媒体 10゜レンズ
鏡筒 lI:ホルタ−12フレーカソング方向可動弾性
体 13・フォーカシング用永久磁石 Ill:フ号−
カシング用ヨークプレートI5:フォーカシング用ヨー
ク 16:フォーカシング用磁気空隙 17:7お一カ
ソング用駆動コイル 18:フぢ−カシング用永久磁石
 19゜トラッキング用永久磁石 20 トラッキング
用ヨークプレー1−21:)ラッキング用ヨーク22 
トラッキング用磁気空隙 23ニラシアル、駆動コイル
 24ニラシアル駆動コイルホルダー25 ドラッギン
グ制御装置 26 ラジアル方向’j5JIM弾性体 
27:固定支持体代理人 弁理士 福 士 愛 彦(他
2名)区 n) や1    派 区 4 派
Figure 1 is a configuration explanatory diagram showing the structure of an optical disk device;
This figure is a side sectional view showing the structure of the light focusing position control device in detail, and FIG. 3 is a plan view of the light focusing position control device shown in FIG. 2. In the figure, 4. Objective lens 8' Recording medium 10° Lens barrel I: Holter 12 Elastic body movable in the flaker song direction 13. Permanent magnet for focusing Ill: No.
Yoke plate for focusing I5: Yoke for focusing 16: Magnetic gap for focusing 17: Drive coil for 7-piece song 18: Permanent magnet for focusing 19° Permanent magnet for tracking 20 Yoke plate for tracking 1-21:) Racking yoke 22
Magnetic air gap for tracking 23 Niradial, drive coil 24 Niradial drive coil holder 25 Dragging control device 26 Radial direction'j5JIM elastic body
27: Fixed support agent Patent attorney Aihiko Fukushi (and 2 others) Ku n) Ya 1 faction Ku 4 faction

Claims (1)

【特許請求の範囲】 l 固定支持体内にフォーカシング制御装置と、該フォ
ーカシング制御装置をトラッキング制御方向に駆動する
トランキング制御装置とが設置され、 前記フォー力7ング制御装置には中間支持体と、膣中間
支持体にフォーカンノブ方向可動平行バネを介して連結
される対物レンズ鏡筒と、該対物レンズ鏡筒をフォーカ
シング方向(駆動する電磁手段とが備わり、 前記トランキング制御装置には前記7オーカソング制御
装置を前記中間支持体を介してトラッキング制御方向に
駆動する電磁手段とが備わり、 前記フォーカシング制御装置と前記固定支持体はトラッ
キング制御方向に可動なディスク半径方向可動平行バネ
によって連結されてなることを特徴とする光集束位置制
御装置。
[Claims] l A focusing control device and a trunking control device for driving the focusing control device in a tracking control direction are installed in a fixed support, and the focusing control device includes an intermediate support; An objective lens barrel connected to the vaginal intermediate support via a parallel spring movable in a focus knob direction, and an electromagnetic means for driving the objective lens barrel in a focusing direction (focusing direction); electromagnetic means for driving the device in the tracking control direction via the intermediate support, and the focusing control device and the fixed support are coupled by a disk radially movable parallel spring movable in the tracking control direction. Features a light focusing position control device.
JP6877083A 1983-01-25 1983-04-18 Controller for light focusing position Pending JPS59193551A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP6877083A JPS59193551A (en) 1983-04-18 1983-04-18 Controller for light focusing position
US06/529,849 US4660190A (en) 1983-01-25 1983-09-06 Optical focus position control in optical disc apparatus
CA000436653A CA1208361A (en) 1983-01-25 1983-09-14 Optical focus position control in optical disc apparatus
DE8888119199T DE3382580T2 (en) 1983-01-25 1983-09-15 OPTICAL FOCUSING ADJUSTMENT DEVICE.
DE8888119198T DE3382609T2 (en) 1983-01-25 1983-09-15 OPTICAL FOCUSING ADJUSTMENT DEVICE.
DE8383305435T DE3381527D1 (en) 1983-01-25 1983-09-15 ADJUSTING THE OPTICAL FOCUSING ON A DEVICE WITH OPTICAL DISC.
EP19880119198 EP0314200B1 (en) 1983-01-25 1983-09-15 Optical focus position control device
EP83305435A EP0115666B1 (en) 1983-01-25 1983-09-15 Optical focus position control in optical disc apparatus
EP19880119199 EP0318772B1 (en) 1983-01-25 1983-09-15 Optical focus position control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6877083A JPS59193551A (en) 1983-04-18 1983-04-18 Controller for light focusing position

Publications (1)

Publication Number Publication Date
JPS59193551A true JPS59193551A (en) 1984-11-02

Family

ID=13383293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6877083A Pending JPS59193551A (en) 1983-01-25 1983-04-18 Controller for light focusing position

Country Status (1)

Country Link
JP (1) JPS59193551A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774839A (en) * 1980-10-25 1982-05-11 Nippon Telegr & Teleph Corp <Ntt> Optical head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774839A (en) * 1980-10-25 1982-05-11 Nippon Telegr & Teleph Corp <Ntt> Optical head

Similar Documents

Publication Publication Date Title
US4658390A (en) Optical focus position control in an optical memory system
EP0115666B1 (en) Optical focus position control in optical disc apparatus
JPS59193551A (en) Controller for light focusing position
JPH06301995A (en) Information recording and/or reader
JP2574219B2 (en) Optical disk device
EP0314200B1 (en) Optical focus position control device
EP0318772B1 (en) Optical focus position control device
JPH08306047A (en) Seek actuator for optical recording
JPS60197947A (en) Light focusing position control device
CA1219073A (en) Optical focus position control in an optical memory system
JPH04103036A (en) Information processor
JPH03130940A (en) Light spot control method and control device
JPS6284437A (en) Drive device for objective lens
JPS6212931A (en) Driving device for objective lens
JPS6212930A (en) Driving device for objective lens
JPS63298821A (en) Optical head
JPH0423233A (en) Light spot control method and control device
JPS6127811B2 (en)
JPH04313824A (en) Lens driver in optical information reader
JPS624908Y2 (en)
JPH097204A (en) Objective lens supporting device for information storage device
JPS58166540A (en) Optical information reader
JPS6289245A (en) Objective lens driver
JPS62107442A (en) Optical head
JPS59195336A (en) Controller for light condensing position