JPS5919009A - Mandrel mill mandrel bar lubrication treatment method - Google Patents
Mandrel mill mandrel bar lubrication treatment methodInfo
- Publication number
- JPS5919009A JPS5919009A JP12805882A JP12805882A JPS5919009A JP S5919009 A JPS5919009 A JP S5919009A JP 12805882 A JP12805882 A JP 12805882A JP 12805882 A JP12805882 A JP 12805882A JP S5919009 A JPS5919009 A JP S5919009A
- Authority
- JP
- Japan
- Prior art keywords
- lubricant
- mandrel
- graphite
- scale
- mill
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 24
- 238000005461 lubrication Methods 0.000 title description 10
- 239000000314 lubricant Substances 0.000 claims description 44
- 239000007787 solid Substances 0.000 claims description 9
- 230000001050 lubricating effect Effects 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 26
- 229910002804 graphite Inorganic materials 0.000 description 24
- 239000010439 graphite Substances 0.000 description 24
- 238000005096 rolling process Methods 0.000 description 12
- 229910000831 Steel Inorganic materials 0.000 description 8
- 239000010959 steel Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 4
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 4
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 235000015278 beef Nutrition 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 101100135641 Caenorhabditis elegans par-3 gene Proteins 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 238000006124 Pilkington process Methods 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052961 molybdenite Inorganic materials 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B25/00—Mandrels for metal tube rolling mills, e.g. mandrels of the types used in the methods covered by group B21B17/00; Accessories or auxiliary means therefor ; Construction of, or alloys for, mandrels or plugs
- B21B25/04—Cooling or lubricating mandrels during operation
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Lubricants (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、マンドレルミルにおけるマンドレルバ−等の
熱間加工用工具の潤滑処理方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for lubricating hot working tools such as mandrel bars in mandrel mills.
炭素鋼、合金鋼またはステンレス鋼等の鋼の熱間加工に
おいて、工具と鋼との接触面で生じる相対上り時に生じ
る摩擦力、工具表面への鋼の焼付き、工具の摩耗等を低
減するだめに、工具へ潤滑剤を塗布することはきわめて
重要なことである。In hot working of steel such as carbon steel, alloy steel, or stainless steel, it is used to reduce the frictional force generated during relative upward movement at the contact surface between the tool and the steel, seizure of the steel on the tool surface, tool wear, etc. It is extremely important to apply lubricant to the tool.
この潤滑剤の種別、および塗布方法等は、加工方法によ
って異なるが、これを継目無鋼管の熱間加工工程におけ
るマンドレルミル圧延(フルフロート法、リテイニング
マンドレル圧延法を包含する)でのマンドレルバーにつ
いての潤滑の場合を中心にして以下説明を続ける。The type and application method of this lubricant vary depending on the processing method, but it is used in mandrel mill rolling (including full float method and retaining mandrel rolling method) in the hot working process of seamless steel pipes. The following explanation will be continued focusing on the case of lubrication.
マンドレルミル圧延法は、熱間穿孔しだホローシェルに
長尺のマンドレルバーを挿入した後、2ハイの孔型ロー
ルを有する複数スタンドを備えた連続圧延機を通過させ
、パーと孔型ロールにより規制された寸法に減肉加工を
行うものである。しかるに、マンドレルパー表面には潤
滑剤が塗布されるが、潤滑剤としては、オイル類の液体
潤滑剤と黒鉛、二硫化モリブデン(MO82)等の固体
潤滑剤とがある。前者は、高温耐熱性が劣るため、通常
は後者が使用される。まだ、後者の黒鉛等をマンドレル
バーに付着させる方法としては次の3通りの方法がある
。(1)オイルまだは重油に黒鉛粉を混合させたものを
塗布する。(2)水または付着活性剤を混入した水溶液
に黒鉛を混合させたものを塗布する。(3)水溶性の各
種化成重合体からなる速乾性の糊を含む水溶液に黒鉛粉
を混合させ、塗布後マンドレルバ−の温度(100〜2
00℃)を利用しながら水分を乾燥させ黒鉛′層を形成
させる。In the mandrel mill rolling method, after a long mandrel bar is inserted into a hot perforated hollow shell, it is passed through a continuous rolling mill equipped with multiple stands with 2-high grooved rolls, and the rolling process is regulated by pars and grooved rolls. Thickness reduction processing is performed to the specified dimensions. However, lubricants are applied to the surface of the mandrel par, and the lubricants include liquid lubricants such as oil and solid lubricants such as graphite and molybdenum disulfide (MO82). Since the former has poor high temperature heat resistance, the latter is usually used. There are still three methods for attaching the latter graphite etc. to the mandrel bar. (1) If oil is not present, apply a mixture of heavy oil and graphite powder. (2) Apply a mixture of graphite in water or an aqueous solution containing an adhesion activator. (3) Graphite powder is mixed into an aqueous solution containing a quick-drying glue made of various water-soluble chemical conversion polymers, and after application the temperature of the mandrel bar (100 to 2
00°C) to dry the moisture and form a graphite' layer.
