JPS59189671A - semiconductor equipment - Google Patents
semiconductor equipmentInfo
- Publication number
- JPS59189671A JPS59189671A JP58064760A JP6476083A JPS59189671A JP S59189671 A JPS59189671 A JP S59189671A JP 58064760 A JP58064760 A JP 58064760A JP 6476083 A JP6476083 A JP 6476083A JP S59189671 A JPS59189671 A JP S59189671A
- Authority
- JP
- Japan
- Prior art keywords
- region
- collector
- type
- base
- impurity concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D48/00—Individual devices not covered by groups H10D1/00 - H10D44/00
- H10D48/30—Devices controlled by electric currents or voltages
- H10D48/32—Devices controlled by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H10D48/34—Bipolar devices
- H10D48/345—Bipolar transistors having ohmic electrodes on emitter-like, base-like, and collector-like regions
Landscapes
- Bipolar Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は半導体装置VC関し、特に縦型PI’JP )
ランジスタ會含む半導体集積回路の構造VC関する。[Detailed Description of the Invention] The present invention relates to a semiconductor device VC, particularly a vertical type PI'JP).
The present invention relates to a structure VC of a semiconductor integrated circuit including a transistor assembly.
従来、半導体集積回路においては、NPN)ランジスタ
と共VCPNPトランジスタが一般に用いられているが
、PNP)ランジスタの構造として縦型1’NP構造が
ある。Conventionally, in semiconductor integrated circuits, both NPN) transistors and VCPNP transistors have been generally used, and a vertical 1'NP structure is available as a structure of PNP) transistors.
例えば、第1図は公知の縦型PNP構造であり。For example, FIG. 1 shows a known vertical PNP structure.
P型半導体基板1に高不純物濃度のN型領域2を形成し
てエピタキシャル成長VCよるN型層3&Cよって埋込
む。次にトランジスタ全電気的に分離する絶縁埋込層4
と同時に形成した高不純物濃度のP型領域5全コレ〃り
とし第2のエピタキシャル成長によるN型層6 VCよ
って埋込む。更に、絶縁領域7と同時に形成した高不純
物濃度のP型領域8によってコレクタ領域5から電極を
取り出すと共に、P型領域8を環状の構造としてN型ベ
ース領域9kN型層6から分離する。更Vこ、ベース領
域9内に高不純物濃度のP型エミッタ10及び高不純物
濃度のN型ベースコンタクト部11を形成する。最後に
、表面の酸化膜VC開孔を施し、コレクタ、ベースおよ
びエミッタ電極13,14および15が形成される。An N-type region 2 with a high impurity concentration is formed in a P-type semiconductor substrate 1 and buried with an N-type layer 3&C formed by epitaxial growth VC. Next, there is an insulating buried layer 4 that electrically isolates the transistors.
The entire high impurity concentration P type region 5 formed at the same time is buried by a second epitaxially grown N type layer 6 VC. Further, an electrode is taken out from the collector region 5 by a P-type region 8 with a high impurity concentration formed at the same time as the insulating region 7, and the P-type region 8 is separated from the N-type base region 9k as an annular structure. Furthermore, a P-type emitter 10 with a high impurity concentration and an N-type base contact portion 11 with a high impurity concentration are formed in the base region 9. Finally, holes are formed in the oxide film VC on the surface, and collector, base and emitter electrodes 13, 14 and 15 are formed.
