[go: up one dir, main page]

JPS59193135A - Adsorbing body - Google Patents

Adsorbing body

Info

Publication number
JPS59193135A
JPS59193135A JP58068116A JP6811683A JPS59193135A JP S59193135 A JPS59193135 A JP S59193135A JP 58068116 A JP58068116 A JP 58068116A JP 6811683 A JP6811683 A JP 6811683A JP S59193135 A JPS59193135 A JP S59193135A
Authority
JP
Japan
Prior art keywords
gel
substance
ligand
column
cellulose gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58068116A
Other languages
Japanese (ja)
Inventor
Nobutaka Tani
谷 「のぶ」孝
Tsuneo Hayashi
林 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP58068116A priority Critical patent/JPS59193135A/en
Priority to CA000442312A priority patent/CA1221307A/en
Priority to DE8383112042T priority patent/DE3379644D1/en
Priority to AT87100215T priority patent/ATE97832T1/en
Priority to DE87100215T priority patent/DE3382723T2/en
Priority to AT91115793T priority patent/ATE195891T1/en
Priority to EP83112042A priority patent/EP0110409B2/en
Priority to AT83112042T priority patent/ATE42222T1/en
Priority to EP87100215A priority patent/EP0225867B1/en
Priority to US06/557,061 priority patent/US4576928A/en
Priority to EP91115793A priority patent/EP0464872B2/en
Priority to DE3382834T priority patent/DE3382834T3/en
Publication of JPS59193135A publication Critical patent/JPS59193135A/en
Priority to US06/737,880 priority patent/US4637994A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To form an adsorbing body capable of removing harmful components by selectively adsorbing at high flow rate by supporting substance having affinity to the substance to be removed on porous cellulose gel. CONSTITUTION:A adsorbing body is formed for removing harmful components in the blood by supporting a substance (designated hereunder as ligand) having affinity to the substance to be removed on porous cellulose gel. For example, a complement component such as C1q, specific protein such as protein A, or anti- body for an immune complex may be used for the removal of an immune complex as the ligand. Further, a physical method, ionic bond method, or covalent bond method, etc. may be used for supporting a ligand on a carrier porous cellulose gel. When the adsorbing body is used for an external circulation therapy, the ligand is preferred to be supported by the covalent bond having higher bonding strength in order to prevent elimination of the ligand from the carrier.

Description

【発明の詳細な説明】 吸着体に関する。さらに詳しくは、免疫疾患、腎炎、肝
炎などの炎症、ウ、イルス性疾患などにおいて血液、J
111漿などの体液中に出現する有害物質、ウィルス、
有害細胞などを吸着除去する吸着体に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an adsorbent. In more detail, blood, J
111 Harmful substances that appear in body fluids such as plasma, viruses,
This invention relates to an adsorbent that adsorbs and removes harmful cells.

人工透析に端を発した体外循環治療は近年大いに発展し
、治療対象となる疾患も増加の一途をたどっている。こ
れに伴い、体液中に出現し赤用の原因または進行と密接
な関係にあると考えられる有害成分をより選択的に除去
する手段が求められている。この目的のために膜によっ
て分離する方法が検討されてきたが、かかる方法は選択
性が充分でなく、除去対象物質以外の体液成分の損失が
大きいという欠点を有しているO また吸着により有害成分を除去しようとする試みがなさ
れ1活性炭、アンバーライ) XADに代表されるいわ
ゆる合成吸着剤が主として肝臓病用に用いられてきた。
Extracorporeal circulation therapy, which originated from artificial dialysis, has developed greatly in recent years, and the number of diseases that can be treated continues to increase. Along with this, there is a need for a means to more selectively remove harmful components that appear in body fluids and are thought to be closely related to the cause or progression of red skin. Separation methods using membranes have been studied for this purpose, but such methods have the disadvantage of insufficient selectivity and large losses of body fluid components other than the target substance. Attempts have been made to remove these components, and so-called synthetic adsorbents, typified by activated carbon and XAD, have been mainly used for liver diseases.

しかしながら、前記合成吸着剤は選択性に乏しく、また
高分子量物質は除去できないなど多くの欠点を有してい
る。
However, the synthetic adsorbents have many drawbacks, such as poor selectivity and inability to remove high molecular weight substances.

さらに選択性を高める目的で、水不溶性担体に除去対象
物質と親和性を有する物質を保持させたいわゆるアフィ
ニティー吸着体を用いる試みが始められている。しかし
ながら、これらの試みは通常アフィニティークロマトグ
ラフィー用に用いられる担体を転用したものが多く、体
外循環治療に用いるには好ましくない種々の欠点を有し
ていることが明らかとなった。ずなわち、通常アフィニ
ティークロマトグラフィーに用いられる担体はアガロー
ス、デキストラン、ポリアクリルアミド、多孔質ガラス
、多孔質シリカなどであるが、アガロース、デキストラ
ン、ポリアクリルアミドなどの軟質ゲルは、(1)機械
的強度が弱いため、攪拌などの操作により破壊されやす
い、 (2)耐圧強度が小さいため、カラムに充填して体外循
環に用いる際に高流速で体液を流すと圧密化をひきおこ
し、流速が安定せず、詰りを生じることもある などの欠点を有している。
In order to further improve selectivity, attempts have been made to use so-called affinity adsorbents in which a water-insoluble carrier holds a substance that has an affinity for the substance to be removed. However, it has become clear that many of these attempts have been based on repurposed carriers that are normally used for affinity chromatography, and that they have various drawbacks that make them undesirable for use in extracorporeal circulation therapy. In other words, the carriers normally used for affinity chromatography are agarose, dextran, polyacrylamide, porous glass, porous silica, etc., but soft gels such as agarose, dextran, and polyacrylamide have (1) mechanical strength. (2) Due to its low pressure resistance, if body fluid is flowed at a high flow rate when packed in a column and used for extracorporeal circulation, it will cause compaction and the flow rate will become unstable. , it has drawbacks such as clogging.

