[go: up one dir, main page]

JPS59186360A - Monolithic microscopic integrated circuit - Google Patents

Monolithic microscopic integrated circuit

Info

Publication number
JPS59186360A
JPS59186360A JP58061443A JP6144383A JPS59186360A JP S59186360 A JPS59186360 A JP S59186360A JP 58061443 A JP58061443 A JP 58061443A JP 6144383 A JP6144383 A JP 6144383A JP S59186360 A JPS59186360 A JP S59186360A
Authority
JP
Japan
Prior art keywords
electrode
fet
circuit
gate
monolithic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58061443A
Other languages
Japanese (ja)
Other versions
JPH0368538B2 (en
Inventor
Koji Ogiso
小木曽 弘司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58061443A priority Critical patent/JPS59186360A/en
Publication of JPS59186360A publication Critical patent/JPS59186360A/en
Publication of JPH0368538B2 publication Critical patent/JPH0368538B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain the monolithic microscopic integrated circuit of uniform characteristics by a method wherein the FET part of which is divided into two parts, and one of which is used as a variable capacitor. CONSTITUTION:Gate fingers A(10A) and B(10B) are tied up in bundles of gate electrodes A(13A) and B(13B) respectively, and a bias circuit 17 for fine adjustment is connected to the electrode B(13B). Now, when the prescribed positive voltage is applied to a drain electrode 12 and when a voltage a little lower than said positive voltage is applied to the circuit 17, a capacitance is generated between the electrode B(13B), the electrode 12 and the source electrode B(11B) by having Schottky junction. Also, capacity is given in parallel to the FET which is formed by the finger A(10A), the electrode 12 and a source 11A. Accordingly, the irregularity of characteristics of the FET can be corrected by changing the voltage applied to the circuit 17, thereby enabling to adjust and make uniform the amplification characteristics.

Description

【発明の詳細な説明】 この発明はモノリシックM工Cに関するものである。[Detailed description of the invention] This invention relates to a monolithic machine C.

第1図は従来のモノリシックMICの1例を示すもので
2 ここでは小信号NET 1段増幅器の例をとる。(
l]Fi”aAs基板、(2)はFKT部、(3)は入
力整合回路、(4)は出力整合回路、(5)はゲートバ
イアス回路、16)はドレインバイアス回路、(7)は
接地金属膜、  (8A)(8B)はMIMキャパシタ
、 (9A)(9B)(90) (9D)はトリシング
部である。1〜2闘角GaAB基板(1)上にFET部
(2)、入力及び出力整合回路(3) +4)ゲート及
びドレインバイアス回路(51,+61゜接地金属膜f
71.  M工MキャパシタA、  B (8A)、(
8B)を写真製版等の技術を用いて造り込む。
FIG. 1 shows an example of a conventional monolithic MIC.2 Here, a small signal NET one-stage amplifier is taken as an example. (
l]Fi"aAs substrate, (2) is FKT section, (3) is input matching circuit, (4) is output matching circuit, (5) is gate bias circuit, 16) is drain bias circuit, (7) is ground Metal film, (8A), (8B) are MIM capacitors, (9A), (9B), (90), and (9D) are trishing parts. and output matching circuit (3) +4) Gate and drain bias circuit (51, +61° grounded metal film f
71. M engineering M capacitor A, B (8A), (
8B) using techniques such as photoengraving.

ここでFET部(2)は第3図(イ)、(ロ)に示す構
造をしている。第3図(イ)はFET部の平面図、第3
図(ロ)は第3図(イ)のA−A’断面を示す図である
。QO)はケートフィンガ、0I)はソース電極、0り
はドレイン電極、 tlりはゲート電極、 +14)は
バイアホール、(丙はアース電極である。
Here, the FET section (2) has the structure shown in FIGS. 3(a) and 3(b). Figure 3 (a) is a plan view of the FET section,
Figure (B) is a diagram showing the AA' cross section of Figure 3 (A). QO) is the gate finger, 0I) is the source electrode, 0 is the drain electrode, tl is the gate electrode, +14) is the via hole, and (C is the ground electrode).

多数のゲートフィンガ00)は、ソース電極(1,11
とドレイン電極uzとで挾まれるように設置されて吸り
A number of gate fingers 00) are connected to source electrodes (1, 11).
and the drain electrode uz.

ゲート電極13)により束ねられている。They are bound together by a gate electrode 13).