このような構造の縦型PNP構造の問題点は、高耐圧の
トランジスタが得がfcい点にある。丁なわち、 H’
V L’V の逆耐圧全従来の縦型PNPO
BO0FiO
構造で高くしようとすれば、コレクターベースのP−N
接合におけるベース領域9の不純物濃度を小さくし、更
にベース領域9の巾WB=i広くしてコV フタ−ヘー
スI’−N接合がらの空乏層がエミッタ領域10まで達
しないようにする必要があった。このよつな構造にする
と、ベース中が広いため、亜流増幅率やしゃ増周波数が
低くなる欠点があった@また。コレクターベース接合か
らの空乏層がエミッタ丑で達してトランジスタがパンチ
スルー現象全行させないため、第1図Vこ点線で示す高
不純物濃度のベース層12’に形成する方法も知られて
いるが、100V以上の逆耐圧會得ようと丁れば、ベー
ス中が数μm以上必要であり上記欠点會まぬがれ得なか
った。The problem with such a vertical PNP structure is that a transistor with a high breakdown voltage has a low gain. Ding, H'
Reverse breakdown voltage of V L'V All conventional vertical PNPO
If you try to make it high with the BO0FiO structure, the collector-based P-N
It is necessary to reduce the impurity concentration of the base region 9 in the junction and further increase the width WB=i of the base region 9 to prevent the depletion layer of the bottom-heath I'-N junction from reaching the emitter region 10. there were. With this kind of structure, the base was wide, so there was a drawback that the substream amplification factor and the boost frequency were low. Since the depletion layer from the collector-base junction reaches the emitter and prevents the transistor from performing the punch-through phenomenon, it is also known to form the base layer 12' with a high impurity concentration as shown by the dotted line in FIG. In order to achieve a reverse breakdown voltage of 100V or more, the thickness of the base must be several micrometers or more, and the above-mentioned drawbacks cannot be avoided.
本発明の目的は、高耐圧でしかも、電流増幅率が大きく
遮断周波数が高い、PNP)ランジスタを含む半導体装
置を提供するものである・本発明による半導体装置は、
半導体基板と電気的VC分縮されたN型領域と、このN
型領域内に埋込まれたP型コレクタ領域と、このP型コ
レクタ領域より基板表面VCC電極数取出丁高不純物濃
度のP型コレクタ電極取り出し部と、P型コレクタ領域
上方のN型領域中に形成された高不純物濃度のN型ベー
ス領域と、ベース領域中に形成された高不純物濃度のP
型エミッタとケ含み、P型コレクタ領域の不純物量はベ
ース−コレクタ間に所定値以上の逆バイアスが印加され
た時、完全I/il:空乏化するようvc構成されてい
る。An object of the present invention is to provide a semiconductor device including a PNP transistor that has a high breakdown voltage, a large current amplification factor, and a high cutoff frequency.
A semiconductor substrate and an N-type region electrically decomposed by VC, and this N-type region
A P-type collector region embedded in the mold region, a P-type collector electrode extraction portion with a high impurity concentration from which the substrate surface VCC electrode is taken out from the P-type collector region, and an N-type region above the P-type collector region. The formed N-type base region with high impurity concentration and the P-type base region with high impurity concentration formed in the base region.
The amount of impurity in the P type collector region, including the type emitter, is configured to be completely I/il: depleted when a reverse bias of a predetermined value or more is applied between the base and the collector.