一方、多孔質ガラスなどの無機多孔体は耐圧強度は高い
ものの、 (1)攪拌などの操作により破壊されて微粉を生じやす
い、 (2)担体表面への除去対象物質以外の成分の吸着、い
わゆる非特異吸着が無視できないなどの欠点を有してい
る。
On the other hand, although inorganic porous materials such as porous glass have high pressure resistance, (1) they are easily destroyed by operations such as stirring and produce fine powder, and (2) components other than the substance to be removed are adsorbed onto the surface of the carrier, so-called It has drawbacks such as non-specific adsorption which cannot be ignored.

さらには、紙上の欠点を克服すべく合成高分子によるポ
リマーゲルが提案されているが、該欠点を充分克服して
いるとはいえず、未反応モノマーなどによる毒性も懸念
され、また吸着容量も軟質ゲルに劣っている。
Furthermore, polymer gels made from synthetic polymers have been proposed to overcome the drawbacks of paper, but these drawbacks cannot be said to be fully overcome, and there are concerns about toxicity due to unreacted monomers, and the adsorption capacity is also low. Inferior to soft gel.

本発明者らは紙上のごとき欠点を克服すべく鋭意研究を
重ねた結果、多孔質セルロースゲルに除去対象物質に親
和性を有する物質(以下、リガンドという)を保持させ
ることによって高流速で選択的に有害成分を吸着除去し
うる吸着体を見出し、本発明を完成するに至った。
The present inventors have conducted intensive research to overcome the drawbacks described in the paper, and as a result, we have found that by making porous cellulose gel hold a substance (hereinafter referred to as "ligand") that has an affinity for the target substance to be removed, it can be selectively removed at high flow rates. The present inventors have discovered an adsorbent that can adsorb and remove harmful components, and have completed the present invention.

すなわち、本発明に用いる多孔質セルロースゲルは、 (1)機械的強度が比較的高く、強じんであるため攪拌
などの操作により破壊されたり微粉を生じたりすること
が少なく、カラムに充填したばあい体液を高流速で流し
ても圧密化したり、目詰りしたりしないので高流速で流
すことが可能となり、また細孔構造が高圧蒸気滅菌など
によって変化を受けにくい、 (2)ゲルがセル四−スで構成されているため親水性で
あり、リガンドの結合に利用しうる水酸基が多数存在し
、非特異吸着も少ない、(3)空孔容積を大きくしても
比較的強度が高し)ため軟質ゲルに劣らない吸着容量か
えられる、(4)安全性が合成高分子タルなどに比べて
高し)などの優れた点を有しており、該多孔質セルロー
スゲルにリガンドを保持させることによってほぼ理想的
な吸着体かえられる0 本発明に用いる多孔質セルロースゲルとしてはセルロー
ス自身が好ましいがエステル化またはエーテル化された
セルロース誘導体、あるl/)はセルロースと該誘導体
との混合物であってもよい。かかるセルロース誘導体と
してはアセチルセルロース、メチルセルロース、エチル
セルロース、カルボキシメチルセルロースなどがあげら
れる。またゲル粒子の形態は球状が望ましい。
In other words, the porous cellulose gel used in the present invention has (1) relatively high mechanical strength and toughness, so it is less likely to be destroyed or generate fine powder by operations such as stirring, and is easy to use when packed in a column. Even if body fluids flow at high flow rates, they will not become compacted or clogged, making it possible to flow at high flow rates, and the pore structure will not be easily changed by high-pressure steam sterilization. - It is hydrophilic because it is composed of carbon atoms, there are many hydroxyl groups that can be used for binding of ligands, and there is little non-specific adsorption. (3) Even if the pore volume is increased, the strength is relatively high) The porous cellulose gel has excellent features such as (4) higher adsorption capacity than soft gels, and (4) higher safety than synthetic polymer tar. Although cellulose itself is preferred as the porous cellulose gel used in the present invention, esterified or etherified cellulose derivatives, such as esterified or etherified cellulose derivatives, are a mixture of cellulose and said derivatives. Good too. Examples of such cellulose derivatives include acetylcellulose, methylcellulose, ethylcellulose, and carboxymethylcellulose. Moreover, the shape of the gel particles is preferably spherical.

該多孔質セルロースゲルは、たとえばセルロースおよび
(または)セルロース誘導体を溶剤を用いて溶解あるい
は膨潤させたのち、用l/また溶剤とは混和しない別の
溶媒中に分散させて球状とし、ゲル化再生する方法で製
造することができる。
The porous cellulose gel is produced by, for example, dissolving or swelling cellulose and/or cellulose derivatives using a solvent, and then dispersing the cellulose and/or cellulose derivatives in a separate solvent that is immiscible with the solvent to form spheres, and then gelling and regenerating the gel. It can be manufactured by the following method.