ソース電極aDはバイアホール14)により極く短い距
離でアース電極a9に接地されている。
The source electrode aD is grounded to the earth electrode a9 via a via hole 14) over a very short distance.

第2図の入力及び出力整合回路+3)、 +4+は通常
次のようにして決める。第3図に示すようなFET部の
みを造シ込んだもののS′パラメータを測定し。
The input and output matching circuits +3) and +4+ in Figure 2 are usually determined as follows. The S' parameter was measured for a sample in which only the FET part was embossed as shown in FIG.

多数の測足結果から平均的な特性を求める。これにもと
すき入力及び出力整合回路の最適化を行い。
Find the average characteristics from a large number of foot measurement results. For this purpose, we also optimized the input and output matching circuits.

電気寸法を決定する。従って、F’ETが平均的な特性
からずれたところに分布したものであるとすると、当然
、所望の特性のものよりずれた増幅特性を示す。そのた
め入力及び出力整合回路の修正が必要となる。
Determine electrical dimensions. Therefore, if F'ET is distributed at a location that deviates from the average characteristic, it naturally exhibits an amplification characteristic that deviates from the desired characteristic. This requires modification of the input and output matching circuits.

第2図中の(9A) (9B) (9Cり (9D)は
、入力及び出力整合回路の一部をレーザ光線等で切断し
だトリミング部であり9回路の一部を修正することで所
望の増幅特性に近つけようとする一手段である。しかし
この方法は、 [)aAS基板上の金属を熱で溶かして
取り去るものであり、溶けた金属の飛沫が近くのFET
部(2)等の上に落ち、汚染する。
(9A) (9B) (9C) (9D) in Figure 2 are trimming parts where a part of the input and output matching circuits are cut with a laser beam, etc., and by modifying part of the 9 circuits, the desired However, this method uses heat to melt the metal on the aAS substrate and remove it, and the droplets of melted metal can cause damage to nearby FETs.
(2), etc., causing contamination.

これが原因で第3図に示すゲートフィンガ00)とノー
ス電極α1〕との間を短絡させるような事故につながる
。でたカッタ等により金属膜をはがすことで調整しよう
としても精度のよいカッティングがむすかしい。
This may lead to an accident such as a short circuit between the gate finger 00) and the north electrode α1 shown in FIG. Even if you try to make adjustments by peeling off the metal film with a cutter, etc., it is difficult to make accurate cuts.

このような問題を解決する方法が、この発明でめる。The present invention provides a method for solving such problems.

第2図のFBT部(2)を第2図のものから第3図のも
のに置きかえる。
The FBT section (2) in FIG. 2 is replaced with the one in FIG. 3.

ここで(10A) 、 (10B)はゲートフィンガA
、  B。
Here, (10A) and (10B) are gate fingers A
,B.

(11A) 、 (11:s)はソース電極A、  B
、  (13A)、(16B)はゲート電極A、B、(
1f9は短絡用金属膜、鰭は微調用バイアス回路である
。ゲートフィンガA(IOA)はゲート電極A (13
A)に、丑たゲートフィンガB(10B)はゲート電極
B (13B)によしそれぞれ束ねられている。ゲート
電極B (13B)には、微調用バイアス回路αDが接
続されている。
(11A), (11:s) are source electrodes A and B
, (13A), (16B) are gate electrodes A, B, (
1f9 is a metal film for short circuiting, and the fin is a bias circuit for fine adjustment. Gate finger A (IOA) is connected to gate electrode A (13
In A), the gate fingers B (10B) are each bundled with the gate electrode B (13B). A fine adjustment bias circuit αD is connected to the gate electrode B (13B).

ここにはマイクロ波的にゲートを短絡するためにM I
 MキャパシタC(SC)が組伏壕れている。
Here, M I is used to short-circuit the gate using microwaves.
M capacitor C (SC) is buried.

ソース電極p、 (11A)は第2図の場合と同様にバ
イアスホールα優によりアース電極05)に接地きれて
いる。ソース電極B (11B)は、接地するかわりに
短絡金属膜0eでドレイン電極0りに接続されている。
The source electrode p, (11A) is grounded to the earth electrode 05) by the bias hole α, as in the case of FIG. The source electrode B (11B) is connected to the drain electrode 0 through a short-circuit metal film 0e instead of being grounded.