したがって、コレクタ印加電圧が所定値以下の場合はP
(高不純物濃度でP型)エミッタからN (高不純物
濃度へ型)ベースVC注入されたホールがベース中をド
リフト及び拡散によっテ通過してP型コレクタに達する
。コレクタに達したホールはP型コレクタ領域を基板と
平行VC流れたP+コレクタ電極取り出し部をへて外部
に取り出される。この時、P型コレクタは空乏化されて
おらず、電流はオーミック電流VCよって流れる。一方
、コレクタ印加電圧が所定値以上の場合、P エミッタ
からN ヘースに注入されたホールはベースを通過した
後コレクタVこ達するが、この時コレクタ領域は空乏層
されており1コレクタ電流は空乏層中を基板と平行に流
れた後P+コレクタ電極取り出し部をへて外部に取り出
される−
この動作はl’NP)ランジスタと、t’−ch 接合
型FETとの直列接続として等価的Vこ表わ丁ことがで
きる。丁なわち、N型頭域中Vこ埋込1れたP型コレク
タ領域fll’lNPトランジスタのコレクタvC@列
vc接続されたP−ch接合型FETのチャンネル部と
等価である。−1fcP コレクタ電極取り出し部は
ドレイン、ベースはゲートとしてそれぞれ等測的に見る
ことができる。従って、上記FETの■p(ピンチオフ
電圧)を上述の所定値としてP N l’ )ランジス
タのコレクターベース耐圧以下に選べば、コレクタ外部
端子に79以上の高電位を印加した場合hVpffi越
える電圧はFETのソース−ドレイン間で保持される。Therefore, if the voltage applied to the collector is below a predetermined value, P
Holes injected from the emitter (P type with high impurity concentration) to the N (type with high impurity concentration) base VC pass through the base by drift and diffusion and reach the P type collector. The holes that have reached the collector are extracted to the outside through the P+ collector electrode extraction portion where VC flows in the P type collector region parallel to the substrate. At this time, the P-type collector is not depleted and current flows as an ohmic current VC. On the other hand, when the voltage applied to the collector is higher than a predetermined value, the holes injected from the P emitter to the N heir pass through the base and reach the collector V. At this time, the collector region is a depletion layer, and one collector current flows through the depletion layer. After flowing parallel to the substrate, the P+ collector electrode is taken out to the outside. This operation is expressed as an equivalent V as a series connection of a l'NP) transistor and a t'-ch junction FET. You can do it. In other words, it is equivalent to the channel part of a P-ch junction FET in which the collector vC of a P-type collector region buried in the N-type head region is connected to the collector vC@column vc of a NP transistor. -1fcP The collector electrode lead-out portion can be viewed isometrically as a drain, and the base as a gate. Therefore, if the p (pinch-off voltage) of the above FET is selected to be below the collector base breakdown voltage of the transistor (P N l' ) as the predetermined value mentioned above, when a high potential of 79 or more is applied to the collector external terminal, the voltage exceeding hVpffi will be It is held between the source and drain of.
ピンチオフ電圧V、6ま本半導体装置の縦方向の構造を
、すなわち、P型コレクタ領域とN型ベース領域との不
純物濃度ならびVC深さで決まるのVC対して、逆耐圧
は埋込みコレクタ領域がピンチオフするが故VC埋込コ
レクタ領域の外側のN型領域との1制圧によって決する
ため、ベース巾VC関係なく高耐圧のPNPトランジス
タを得ることができる。Pinch-off voltage V is determined by the vertical structure of this semiconductor device, that is, the impurity concentration of the P-type collector region and N-type base region, and the VC depth.The reverse breakdown voltage is determined by the pinch-off voltage of the buried collector region. However, since the pressure is determined by one pressure with the N-type region outside the VC buried collector region, a high breakdown voltage PNP transistor can be obtained regardless of the base width VC.
このようVC,不発明VCよれば周波数特性や電流増幅
率を劣化させることなく高馴圧のトランジスタ?含む半
導体装置が提供される。According to such VC and uninvented VC, is it a transistor with high internal pressure without deteriorating frequency characteristics or current amplification factor? A semiconductor device including the present invention is provided.
次VC図向を用いて本発明の実施例VCつき詳細に説明
する。Embodiments of the present invention will be described in detail with reference to the VC diagram below.
第2図VC本発明の一実施例會示す。第2図で示され;
gPNP)ランジスタは、底部に高不純物濃度のN型埋
込領域2全有する。この領域2はP型基板1および絶縁
領域4 vcよって分離されたN型島状領域3の中VC
埋め込まれている。島状領域3の表面部分VCP型不縄
物を導入し、絶縁領域4Vこ接続する第2の絶縁領域7
Vこよって取り四箇れるN型領域6を形成することによ
り、領域6中に埋込まれfcP型コレクタ領域22が形
成される。尚、領域3,6はエピタキシャル成長で形成
される。FIG. 2 VC shows an embodiment of the present invention. Shown in Figure 2;
gPNP) transistor has an entire N-type buried region 2 with a high impurity concentration at the bottom. This region 2 is located in an N-type island region 3 separated by a P-type substrate 1 and an insulating region 4 VC.
embedded. A second insulating region 7 is introduced in which a VCP-type non-contour is introduced into the surface portion of the island-like region 3 and connected to the insulating region 4V.