ゲルを構成するセルロースおよび(または)セルロース
誘導体は架橋されていてもよい。架橋剤の代表例として
はエビク四ルヒドリン、ジクロルヒドリン、ジェポキシ
化合物、ジアルデヒド化合物、ジイソシアナート化合物
、塩化シアヌル、ジアルコキシアルキルシラン化合物、
トリアルコキシアルキルシラン化合物などがあげられる
が、該架橋剤に限定されるわけではない。
Cellulose and/or cellulose derivatives constituting the gel may be crosslinked. Typical examples of crosslinking agents include shrimp tetrahydrin, dichlorohydrin, jepoxy compounds, dialdehyde compounds, diisocyanate compounds, cyanuric chloride, dialkoxyalkylsilane compounds,
Examples include trialkoxyalkylsilane compounds, but are not limited to these crosslinking agents.

本発明に用いる多孔質セルロース自身の細孔径について
は、除去対象物質の分子量およびサイズにより最適のも
のを選ぶことができる。細孔径の測定法には種々のもの
があり、直接測定する方法としては水銀圧入法、電子顕
微鏡観察による方法などがあるが、含水粒子については
これらの方法を適用できないばあいがある。このような
場合には排除限界分子憾を細孔径の目安とすることがで
きる。排除限界分子量とは成書(たとえば波多野博行、
花卉俊彦著、実験高速液体クロマトグラフ、化学同人)
などに述べられているように、ゲル浸透りpマドグラフ
ィーにおいて細孔内に侵入できない(排除される)分子
のうち最小の分子量を有するものの分子量のことである
。現象的には、排除限界分子量以上の分子量のものは移
動相体積近傍に溶出されることから、種々の分子量の化
合物を用いて溶出体積との関係を調べれば排除限界分子
量を求めることができる。
The pore diameter of the porous cellulose itself used in the present invention can be optimally selected depending on the molecular weight and size of the substance to be removed. There are various methods for measuring pore diameter, and direct measurement methods include mercury porosimetry and electron microscopic observation, but these methods may not be applicable to water-containing particles. In such cases, the exclusion limit molecular weight can be used as a guideline for the pore diameter. What is the exclusion limit molecular weight?
Written by Toshihiko Hana, Experimental High Performance Liquid Chromatograph, Chemistry Doujin)
As described in et al., it is the molecular weight of the smallest molecular weight among molecules that cannot enter (excluded) into the pores in gel permeation pomadography. Phenomenologically, molecules with molecular weights greater than the exclusion limit molecular weight are eluted near the volume of the mobile phase, so the exclusion limit molecular weight can be determined by examining the relationship with the elution volume using compounds of various molecular weights.

排除限界分子量は対象とする化合物の種類により異なっ
ており、本発明に用いる多孔質セルリースゲルは、球状
蛋白質およびウィルスを用いたばあいの排除限界分子量
(以下、排除限界分子量という)は5X103〜lX1
08の範囲であることが好ましい。排除限界分子量が1
×108を超えるとリガンドの保持量が減少して除去対
象物質の吸着量が減りまたゲルの強度が低下するため好
ましくない。
The exclusion limit molecular weight differs depending on the type of target compound, and the porous cellulose gel used in the present invention has an exclusion limit molecular weight (hereinafter referred to as exclusion limit molecular weight) of 5X103 to 1X1 when globular proteins and viruses are used.
The range is preferably 0.08. Exclusion limit molecular weight is 1
If it exceeds ×108, the amount of retained ligand decreases, the amount of adsorption of the substance to be removed decreases, and the strength of the gel decreases, which is not preferable.

多孔質セルロースゲルの空孔容積はセルロース含量を目
安にすることができる。セルロース含量はつぎに示す式
で表わされる。
The pore volume of the porous cellulose gel can be determined based on the cellulose content. The cellulose content is expressed by the formula shown below.

セルロース含量(%)=]τ、  xio。Cellulose content (%) =] τ, xio.

(式中、Wはゲル重量(9)、■tはゲルを充填したカ
ラムの体a(m7)、Voはゲルの細孔に侵入しえない
高分子量物質をゲルが充填されたカラムに通したばあい
、該高分子量物質がカラムから溶出するまでの溶出容積
(mJ )である。)本発明に用イル多孔質セルロース
ゲルはセルロース含量が2%以上60%以下であること
が好ましく、2%より少ないとゲルの強度が低下し、6
0%を超えると細孔容積が小さくなり好ましくない。
(In the formula, W is the gel weight (9), t is the body a (m7) of the column packed with gel, and Vo is a high molecular weight substance that cannot enter the pores of the gel, passed through the column packed with gel. (If so, it is the elution volume (mJ) until the high molecular weight substance is eluted from the column.) The porous cellulose gel used in the present invention preferably has a cellulose content of 2% to 60%; If it is less than 6%, the strength of the gel will decrease and
If it exceeds 0%, the pore volume becomes small, which is not preferable.