今、ドレイン電極(12に所定の正の電圧を印加すると
ともに微調整用バイアス回路に前述の正の電圧よりわず
かに低い電圧を印加すると、ゲート電極B(16B)と
ドレイン電極uのおよびソース電極B(11B)との間
に7ヨツトキ接合による容量が生じる。寸だこれはゲー
トフィンガ(10A)、  ドレイン電極t12及びソ
ース電極(11A)で形成するPETに並列に容量が入
ったことになる。従って、微調用バイアス回路に印加す
る電圧を変えることで、FKTの特性のバラツキを補正
し、入力及び出力整合回路を物理的に形を変えなくとも
増幅特性を調整し揃えることができる。
Now, when a predetermined positive voltage is applied to the drain electrode (12) and a voltage slightly lower than the aforementioned positive voltage is applied to the fine adjustment bias circuit, the gate electrode B (16B), the drain electrode U, and the source electrode A capacitance is generated between the PET and B (11B) due to a 7-way junction.This means that a capacitance is introduced in parallel to the PET formed by the gate finger (10A), the drain electrode t12, and the source electrode (11A). Therefore, by changing the voltage applied to the fine adjustment bias circuit, variations in the characteristics of the FKT can be corrected, and the amplification characteristics can be adjusted and made uniform without physically changing the shape of the input and output matching circuits.

以上はFET +段増幅器として説明したが、微調用バ
イアス回路に印加する電圧を変えろことで。
The above explanation was based on a FET + stage amplifier, but you can change the voltage applied to the fine adjustment bias circuit.

出力電力が変えられるので上述の回路は変調器としても
使用することができる。寸たこのような構造のFET部
はFETスイッチ、FET移相器としても使用すること
が出来ることは明らかなことである。
Since the output power can be varied, the circuit described above can also be used as a modulator. It is obvious that the FET section having such a structure can also be used as a FET switch or a FET phase shifter.

以上のようにFET部を二つに分は−C1一方を可変容
量として使うことにより、FET特性バラツキを吸収し
て、特性の揃ったモノリシックM工Cを得ることができ
る。
As described above, by dividing the FET section into two and using one of -C1 as a variable capacitance, it is possible to absorb variations in FET characteristics and obtain a monolithic MC with uniform characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のモノリシックMIOの1例として示すN
ET 1段増幅器の正面図、第2図は第1図の’E” 
F、 T部の詳細な図、第3図はこの発明の1例を示す
FET1段増幅器のFET部を示す図である。ここで(
1)はGaAs基板、(2)はFET部、(3)は入力
整合回路、(4)は出力整合回路、(5)はゲートバイ
アス回路、(6)はドレインバイアス回路、(7)は接
地金属膜、(8A)(8B)(8c)はMIMキャパシ
タA。 B、  a、(qp、)(qB)(qc)(qD)はト
リミング部、  +10)はゲートフィンガ、 (I 
DA) (1oB)はゲートフィンガA。 B、(11)はソース電極、 (11A)(11B)は
ソース電極A。 B、+13はドレイン電極、 (12A012B)はト
レイン電極A、  B、  (+3)はゲート電1?、
 (13A)(13B) triゲート電極A、  B
、 Q4)はバイアホー乞(15)はアース電極。 af9は短絡用金属膜、07)は微調用バイアス回路で
ある。 なお9図中同一1だけ相当部分は同一符号を付して示し
ている。 代理人 大岩増雄 第 1 図 第 2 (2) (イ) 514
Figure 1 shows N as an example of a conventional monolithic MIO.
ET Front view of 1-stage amplifier, Figure 2 is 'E' in Figure 1
Detailed diagram of the F and T sections. FIG. 3 is a diagram showing the FET section of a one-stage FET amplifier showing an example of the present invention. here(
1) is GaAs substrate, (2) is FET section, (3) is input matching circuit, (4) is output matching circuit, (5) is gate bias circuit, (6) is drain bias circuit, (7) is ground Metal films (8A), (8B), and (8c) are MIM capacitors A. B, a, (qp,) (qB) (qc) (qD) is the trimming part, +10) is the gate finger, (I
DA) (1oB) is gate finger A. B, (11) is the source electrode, (11A) (11B) is the source electrode A. B, +13 is the drain electrode, (12A012B) is the train electrode A, B, (+3) is the gate electrode 1? ,
(13A) (13B) tri gate electrode A, B
, Q4) is a via hole (15) is a ground electrode. af9 is a metal film for short circuiting, and 07) is a bias circuit for fine adjustment. In FIG. 9, parts corresponding to the same 1 are designated with the same reference numerals. Agent Masuo Oiwa No. 1 Figure 2 (2) (a) 514