これらの方法のうち、(1)および(2)の方法は、黒
鉛のマントレア+、パー表面積当りの量が不安定であり
、壕だ塗布液がマンドレルバーから滴下して工場の水を
汚染するなどの欠点があり、さらに(1)の方法では黒
煙を発生する問題がある。Among these methods, methods (1) and (2) are unstable in the amount of graphite per surface area, and the coating solution drips from the mandrel bar and contaminates the water in the factory. In addition, method (1) has the problem of generating black smoke.
そこで、近年は(3)の方法が漸次採用されつつあり、
同法によれば、速乾性の糊が有効に作用し、黒鉛のイ・
1着量(厚さ)を容易に制御でき、かつ黒鉛の発生が少
い等の特長がある。Therefore, in recent years, method (3) has been gradually adopted.
According to the same law, quick-drying glue works effectively and graphite
It has the advantages of being able to easily control the amount (thickness) of each coat and generating less graphite.
ところが、この(3)の方法で潤滑剤を塗布したとして
も、次述するように、鋼の熱間加工時において鋼表面[
(発生するスケールとの関係で十分な結果が得られない
。However, even if a lubricant is applied using method (3), the steel surface [[
(Sufficient results cannot be obtained due to the scale of occurrence.
マンドレルミルに与えられるホローシェルの内面には、
20/1〜50μのスケールが圧密状態で付着している
。このホローシェルに黒鉛潤滑剤が塗布固着されたマン
ドレルバーを挿入し、圧延機によりたとえば圧延機前後
の延伸比で2〜5なる条件で延伸加工すると、ホローシ
ェルの内表面は鋼の延伸量に応じて半径方向の圧縮応力
を受けつつ長手方向に塑性延伸される。このとき、本発
明者らの知見によれば、ホローシェルに均一にイ」着し
たスケールは、鋼の塑性延伸と同じようにホローシェル
表面上を延伸されるものではなく、圧密されながらも鋼
の延伸方向ではちぎれながら分布されてゆくことが明ら
かとなった。それは、あたかも、鋼の内表面に煉瓦を粗
に配置したごとくである。The inner surface of the hollow shell given to the mandrel mill is
A scale of 20/1 to 50μ is attached in a compacted state. A mandrel bar coated with graphite lubricant is inserted into this hollow shell, and the inner surface of the hollow shell is stretched according to the amount of stretching of the steel. It is plastically stretched in the longitudinal direction while being subjected to compressive stress in the radial direction. At this time, according to the findings of the present inventors, the scale deposited uniformly on the hollow shell is not stretched on the surface of the hollow shell in the same way as plastic stretching of steel; It became clear that the distribution was fragmented in different directions. It is as if bricks were roughly placed on the inner surface of the steel.