多孔質セルロースゲルの粒子径は一般的には小さい方が
吸着能力の点で好ましいが、粒子径があまり小さくなる
とカラムなどに充填したばあいの圧力損失が大きくなる
ため好ましくなく、粒子径は1〜5,000μの範囲で
あることが好ましい。
Generally, the smaller the particle size of the porous cellulose gel, the better from the viewpoint of adsorption capacity, but if the particle size becomes too small, the pressure loss will increase when packed in a column, etc., which is undesirable. Preferably, it is in the range of 5,000μ.

本発明に用いる除去対象物質に親和性を有する物質(リ
ガンド)としてはつぎに示す物質が代表例としてあげら
れる。
The following substances are representative examples of substances (ligands) that have an affinity for the substance to be removed used in the present invention.

免疫複合体を除去するには、C1qなどの補体成分、ブ
四ティンAなどの特異蛋白質、免疫複合体に対する抗体
などを用いることができる。
To remove immune complexes, complement components such as C1q, specific proteins such as butetin A, antibodies against immune complexes, etc. can be used.

自己免疫疾患などで出現する自己抗体などを除去するに
はたとえば、全身性エリテマトーデスにおいて血中に出
現する抗核抗体、抗B細胞抗体を除去するには核酸塩基
、ヌクレオシド、ヌクレオチド、ポリヌクレオチド、さ
らにはDNA 。
To remove autoantibodies that appear in autoimmune diseases, etc., for example, to remove anti-nuclear antibodies and anti-B cell antibodies that appear in the blood in systemic lupus erythematosus, use nucleobases, nucleosides, nucleotides, polynucleotides, and more. is DNA.

RNAなどを用いることができ、重症筋無力症において
出現する抗アセチルコリンリセブター抗体を除去するに
はアセチルコリンリセプター分画成分を用いることがで
きる。
RNA etc. can be used, and an acetylcholine receptor fraction component can be used to remove anti-acetylcholine receptor antibodies that appear in myasthenia gravis.

そのほかにも自己抗体の除去には各自己抗体に対する抗
原を用いることができる。
In addition, antigens for each autoantibody can be used to remove autoantibodies.

さらには、血中に出現する種々の有害成分を除去するた
めに除去対象物質に対する抗体を用いることができる。
Furthermore, antibodies against substances to be removed can be used to remove various harmful components that appear in the blood.

たとえは、肝炎ウィルスの除去にはウィルス表面の抗原
に対する抗体、全、lEエリテマトーデスにおいて血中
に出現するDNAなどの除去には抗DNA抗体などを用
いることができる。またリンパ球異常に対しては抗B細
胞抗体、抗すプレッサーT細胞体などを用いてリンパ球
を除去することもできる。
For example, antibodies against antigens on the surface of the virus can be used to remove hepatitis viruses, and anti-DNA antibodies can be used to remove DNA that appears in the blood in lupus erythematosus. In addition, for lymphocyte abnormalities, lymphocytes can be removed using anti-B cell antibodies, anti-pressor T cell bodies, and the like.

成上のごとく抗原−抗体反応を利用する方法のほかに、
被吸着物質に特異的な親和性(アフィニティー)を有す
る物質を用いることができる○代表例としてはへ関節リ
ウマチ症において出現するリウマチ因子を除去するため
の変性あるいは凝集されたイムノグロブリン、と−グロ
ブリンまたはそれらの分画成分、トリプトファンなどの
アミノ酸、リボ蛋白除去の−ためのヘパリンなどの硫酸
化多糖類、イムノブ四プリン除去のためのプロティンA
1ハプトグロ、ビン除去のためのヘモグロビン、プラス
ミノゲン除去のためのリジン、C1q除去のためのイム
/グロブリンG1プレカリクレイン除去のためのアルギ
ニン、トランスコーチン除去のためのコーチゾル、ヘモ
ベキシン除去のためのヘミン、エンドトキシン除去のた
めのポリミキシンなどがあげられる。さらには、コンカ
ナバリンA1フングルチニン、フィトヘマグルチニンな
どのレクチン、核酸、酵素、基質、補酵素なども用いる
ことができる。
In addition to methods using antigen-antibody reactions as described above,
Substances that have a specific affinity for the adsorbed substance can be used. Typical examples include denatured or aggregated immunoglobulin to remove rheumatoid factors that appear in rheumatoid arthritis, and -globulin. or their fractionated components, amino acids such as tryptophan, sulfated polysaccharides such as heparin for the removal of riboproteins, protein A for the removal of immunotetrapurines.
1 haptoglobin, hemoglobin for bin removal, lysine for plasminogen removal, im/globulin G1 for C1q removal, arginine for prekallikrein removal, cortisol for transcortin removal, hemin for hemovexin removal, endotoxin Examples include polymyxin for removal. Furthermore, lectins such as concanavalin A1 funglutinin and phytohemagglutinin, nucleic acids, enzymes, substrates, coenzymes, etc. can also be used.