By forming four N-type regions 6 formed by V, an fcP-type collector region 22 embedded in the region 6 is formed. Note that regions 3 and 6 are formed by epitaxial growth.
P型コレクタ領域22は高不純物濃度のP型コレクタ電
極取り出し部8vcよってコレクタ電極13に接続され
る。コレクタ電極取り出し部8ヶ環状VC形成すること
で、N型領域6から分離されたベース領域9が形成され
る。領域9の内部にN ヘ−ス頭載21が形J5′i、
され、ベース領域21内部にP+エミッタ領域10が形
成され、それぞれがベース電極14、エミッタ電極15
VC接続されているO
第2図VC示1.たトランジスタのエミッタ中心位置に
かける不純物濃度分布を第3図を蚕照して説明すれは、
N ベース領域21の存在Vこより、ベース・コレツタ
PN接合からの空乏層はP型コレクタ狽域15の方へ拡
が0、しかも、P型コレクタ15の不純物濃度はベース
−コレクタ間に約20V印加された時完全VC空乏化す
るように設計されている。The P-type collector region 22 is connected to the collector electrode 13 by a P-type collector electrode lead-out portion 8vc with a high impurity concentration. A base region 9 separated from the N-type region 6 is formed by forming an annular VC with eight collector electrode lead-out portions. Inside the area 9, the N Heath head mount 21 is of the shape J5'i,
A P+ emitter region 10 is formed inside the base region 21, and each has a base electrode 14 and an emitter electrode 15.
VC connected O Figure 2 VC shown 1. The impurity concentration distribution applied to the center of the emitter of a transistor can be explained by referring to Figure 3.
Due to the existence of the N base region 21, the depletion layer from the base-collector PN junction spreads toward the P-type collector region 15 at zero, and the impurity concentration of the P-type collector 15 is approximately 20 V applied between the base and the collector. It is designed to completely deplete VC when
従って、第2図のPNPトランジスタハ、第4図VC示
すようVC1領域10.領域9,21および領域22’
e夫々エミツタ、ベースおよびコレクタとするP 、N
P )ランジスタと、領域22’にソースおよびチャ
ンネル、領域9.21にゲート、そして領域8をドレイ
ンとする接合型FETとが直列接続されたものとして表
わ丁ことができる。接合WFETのチャンネル領域、つ
まりP型コレクタ領域の空乏化は、第2図の点線20で
空乏層の端部数示すようVC,P型コレクタ領域の外周
部で大きくな、0,2(IV(ピンチオフ電圧)以上の
電圧に対して外周部でピンチオフする。これ以上電圧を
大キくシても、ピンチオフ点がエミツタ1o直下部まで
広がっていくだけでエミッタ直下におけるP型コレクタ
領域22とベース領域(9,21)間の電圧はピンチオ
フ電位Vp?+−越えることがない。Therefore, the PNP transistor in FIG. 2 is connected to the VC1 region 10 as shown in FIG. Areas 9, 21 and 22'
e P and N as the emitter, base and collector respectively
P) A transistor and a junction FET having a source and channel in region 22', a gate in region 9 and 21, and a drain in region 8 can be represented as being connected in series. The depletion of the channel region of the junction WFET, that is, the P-type collector region, is large at the outer periphery of the VC and P-type collector regions, as indicated by the dotted line 20 in FIG. Pinch-off occurs at the outer periphery in response to a voltage higher than the emitter 1o.Even if the voltage is increased beyond this point, the pinch-off point will only spread to just below the emitter 1o, and the P-type collector region 22 and base region (9 , 21) will not exceed the pinch-off potential Vp?+-.