これに対して、マンドレル・ぐ−に塗布固着された黒鉛
は、模式的に示しだ第1図に示すように、ホローシェル
]の地金から煉瓦状にちぎれ、粗に分布したスケール塊
2は、あたかもヤスリの表面あるいは一砥石の砥粒のご
とく作用し、マンドレルパー3表面から黒鉛4を掻き取
り、逆に掻き取られた黒鉛4は、スケール塊2相互間を
埋め、ホローシェル1の地金表面へ転位して行くと考え
られる。これによって、最終的にマンドレルバ−表面で
の黒鉛残存量が非常に少くなる。実際、前述の(3)の
方法でマンドレルパー上に厚み10μ〜50μの範囲内
で棟々黒鉛付着を変化させて塗布してみても、いずれの
場合も残存黒鉛量がきわめて少いことが実験から判明し
ている。かくして、黒鉛量がスケールイ・1着量に比較
し少いと、黒鉛が分断されたスケール塊とスケール塊と
の間に落ち込み、工具でアルマンドレルバ−と接触して
いるのはスケールだけとな9、接触面摩擦係数は増大し
、スケールによりマンドレルバーの摩耗が促進される。On the other hand, the graphite coated and fixed on the mandrel, as shown schematically in Figure 1, is torn off into brick-like pieces from the base metal of the hollow shell, and the coarsely distributed scale lumps 2 are It acts as if it were the surface of a file or the abrasive grains of a single whetstone, scraping the graphite 4 from the surface of the mandrel par 3, and conversely, the scraped graphite 4 fills the spaces between the scale lumps 2 and scrapes the graphite 4 from the surface of the bare metal of the hollow shell 1. It is thought that it will be dislocated to. As a result, the amount of graphite remaining on the surface of the mandrel bar becomes extremely small. In fact, experiments have shown that even when applying the method (3) above on a mandrel par with varying amounts of graphite adhesion within a thickness range of 10μ to 50μ, the amount of residual graphite is extremely small in each case. It is clear from Thus, if the amount of graphite is small compared to the amount of scale 1, the graphite will fall between the divided scale lumps and only the scale will be in contact with the armand lever with the tool. 9. The friction coefficient of the contact surface increases, and the scale accelerates the wear of the mandrel bar.
しからば、黒鉛の付着量を増大させれば、この問題の解
決法の一つになる。すなわち、各種潤滑条件と摩擦係数
との関係を調べだところ、第1表に示す結果が得られた
。実験は、■スタンドモデルマンドレルミルを用い、母
管寸法:127φ×18t(低炭素鋼)を圧延温度10
70℃で圧延寸法:114φX]3.87t(マンドレ
ル寸法86.26φ)に仕上げたものである(寸法の単
位は解、以下同じ)。Therefore, one way to solve this problem is to increase the amount of graphite deposited. That is, when we investigated the relationship between various lubrication conditions and friction coefficients, we obtained the results shown in Table 1. The experiment was conducted using a stand model mandrel mill, with main pipe dimensions: 127φ x 18t (low carbon steel) rolled at a rolling temperature of 10
It was rolled at 70° C. and finished to a size of 114φX]3.87t (mandrel size of 86.26φ) (the unit of dimension is 0, the same applies hereinafter).
第1表
この結果によれば、黒鉛量を100μ厚とすると、潤滑
性がかなり向上することが判る。According to the results in Table 1, it can be seen that when the amount of graphite is 100 μm thick, the lubricity is considerably improved.
しかし、黒鉛の大量の使用は、不経済であるばかりでな
く、黒鉛は元来完全に塑性的性質を有しておらず、圧延
過程で塊状(吹きだまり)に分布し、被加工材内表面に
凹みを発生させ、好ましくない。However, the use of large amounts of graphite is not only uneconomical, but graphite does not originally have completely plastic properties, and during the rolling process, it is distributed in lumps (drifts) and forms on the inner surface of the workpiece. It causes dents, which is undesirable.
本発明上、前記従来の問題点に鑑み、最少の固体潤滑剤
の使用量であっても、固体潤滑剤が元来持っている優れ
た潤滑性能を発揮させることができる潤滑処理方法を提
供しようとするものである。In view of the above-mentioned conventional problems, it is an object of the present invention to provide a lubrication treatment method that can bring out the excellent lubrication performance originally possessed by solid lubricants even when the amount of solid lubricant used is minimal. That is.