以上に述べた除去対象物質およびリガンドはあくまで代
表例にすぎず、これらに限定されるわけではない。除去
対象物質としては、たとえば尿酸ビリルビンのように分
子量1000以下のものから、たとえばウィルスのよう
に分子量故千万以上のものまで種々のものがあげられる
。また担体の多孔質セルロースゲルは、通常除去対象物
質の分子量および分子サイズに応じて決定されるが、リ
ガンドの種類、除去対象物質の分子の形状などによって
も影響をうけ、たとえば除去対象物質の分子量が数百、
数百万、数千万のものに対してはそれぞれ排除限界分子
量が数千〜数十万、数千万、数千万〜1億のものを用い
るのが適当である。またリガンドは単独で用いてもよい
し、2種以上を混合して用いてもよい0 リガンドを担体の多孔質セルロースゲルに保持させる方
法には公知の権々の方法を用いることができる。すなわ
ち、物理的方法、イオン結合法、共有結合法などがあげ
られる。本発明の吸着体を体外循環治療に用いる除には
りガントが脱離しないことが重要であるため、結合の強
固な共有結合法が好ましく、そ1〕他の方法を用いるに
しても脱離を防ぐ工夫が必要である。また必要に応じて
スペーサーを担体とリガンドの間に導入してもよい。
The substances to be removed and the ligands described above are merely representative examples, and the present invention is not limited to these. The substances to be removed include a variety of substances, from those with a molecular weight of less than 1,000, such as bilirubin urate, to those with a molecular weight of more than 1,000 million, such as viruses. In addition, the porous cellulose gel of the carrier is usually determined according to the molecular weight and molecular size of the substance to be removed, but it is also influenced by the type of ligand, the shape of the molecule of the substance to be removed, etc. hundreds,
For millions and tens of millions of molecules, it is appropriate to use molecular weights with exclusion limits of several thousand to hundreds of thousands, tens of millions, and tens of millions to 100 million, respectively. Further, the ligand may be used alone or in combination of two or more kinds. A known method can be used for retaining the ligand in the porous cellulose gel of the carrier. That is, physical methods, ionic bonding methods, covalent bonding methods, etc. can be mentioned. Unless the adsorbent of the present invention is used for extracorporeal circulation therapy, it is important that the Gantt does not desorb, so a strong covalent bonding method is preferred. It is necessary to find ways to prevent this. Furthermore, a spacer may be introduced between the carrier and the ligand if necessary.

本発明の吸着体の用途としては種々のものがあげられ、
たとえば入口゛と出口に体液成分は通過するが吸着体は
通過しないフィルター、メツシュなどを装着したカラム
に吸着体を充填し、該カラムを体外循環回路に組み込み
、血液、血漿などをカラムに通して行なう体外循環治療
に用いるのが代表的であるが、必ずしもかかる用途に限
定されるものではない。
There are various uses for the adsorbent of the present invention,
For example, an adsorbent is packed into a column equipped with a filter or mesh that allows body fluid components to pass through the inlet and outlet but not the adsorbent, and the column is installed in an extracorporeal circulation circuit, and blood, plasma, etc. are passed through the column. Although it is typically used for extracorporeal circulation therapy, it is not necessarily limited to such uses.

本発明の吸着体はリガンドが大幅に変性されない限り、
高圧蒸気滅菌が可能であり、該滅菌操作による細孔、粒
子の形状、体積の変化はわずかである。
The adsorbent of the present invention can be used as long as the ligand is not significantly modified.
High-pressure steam sterilization is possible, and the sterilization process causes only slight changes in pores, particle shape, and volume.

つぎに実施例をあげて本発明をさらに詳しく説明するが
、本発明はかかる実施例のみに限定されるものではない
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1 七ルロファインA−3(チッソ■製の多孔質セルロース
ゲル、排除限界分子量5X107、粒子径45〜105
μm ) 10mjに20%NaOH4g、ヘプタン1
29、ノニオン系界面活性剤トウイーン2Q(Twee
m20)を1滴加え、40°Cで2時間攪拌後、エピク
ロルヒドリン59を加えて2時間攪拌した。静置後上澄
みを捨て、ゲルを水洗濾過してエポキシ化セルロースゲ
ルをえた。えられたゲルに濃アンモニア水15ml加え
、40〜で1.5時間攪拌し、内容物を吸引濾過し、水
洗してアミ7基の導入されたセルロースゲルをえた。
Example 1 Seven Rulofine A-3 (porous cellulose gel manufactured by Chisso ■, exclusion limit molecular weight 5X107, particle size 45-105
μm) 20% NaOH 4g, heptane 1 in 10mj
29, nonionic surfactant Twee 2Q (Twee
After adding one drop of m20) and stirring at 40°C for 2 hours, epichlorohydrin 59 was added and stirred for 2 hours. After standing still, the supernatant was discarded, and the gel was washed with water and filtered to obtain an epoxidized cellulose gel. 15 ml of concentrated ammonia water was added to the resulting gel, stirred at 40°C for 1.5 hours, and the contents were suction filtered and washed with water to obtain a cellulose gel into which 7 amino groups were introduced.

つぎにヘパリン200mpを水10mlに溶解し、これ
に前記アミ7基含有ゲル6mlを加え、pH4,5に調
整したのち、1−エチル−6−(ジメチルアミノプロピ
ル)−カルボジイミド200m9をpH4,5に保ちな
がら添加し、4°Cで24時間振とうした。
Next, 200 mp of heparin was dissolved in 10 ml of water, 6 ml of the gel containing amide 7 groups was added thereto, the pH was adjusted to 4.5, and 200 ml of 1-ethyl-6-(dimethylaminopropyl)-carbodiimide was adjusted to pH 4.5. The mixture was added while maintaining the temperature and shaken at 4°C for 24 hours.