従って、ベース濃度分布及びベース巾はLvag。Therefore, the base concentration distribution and base width are Lvag.
20V ’!に得る設計ケアればよく、例えばペース巾
を1μm とThことVCよって、fT=2ooMH
2,hF8=100程度のPNP)ランジスタを得るこ
とができる。更VC、トランジスタ全体としてのLVo
F、。20V'! For example, if the pace width is 1 μm and Th is VC, then fT = 2ooMH
2. A PNP transistor with hF8=100 or so can be obtained. Further VC, LVo as a whole transistor
F.
はコレクタ領域22がピンチオフするためVCN型領域
6の不純物濃度で足まる。コレクタ領域22がピンチオ
フするための条件は、単位立方センナメートル当り1×
1012原子以下の不純物濃度と4乃至5倍以上の輻V
C対する長さの比が必要であり、不実施例ではコレクタ
領域22全IX1lX10l53の平均不純物濃度、5
μmの厚さおよび201xr1の長さで形成し、領域6
f4X10”’cm−”で形成することr(よ、す20
0v以上が得られた。また、Lvoつ。はP型コレクタ
領域のピンチオフ特性で定まりN型領域3,6の厚さに
関係しないため、これを薄くすることが出き、半導体装
置の製作上VC起因する各不純物濃度の横広がりが小さ
くできるため集積度を上げる点でも効果がある。Since the collector region 22 is pinched off, the impurity concentration of the VCN type region 6 is sufficient. The condition for pinch-off of the collector region 22 is 1× per unit cubic senna meter.
Impurity concentration of 1012 atoms or less and a radiation V of 4 to 5 times or more
The ratio of the length to C is required, and in the non-example, the average impurity concentration of the entire collector region 22 IX1lX10l53, 5
Formed with a thickness of μm and a length of 201xr1, and the area 6
f4×10"cm-"
0v or more was obtained. Also, Lvo one. Since it is determined by the pinch-off characteristic of the P-type collector region and is not related to the thickness of the N-type regions 3 and 6, it can be made thinner, and the lateral spread of each impurity concentration caused by VC in the fabrication of semiconductor devices can be reduced. Therefore, it is also effective in increasing the degree of integration.
以上説明したようVC不発明VCよれは、高耐圧で高性
能の)”NP)ランジスタを含む半導体装置が得られる
。As explained above, by using the VC-inventive VC twist, a semiconductor device including a high-voltage and high-performance (NP) transistor can be obtained.
尚、本発明はエピタキシャル層の一部全ペース領域とし
て用いたが、所蛸三重拡散型のP I’J P )ラン
ジスタにも適用でき、丁べての領域の導電型を入れかえ
てもよい。Although the present invention is used as a part of the epitaxial layer as a whole space region, it can also be applied to a triple diffusion type P I'J P transistor, and the conductivity types of all the regions may be changed.
第1図は従来公知の縦型PNPトランジスタの断面図、
第2図は不発明の一実施例であるPNPトランジスタの
断面図、第3図は本発明の実施例のPNP トランジス
タのエミッタ直下VCおける深さと不純物濃度を表わし
た図、第4図は不発明による半導体装置全等価的に表わ
した回路図である。
1はP型基板、2trr、N 埋込領域、aUN型島
型頭状領域部、4はP型絶縁領域の下部、5はP型コレ
クタ領域、6はN型島状領域の上部、7はP型絶縁領域
の上部、8はP型コレクタ電極取り出し部、9はN型ベ
ース領域、10はP 工(ツタ領域、11はN ヘース
電極取り出し部、12十
はN ベース領域、13はコレクタ電極、14はベース
電極、15はエミッタ電極、20はP型コレクタ領域内
r(広がった空乏層の端部。
佑2′区FIG. 1 is a cross-sectional view of a conventionally known vertical PNP transistor.