すなわち、本発明の熱間加工用工具の潤滑処理方法は、
工具表面に熱間加工時において非まだは難流動性の固体
潤滑剤系第1潤滑剤を塗布し、その第1潤滑剤層の表面
に熱間加工時において第1潤滑剤より流動性の優れかつ
瞬時に燃焼しない第2潤滑剤を塗布することを特徴とす
るものである。That is, the lubrication treatment method for hot working tools of the present invention is as follows:
A first lubricant based on a solid lubricant that is difficult to flow during hot working is applied to the tool surface, and the surface of the first lubricant layer is coated with a first lubricant that has better fluidity than the first lubricant during hot working. In addition, a second lubricant that does not burn instantly is applied.
本発明における第1潤滑剤としては、熱間加工温度範囲
800℃〜1150℃で、かつ与えられる外力によって
も、非まだは離流動性の固体潤滑剤、たとえば黒鉛まだ
は二硫化モリブデンMo S 2単味、あるいはこれら
に若干の添加物を加えたものが使用される。第1潤滑剤
の塗布方法としては、一般にスプレー法特に高圧スプレ
ー法が用いられるが、これにかえて浸漬法、ローラ転着
法等を用いることもできる。The first lubricant in the present invention is a solid lubricant that has a non-removal property even in the hot working temperature range of 800°C to 1150°C and even when applied external force, such as graphite or molybdenum disulfide MoS2. It is used either alone or with some additives added. As a method for applying the first lubricant, a spray method, particularly a high-pressure spray method, is generally used, but a dipping method, a roller transfer method, etc. can also be used instead.
また塗布厚さは10〜150μとするのがよく、望まし
くは20〜50μとするのがよく、これは10μ未満で
は潤滑効果がなく、150μを超えると従来例と同様な
難点を招くからである。Further, the coating thickness is preferably 10 to 150μ, preferably 20 to 50μ, because if it is less than 10μ, there is no lubrication effect, and if it exceeds 150μ, it will cause the same problems as in the conventional example. .
他方、第2潤滑剤としては、熱間加工時において第】潤
滑剤より流動性に優れたものが使用され、まだ」二記加
工温度範囲で瞬時に燃焼し去るものは避けられる。たと
えば、食塩、岩塩、細粒のほう砂、細粒のほう酸等の無
機物、あるいは牛脂またはパーム油等の有機物がある。On the other hand, as the second lubricant, one is used that has better fluidity than the first lubricant during hot working, and a lubricant that burns off instantly in the working temperature range is avoided. Examples include inorganic substances such as common salt, rock salt, fine grains of borax, and fine grains of boric acid, or organic substances such as beef tallow or palm oil.
さらに、重油等の天然油脂、ステアリン酸Na+’Ca
等も使用できる。Furthermore, natural fats and oils such as heavy oil, Na+'Ca stearate, etc.
etc. can also be used.
このうち牛脂は最適な例である。塗布方法としては、油
系潤滑剤はそのまま、固体系潤滑剤は微細に粉砕したも
のを粘着性溶液に混合してスプレー法によって塗布する
。Of these, beef tallow is the best example. As for the application method, the oil-based lubricant is used as it is, and the solid-based lubricant is mixed into a finely ground viscous solution and applied by a spray method.
また塗布厚さは、スケール量にもよるが、5μ〜100
μが好ましく、5μ未満では第1潤滑剤単体の場合と同
じ結果を招き、1ooμを超えると経済的でない。The coating thickness varies from 5μ to 100μ depending on the amount of scale.
μ is preferable; if it is less than 5μ, the same result as the first lubricant alone will result, and if it exceeds 1ooμ, it is not economical.
ところで、第2潤滑剤と第1潤滑剤とを混合したものを
塗布することが従来性なわれているが、これでは、その
混合物がスケール塊の間に落ち込み、黒鉛等の第1潤滑
剤の有効な潤滑性を期待できず、まだ固体潤滑剤は流動
性がないから、混合物によってスケール塊の間を十分埋
めることができない。By the way, it has been conventional practice to apply a mixture of the second lubricant and the first lubricant, but in this case, the mixture falls between the scale lumps and the mixture of the first lubricant, such as graphite, is mixed. Effective lubricity cannot be expected, and since the solid lubricant still lacks fluidity, the mixture cannot sufficiently fill in the spaces between scale lumps.