反応終了後、2M食塩水溶液、0.5M食塩水溶液およ
び水で洗浄してヘパリンの保持されたセルロースゲルを
えた。保持されたヘパリン量は1・8m97m1であっ
た。またここまでの操作によりゲルが破壊されたり、微
粉の発生は認められなかった。
After the reaction was completed, the gel was washed with a 2M saline solution, a 0.5M saline solution, and water to obtain a cellulose gel retaining heparin. The amount of heparin retained was 1.8m97ml. Furthermore, no breakage of the gel or generation of fine powder was observed during the operations up to this point.

ついでえられた吸着体を内径9mm 、長さ47mm。The resulting adsorbent has an inner diameter of 9 mm and a length of 47 mm.

内容積約6mlのカラムに充填し、高脂血症患者の血漿
18mJを0.6ml/分でカラムに通した。カラムで
の圧力損失は終始15+n+r+H9以下で、目詰りな
どは俄察されなかった。
A column having an internal volume of approximately 6 ml was packed, and 18 mJ of plasma from a hyperlipidemic patient was passed through the column at a rate of 0.6 ml/min. The pressure loss in the column was below 15+n+r+H9 throughout, and no clogging was observed.

カラムを通過させることにより血漿中の総コレステロー
ルの65%が吸着され、総蛋白などの減少はわずかであ
った。
By passing through the column, 65% of the total cholesterol in plasma was adsorbed, and total protein etc. decreased only slightly.

実施例2 実施例1で用いたセルロファインA−3の粒子径を15
0〜200μにかえたほかは実施例1と同様にしてヘパ
リンの保持されたセルロースゲルをえた0保持されたヘ
パリン量は1 、5m97 m!であった。
Example 2 The particle size of Cellulofine A-3 used in Example 1 was changed to 15
A heparin-retained cellulose gel was obtained in the same manner as in Example 1, except that the heparin content was changed to 0 to 200 μm.The amount of heparin retained at 0 μm was 1.5 m97 m! Met.

紙上のゲルを実施例1と同じカラムに充填し、高脂血症
患者の血漿18mj (ヘパリン200U添加)を0.
2mノ/分でカラムに通した。カラムでの圧力損失は3
0mmH9以下であり、変化もゎずがであった0 カラムを通過させることにより血漿中の総コレステロー
ルの55%が吸着され、総蛋白、血球の減少はわずかで
あった。また吸着体表面での血栓形成もわずかであった
The gel on paper was packed into the same column as in Example 1, and 18 mj of plasma from a hyperlipidemic patient (added with 200 U of heparin) was added to 0.0 mj of plasma from a hyperlipidemic patient.
It was passed through the column at 2 m/min. The pressure drop in the column is 3
55% of the total cholesterol in plasma was adsorbed by passing through the 0 column, which had a value of 0 mmH9 or less and little change, and there was only a slight decrease in total protein and blood cells. Furthermore, there was little thrombus formation on the adsorbent surface.

実施例3 実施例1でえら、れたヘパリンの保持されたゲルをオー
トクレーブを用いて120°Cで15分間滅菌し、実施
例1と同じカラムに充填し、高脂血症患者の血漿18+
nf!を0.3ml/分でカラAに通した。カラムでの
圧力損失、総コレステロールの吸着はともに実施例1と
同様であった。
Example 3 The heparin-retained gel prepared in Example 1 was sterilized using an autoclave at 120°C for 15 minutes, and filled into the same column as in Example 1, and the heparin-retained gel obtained in Example 1 was prepared using plasma 18+ from a hyperlipidemic patient.
nf! was passed through Kara A at 0.3 ml/min. Both the pressure drop in the column and the adsorption of total cholesterol were the same as in Example 1.

実施例4 実11m例1と同様にしてエポキシ化セルロースゲルを
作製した。えられたゲル10m1にプロティンA 50
m9を加え、pH9、5に調整し、室温で24時間反応
したのち、2M*塩水溶液、0.5M食塩水溶液および
水で洗浄した。ついでモノエタノールアミンを加え、1
6時間反応して未反応エポキシ基を封止し、ついで水洗
してプロティンAの保持されたセルロースゲルをえた。
Example 4 An epoxidized cellulose gel was prepared in the same manner as in Example 1. Add 50% protein A to 10ml of the resulting gel.
After adding m9 and adjusting the pH to 9.5 and reacting at room temperature for 24 hours, the mixture was washed with a 2M* salt aqueous solution, a 0.5M salt aqueous solution, and water. Then add monoethanolamine and add 1
The mixture was reacted for 6 hours to seal unreacted epoxy groups, and then washed with water to obtain a cellulose gel in which protein A was retained.

えられた吸着体を実施例1と同じカラムに充填し、ヒト
血漿18m7をO、’Erm17分でカラムに通したと
ころ、約35%のグロブリンが吸着された。
The obtained adsorbent was packed into the same column as in Example 1, and 18 m7 of human plasma was passed through the column at O, Erm for 17 minutes, and about 35% of globulin was adsorbed.

なお、アルブミンの減少はわずかであった。Note that the decrease in albumin was slight.