Claims (1)

【特許請求の範囲】[Claims] ソース、ゲート、ドレインからなる単位FETを多数含
むモノリシックM工Cにおいて、全単位FETのドレイ
ンを互に金属で接続するとともに2群に分けた単位FE
Tのソース及びゲートをそれぞれ群内で一つの金属で接
続し、1つの群のソースは接地する手段をほどこすとと
もに他の群のソースはドレインと金属で接続してなるF
F、Tを含むことを特徴とするモノリシックM工C8
In a monolithic MC that includes a large number of unit FETs consisting of a source, gate, and drain, the drains of all unit FETs are connected to each other with metal, and the unit FE is divided into two groups.
The sources and gates of T are each connected by one metal within the group, the sources of one group are grounded, and the sources of the other group are connected to the drains by metal.
Monolithic M construction C8 characterized by including F and T
JP58061443A 1983-04-07 1983-04-07 Monolithic microscopic integrated circuit Granted JPS59186360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58061443A JPS59186360A (en) 1983-04-07 1983-04-07 Monolithic microscopic integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58061443A JPS59186360A (en) 1983-04-07 1983-04-07 Monolithic microscopic integrated circuit

Publications (2)

Publication Number Publication Date
JPS59186360A true JPS59186360A (en) 1984-10-23
JPH0368538B2 JPH0368538B2 (en) 1991-10-28

Family

ID=13171208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58061443A Granted JPS59186360A (en) 1983-04-07 1983-04-07 Monolithic microscopic integrated circuit

Country Status (1)

Country Link
JP (1) JPS59186360A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184886A (en) * 1985-02-12 1986-08-18 Matsushita Electronics Corp Semiconductor device
JPS62207006A (en) * 1986-03-07 1987-09-11 Matsushita Electric Ind Co Ltd Microwave oscillator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184886A (en) * 1985-02-12 1986-08-18 Matsushita Electronics Corp Semiconductor device
JPS62207006A (en) * 1986-03-07 1987-09-11 Matsushita Electric Ind Co Ltd Microwave oscillator

Also Published As

Publication number Publication date
JPH0368538B2 (en) 1991-10-28

Similar Documents

Publication Publication Date Title
CA1101085A (en) Integrated microwave oscillator
DE2515309C3 (en) Integrated transistor amplifier circuit
DE19946154A1 (en) Voltage-controlled low-voltage oscillator with a small fluctuation range
DE4100060A1 (en) METHOD FOR GENERATING AN ELECTRIC VIBRATION SIGNAL AND OSCILLATOR / RESONATOR FOR IN PARTICULAR SUPER HIGH FREQUENCIES
DE2837855C2 (en) Pulse converter for clock supply of digital semiconductor circuits
EP1046221B1 (en) Oscillator structure with at least one oscillator circuit and at least one resonator
JPS5284987A (en) Voltage dividing circuit
JPS59186360A (en) Monolithic microscopic integrated circuit
DE2702022B2 (en) Amplifier circuit
NL8105536A (en) BALANCE SHEET COMPENSATION FOR SINGLE-DRIVEN DIFFERENCE AMPLIFIERS.
US4245165A (en) Reversible electrically variable active parameter trimming apparatus utilizing floating gate as control
US3255364A (en) Three field effect transistor gyrator
CH617050A5 (en)
EP0905880B1 (en) Device and method for the offset voltage compensation of a mixer
DE102004025581B4 (en) Logic Ground Cell and Logic Ground Cell Arrangement
DE69637117T2 (en) ELECTRONIC ARRANGEMENT WITH MEANS FOR COMPENSATING PARASITIC CAPACITIES
JPS56115558A (en) Semiconductor integrated circuit and manufacture thereof
Nandi Novel variable-frequency oscillator with single resistor control using DVCCS/DVCVS
JPS61206304A (en) Transistor integrated circuit
DE1922542C3 (en) Transistor oscillator
JPS60253310A (en) Analog frequency divider of microwave
DE2005478C3 (en) Circuit arrangement for generating coherent high-frequency vibrations
Gan et al. Design of monostable–bistable transition logic element using the BiCMOS-based negative differential resistance circuit
DE602004007035T2 (en) SEMICONDUCTOR ELEMENT WITH ENEM RESONATOR
DE2024452C3 (en) Electromechanical semiconductor oscillator