本発明は、第1潤滑剤と第2潤滑剤との二層塗布方式を
採るものである。その結果、圧延中は、第2図のような
挙動を示す。すなわち、第2潤滑剤5が分断されたスケ
ール塊2の間を埋め、第1潤滑剤4は分断されたスケー
ル塊2の間に落ち込むことなく、マンドレルバ−3とス
ケール塊2との間に介在しており、本来の潤滑性能を発
揮する。The present invention employs a two-layer coating method of a first lubricant and a second lubricant. As a result, during rolling, the behavior shown in FIG. 2 is exhibited. That is, the second lubricant 5 fills in between the divided scale lumps 2, and the first lubricant 4 does not fall between the divided scale lumps 2, but is interposed between the mandrel bar 3 and the scale lumps 2. It exhibits its original lubrication performance.
本発明の効果を確認するために、4oo℃におけるバウ
デン摩擦試験(摩擦回数50回のときの摩擦係数を求め
る)を行った。その結果は第2表の通りであった。In order to confirm the effects of the present invention, a Bowden friction test (to determine the friction coefficient after 50 frictions) was conducted at 40°C. The results were as shown in Table 2.
第2表
この結果から、本発明法が有効であることが判明したの
で、引き続いてスケール発生がある実機での試験を行っ
た。圧延機は8スタンドミル、母管寸法:147φ×1
4ot(低炭素鋼)、圧延寸法=123φX 4.Ot
(マンドレル寸法110φ)、圧延温度950℃であ
る。その結果は、第3表の通りであった。Table 2 From the results, it was found that the method of the present invention was effective, so a test was subsequently conducted using an actual machine where scale was generated. The rolling mill is an 8-stand mill, main tube dimensions: 147φ x 1
4ot (low carbon steel), rolling dimension = 123φX 4. Ot
(mandrel size: 110φ) and rolling temperature: 950°C. The results were as shown in Table 3.
第3表
摩擦係数の測定は、圧延荷重を計測するとともニ、マン
ドレルバーの保持装置にかかる保持力を計測し、前者の
値を後者の値で除して算出したものである。The coefficient of friction in Table 3 was calculated by measuring the rolling load and also measuring the holding force applied to the holding device of the mandrel bar, and dividing the former value by the latter value.
また、同様の試験を、第1および第2潤滑剤の種別を変
えて行った結果を第4表に示す。Further, Table 4 shows the results of similar tests conducted using different types of first and second lubricants.
第4表
なお、本発明は、マンドレルバ−のほか、プラグミルの
プラグ、各種ガイドシューおよび熱間鍛造用プレスの金
型等の潤滑にも当然適用できる。Table 4 Note that the present invention is naturally applicable to the lubrication of not only mandrel bars but also plugs of plug mills, various guide shoes, molds of hot forging presses, and the like.
以上の通り、本発明によれば、少い固体潤滑剤の使用量
であっても、優れた潤滑性能を発揮させることができ、
焼付防止や工具の摩耗防止等を確実に達成できる。As described above, according to the present invention, excellent lubrication performance can be exhibited even with a small amount of solid lubricant used.
It is possible to reliably achieve prevention of seizure and tool wear.
第1図は従来例の潤滑剤の挙動を示すミクロ的模式図、
第2図は本発明法によって処理した潤滑剤の挙動を示す
ミクロ的模式図である。
1・・・ホローンエノイ被加工材)2・・・スケール塊
3・・・マンドレルバー(工具)
4・・・黒鉛または第1潤滑剤
5・・・第2潤滑剤Figure 1 is a microscopic diagram showing the behavior of a conventional lubricant.