実施例5 実施例1で用いたセルロファインA−3(7)20ml
を水に分散させ、これにpHを11〜12に保ちながら
臭化シアン69を徐々に添加し、10分間撹拌した。ゲ
ルを戸別し、冷水および0.1MNaHOO3水溶液で
洗浄して活性化ゲルをえた。ついでホ。
Example 5 20 ml of Cellulofine A-3 (7) used in Example 1
was dispersed in water, and cyanogen bromide 69 was gradually added thereto while maintaining the pH at 11 to 12, followed by stirring for 10 minutes. The gel was separated and washed with cold water and 0.1M NaHOO3 aqueous solution to obtain an activated gel. Next, ho.

リミキシン硫#jn 1.59を0.1 M N an
OO3水溶液QOmlに溶解し、これに紙上のゲルを加
えて4°Cで24時間珈とうしたのち、モノエタノール
アミン溶液を用いて過剰の活性基を封止してポリミキシ
ンの保持されたセルロースゲルをえた。
Remixin sulfur #jn 1.59 to 0.1 M N an
After dissolving in QOml of OO3 aqueous solution, adding the gel on paper and incubating at 4°C for 24 hours, excess active groups were sealed using a monoethanolamine solution to form a cellulose gel with polymyxin retained. I got it.

えられたゲル1mlを内径7mmのオープンカラムに充
填し、エントド牛シン添加(約100μ7/ml )牛
血漿5m/を0 、6ml 7分でカラムに通したとこ
ろ、60%のエンドトキシンが吸着された。
1 ml of the resulting gel was packed into an open column with an inner diameter of 7 mm, and when 5 ml of bovine plasma supplemented with endotoxin (approximately 100 μ7/ml) was passed through the column for 7 minutes, 60% of endotoxin was adsorbed. .

実施例6 セルロフアインA−3をセルロファインA−2(チッソ
fII製の多孔質セルロースゲル、排除限界分子量7 
X 105、粒子径45〜105μm)にかえたほかは
実施例1と同様にしてエポキシ化セルロースゲルを作製
した。えられたゲル1Qmlにヒトイムノグロブリン0
10m9を加え、pH9,0に調整し、室温で24時間
反応したのち、ゲルを戸別し、21通食塩水溶液、0.
5M食塩水Pa Hおよび水で洗浄した。ついでモノエ
タノールアミン浴液を用いて未反応エポキシ基を封止 
してイムノグロブリンGの保持されたセルロースゲルを
えた。
Example 6 Cellulofine A-3 was mixed with Cellulofine A-2 (porous cellulose gel manufactured by Chisso fII, exclusion limit molecular weight 7).
An epoxidized cellulose gel was produced in the same manner as in Example 1, except that the gel was changed to a particle size of 45 to 105 μm). Human immunoglobulin 0 was added to 1Qml of the resulting gel.
After adding 10 m9 of sodium chloride solution and adjusting the pH to 9.0 and reacting at room temperature for 24 hours, the gel was taken from house to house and treated with a saline solution for 21 days.
Washed with 5M saline Pa H and water. Then, unreacted epoxy groups are sealed using a monoethanolamine bath solution.
A cellulose gel in which immunoglobulin G was retained was obtained.

つぎにえられたゲルを実施例1と同じカラムに充填し、
ヒト血漿18mlを0.2mj/分でカラムに通したと
ころ、約60%のC1qが吸着され7こ。
Next, the obtained gel was packed into the same column as in Example 1,
When 18 ml of human plasma was passed through the column at 0.2 mj/min, about 60% of C1q was adsorbed.

Claims (1)

【特許請求の範囲】[Claims] 1 多孔質セルレースゲルに除去対象物質に親和性を有
する物質が保持されてなる吸着体。
1. An adsorbent in which a porous cellulose gel holds a substance that has an affinity for the substance to be removed.
JP58068116A 1982-12-02 1983-04-18 Adsorbing body Pending JPS59193135A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP58068116A JPS59193135A (en) 1983-04-18 1983-04-18 Adsorbing body
CA000442312A CA1221307A (en) 1982-12-02 1983-11-30 Adsorbent and process for preparing the same
AT83112042T ATE42222T1 (en) 1982-12-02 1983-12-01 ADSORBENT AND PROCESS FOR PRODUCTION.
AT87100215T ATE97832T1 (en) 1982-12-02 1983-12-01 ADSORBENT AND PROCESS FOR PRODUCTION.
DE87100215T DE3382723T2 (en) 1982-12-02 1983-12-01 Adsorbent and process for its manufacture.
AT91115793T ATE195891T1 (en) 1982-12-02 1983-12-01 SORBENT AGENT AND PRODUCTION PROCESS THEREOF
EP83112042A EP0110409B2 (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
DE8383112042T DE3379644D1 (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
EP87100215A EP0225867B1 (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
US06/557,061 US4576928A (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
EP91115793A EP0464872B2 (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
DE3382834T DE3382834T3 (en) 1982-12-02 1983-12-01 Sorbent and its production process
US06/737,880 US4637994A (en) 1982-12-02 1985-05-28 Adsorbent and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58068116A JPS59193135A (en) 1983-04-18 1983-04-18 Adsorbing body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP63273982A Division JPH01265972A (en) 1988-10-29 1988-10-29 Removing method of harmful component in humors