Fig. 2 is a cross-sectional view of a PNP transistor which is an embodiment of the present invention, Fig. 3 is a diagram showing the depth and impurity concentration of the PNP transistor immediately below the emitter of the VC according to the embodiment of the present invention, and Fig. 4 is a diagram showing the impurity concentration of the PNP transistor according to the embodiment of the present invention. FIG. 1 is a circuit diagram equivalently representing a semiconductor device according to the present invention. 1 is a P-type substrate, 2trr, N buried region, aUN-type island-shaped head region, 4 is the lower part of the P-type insulating region, 5 is the P-type collector region, 6 is the upper part of the N-type island-shaped region, 7 is the The upper part of the P type insulating region, 8 is the P type collector electrode extraction part, 9 is the N type base region, 10 is the P vine area, 11 is the N heath electrode extraction part, 120 is the N base area, 13 is the collector electrode , 14 is the base electrode, 15 is the emitter electrode, 20 is inside the P-type collector region (the end of the expanded depletion layer).
Claims (1)
印加したとき、コレクタ領域の少なくとも一部がその厚
さ方向において空乏化するトランジスタ會石することを
特徴とする半導体装置。1. A semiconductor device comprising a transistor in which at least a portion of a collector region is depleted in the thickness direction when a full reverse bias voltage of a required value or more is applied between a base and a collector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58064760A JPS59189671A (en) | 1983-04-13 | 1983-04-13 | semiconductor equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58064760A JPS59189671A (en) | 1983-04-13 | 1983-04-13 | semiconductor equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59189671A true JPS59189671A (en) | 1984-10-27 |
Family
ID=13267452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58064760A Pending JPS59189671A (en) | 1983-04-13 | 1983-04-13 | semiconductor equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59189671A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007531292A (en) * | 2004-04-02 | 2007-11-01 | プレマ セミコンダクター ゲーエムベーハー | Bipolar transistor and manufacturing method of bipolar transistor |
-
1983
- 1983-04-13 JP JP58064760A patent/JPS59189671A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007531292A (en) * | 2004-04-02 | 2007-11-01 | プレマ セミコンダクター ゲーエムベーハー | Bipolar transistor and manufacturing method of bipolar transistor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4901132A (en) | Semiconductor integrated circuit with switching bipolar transistors having high withstand voltage capability | |
US4652895A (en) | Zener structures with connections to buried layer | |
US6720633B2 (en) | High withstand voltage insulated gate N-channel field effect transistor | |
US3969747A (en) | Complementary bipolar transistors with IIL type common base drivers | |
US5021859A (en) | High-frequency amplifying semiconductor device | |
JPH0797553B2 (en) | NPN equivalent structure having a breakdown voltage greater than the intrinsic breakdown voltage of the NPN transistor | |
JPS59189671A (en) | semiconductor equipment | |
US4987469A (en) | Lateral high-voltage transistor suitable for use in emitter followers | |
JPS5917544B2 (en) | semiconductor integrated circuit | |
JPH0888290A (en) | Semiconductor device and method of using the same | |
JPH0815183B2 (en) | Semiconductor device including electrically isolated semiconductor element | |
KR920000633B1 (en) | Manufacturing methods of pnp transistor | |
KR100278424B1 (en) | Thin active layer semiconductor device with high breakdown voltage | |
JP3128958B2 (en) | Semiconductor integrated circuit | |
JPS62104068A (en) | Semiconductor integrated circuit device | |
JPH02189927A (en) | Semiconductor device | |
JPS61150383A (en) | semiconductor equipment | |
JPS6255307B2 (en) | ||
JPH09162315A (en) | Semiconductor device | |
JPH02220445A (en) | Semiconductor device | |
JPS6014450A (en) | Semiconductor integrated circuit | |
JPS63219163A (en) | Semiconductor integrated circuit | |
JPH0828374B2 (en) | Triple diffusion type transistor | |
JPH0263156A (en) | Semiconductor integrated circuit device | |
JPH0574791A (en) | Semiconductor device |