FIG. 2 is a microscopic schematic diagram showing the behavior of a lubricant treated by the method of the present invention. 1... Hollow Enoy workpiece material) 2... Scale lump 3... Mandrel bar (tool) 4... Graphite or first lubricant 5... Second lubricant
Claims (1)
の固体潤滑剤系第1潤滑剤を塗布し、その第1潤滑剤層
の表面に熱間加工時において第1潤滑剤より流動性の優
れかつ瞬時に燃焼しない第2潤滑剤を塗布することを特
徴とする熱間加工用工具の潤滑処理方法。(1) A first lubricant based on a solid lubricant that is difficult to flow during hot working is applied to the tool surface, and the surface of the first lubricant layer is coated with a first lubricant that flows more than the first lubricant during hot working. A method for lubricating a tool for hot working, characterized by applying a second lubricant that has excellent properties and does not burn instantly.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12805882A JPS5919009A (en) | 1982-07-21 | 1982-07-21 | Mandrel mill mandrel bar lubrication treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12805882A JPS5919009A (en) | 1982-07-21 | 1982-07-21 | Mandrel mill mandrel bar lubrication treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5919009A true JPS5919009A (en) | 1984-01-31 |
JPS6232004B2 JPS6232004B2 (en) | 1987-07-11 |
Family
ID=14975431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12805882A Granted JPS5919009A (en) | 1982-07-21 | 1982-07-21 | Mandrel mill mandrel bar lubrication treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5919009A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5279141A (en) * | 1988-12-23 | 1994-01-18 | Kawasaki Steel Corporation | Apparatus for pre-processing stainless steel strip intended to be cold-rolled |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5170173A (en) * | 1974-12-16 | 1976-06-17 | Nippon Steel Corp | Junkatsuseino suguretakozai |
JPS52138049A (en) * | 1976-05-14 | 1977-11-17 | Nippon Oils & Fats Co Ltd | Metal mold processing method |
JPS5765796A (en) * | 1980-10-08 | 1982-04-21 | Nippon Steel Corp | Cold rolling method of steel sheet |
-
1982
- 1982-07-21 JP JP12805882A patent/JPS5919009A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5170173A (en) * | 1974-12-16 | 1976-06-17 | Nippon Steel Corp | Junkatsuseino suguretakozai |
JPS52138049A (en) * | 1976-05-14 | 1977-11-17 | Nippon Oils & Fats Co Ltd | Metal mold processing method |
JPS5765796A (en) * | 1980-10-08 | 1982-04-21 | Nippon Steel Corp | Cold rolling method of steel sheet |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5279141A (en) * | 1988-12-23 | 1994-01-18 | Kawasaki Steel Corporation | Apparatus for pre-processing stainless steel strip intended to be cold-rolled |
Also Published As
Publication number | Publication date |
---|---|
JPS6232004B2 (en) | 1987-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5292575B2 (en) | Seamless steel pipe processing lubricant composition | |
US3429815A (en) | Rolling oils | |
JPS5919009A (en) | Mandrel mill mandrel bar lubrication treatment method | |
JP2002264252A (en) | Metallic material for plastic working having inclined two-layer lubricating film and method for producing the same | |
US3925214A (en) | Hot forming lubricant composition, system and method | |
US4151102A (en) | Synthetic bearing lubricant | |
US2377106A (en) | Lubricant and process for preparing and using same | |
US4755309A (en) | Cold working lubricant for metallic conduits | |
JP2004099949A (en) | Method for producing metal material for plastic working having inclined two-layer lubricating film | |
US2531553A (en) | Upsetting-die lubricant for application to bolt stock or the like | |
US2146885A (en) | Metal forming lubricants and their use | |
JPS6281221A (en) | Manufacturing method for cold-deformed metal products | |
JP2000226591A (en) | Lubricant for hot plastic working and hot plastic working method | |
JPS61253128A (en) | Lubricating treatment for metal surface | |
JP2005097605A (en) | Seamless steel pipe processing lubricant composition | |
JPH06234989A (en) | Lubricant for hot rolling and method of supplying the lubricant | |
McDowell | Fretting of hardened steel in oil | |
Schmid et al. | Fundamentals of tribology in metal forming | |
Nonoyama et al. | New Lubricating Method for Warm Forging of Steel with Boron Oxide (B2O2) | |
JPH02206693A (en) | Lubricant for hot working | |
JPH03151101A (en) | Cold rolling method of titanium plate | |
WO1989012669A1 (en) | Lubricant composition for hot-rolling of steel | |
JPH04519B2 (en) | ||
JPH06264088A (en) | Lubricant composition for high temperature | |
JPH0637632B2 (en) | Lubricant composition for high temperature |