Publications (1)

Publication Number Publication Date
JPS59193135A true JPS59193135A (en) 1984-11-01

Family

ID=13364444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58068116A Pending JPS59193135A (en) 1982-12-02 1983-04-18 Adsorbing body

Country Status (1)

Country Link
JP (1) JPS59193135A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681870A (en) * 1985-01-11 1987-07-21 Imre Corporation Protein A-silica immunoadsorbent and process for its production
JPS62244441A (en) * 1986-04-16 1987-10-24 Green Cross Corp:The Antibody immobilization carrier
US4762787A (en) * 1986-11-21 1988-08-09 Imre Corporation Anti-human IGM immunoadsorbent and process for producing said immunoadsorbent
JPS63255299A (en) * 1987-04-10 1988-10-21 Snow Brand Milk Prod Co Ltd Method for separating and purifying lactoferrin from milk
US4863869A (en) * 1986-11-21 1989-09-05 Imre Cororation Anti-human IGM immunoadsorbent and process for producing said immunoadsorbent
JP2002263486A (en) * 2001-03-14 2002-09-17 Chisso Corp Endotoxin adsorbent and method for removing endotoxin using the same
US7056507B2 (en) 1997-03-25 2006-06-06 Kaneka Corporation Adsorbent for eliminating hepatitis C virus, adsorber, and adsorption method
JP2008279366A (en) * 2007-05-10 2008-11-20 Kaneka Corp Porous carrier, adsorbents for purification using the same, manufacturing method thereof, and purification process using the same
JP2012087202A (en) * 2010-10-19 2012-05-10 Jsr Corp Method for producing cellulose particle, and cellulose particle
US9505850B2 (en) 2012-05-30 2016-11-29 National University Corporation Kumamoto University Endotoxin adsorbent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124882A (en) * 1974-02-21 1975-10-01
JPS554417A (en) * 1978-06-23 1980-01-12 Aisin Seiki Collapsible handle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124882A (en) * 1974-02-21 1975-10-01
JPS554417A (en) * 1978-06-23 1980-01-12 Aisin Seiki Collapsible handle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681870A (en) * 1985-01-11 1987-07-21 Imre Corporation Protein A-silica immunoadsorbent and process for its production
JPS62244441A (en) * 1986-04-16 1987-10-24 Green Cross Corp:The Antibody immobilization carrier
US4762787A (en) * 1986-11-21 1988-08-09 Imre Corporation Anti-human IGM immunoadsorbent and process for producing said immunoadsorbent
US4863869A (en) * 1986-11-21 1989-09-05 Imre Cororation Anti-human IGM immunoadsorbent and process for producing said immunoadsorbent
JPS63255299A (en) * 1987-04-10 1988-10-21 Snow Brand Milk Prod Co Ltd Method for separating and purifying lactoferrin from milk
US7056507B2 (en) 1997-03-25 2006-06-06 Kaneka Corporation Adsorbent for eliminating hepatitis C virus, adsorber, and adsorption method
JP2002263486A (en) * 2001-03-14 2002-09-17 Chisso Corp Endotoxin adsorbent and method for removing endotoxin using the same
JP2008279366A (en) * 2007-05-10 2008-11-20 Kaneka Corp Porous carrier, adsorbents for purification using the same, manufacturing method thereof, and purification process using the same
JP2012087202A (en) * 2010-10-19 2012-05-10 Jsr Corp Method for producing cellulose particle, and cellulose particle
US9505850B2 (en) 2012-05-30 2016-11-29 National University Corporation Kumamoto University Endotoxin adsorbent
US10155217B2 (en) 2012-05-30 2018-12-18 National University Corporation Kumamoto Endotoxin adsorbent

Similar Documents

Publication Publication Date Title
EP0110409B1 (en) Adsorbent and process for preparing the same
JP2004516896A (en) Extracorporeal capture of specific biopolymers from extracellular body fluids
JPH0434451B2 (en)
JPS59193135A (en) Adsorbing body
CN1972746B (en) Isolation matrix and purification method
EP1697416A1 (en) Purification of immunoglobulins
JP2928589B2 (en) Adsorbent for modified LDL and apparatus for removing modified LDL using the same
JPS62192172A (en) Adsorbing body
EP0703001B1 (en) Adsorbent for ketoamine-containing protein
JPH01265972A (en) Removing method of harmful component in humors
JPS6319214B2 (en)
JP2649224B2 (en) Sterilization method for body fluid treatment device and sterilized body fluid treatment device
JPS5812656A (en) Adsorbent for extracorporeal circulation treatment
JPH0611333B2 (en) Immune complex adsorbent and immune complex removing apparatus using the same
JPH0114791B2 (en)
JPS59186559A (en) Autoantibody and/or immune complex adsorbent
JPS6256782B2 (en)
JPS6226073A (en) Method and apparatus for direct infusion and adsorption of blood
JPS6361024B2 (en)
JP2726662B2 (en) Adsorbent and removal device using the same
JPH025096B2 (en)
JPH0523395A (en) Blood purifying adsorbent
JPS60241450A (en) Adsorbing material for purifying body fluids
JPH0771632B2 (en) Adsorbent and removal device using the same
JPH0126709B2 (en)