JPS59181622A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS59181622A JPS59181622A JP5585083A JP5585083A JPS59181622A JP S59181622 A JPS59181622 A JP S59181622A JP 5585083 A JP5585083 A JP 5585083A JP 5585083 A JP5585083 A JP 5585083A JP S59181622 A JPS59181622 A JP S59181622A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- temperature
- film
- electrostatic chuck
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
(1)発明の技術分野
本発明は半導体装置の製造方法、詳しくはスパッタリン
グにより層間絶縁膜などを成長する方法に関する。DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of growing an interlayer insulating film or the like by sputtering.
(2)技術の背景
大規模集積回路(LSi )製造におりる例えば眉間絶
縁膜の形成は、従来化学気相成長(CVD)法により二
酸化シリコン(5i02) I戻を形成することにより
行われていたが、処理温度が高い(400〜600℃)
ためアルミニウム(A6)配線層が形成されているとそ
の表面が変質することや、第1図に示す如く段差形状で
の成長膜2が平坦でないなどの問題が経験され、これら
の問題を解決しうるスパッタリングによる膜成JK 、
x、移行しつつある。なお第1図において符号1は半導
体暴板を示す。(2) Background of the technology For example, the formation of an insulating film between the eyebrows in the manufacture of large-scale integrated circuits (LSi) has conventionally been performed by forming silicon dioxide (5i02) I-backed film using the chemical vapor deposition (CVD) method. However, the processing temperature is high (400-600℃)
Therefore, when an aluminum (A6) wiring layer is formed, problems such as deterioration of the surface and unevenness of the grown film 2 in the step shape as shown in Fig. 1 have been experienced, and these problems have been solved. Film formation JK by water sputtering,
x, is transitioning. In FIG. 1, the reference numeral 1 indicates a semiconductor substrate.
前記したスパッタリングは、第3図に模式的に示す如く
チェンバ5内にクーゲノ1−(陰極)7およびウコニハ
9を・ンメ8によって(呆1肖□i−るステージ6を配
設し、上記チェンバ5内に処理用ガスを導入して”高電
圧放電を行うことによりウェハ9」二に膜成長を行う方
法によりなされ、処理温度か室温程度と低温であること
およびウェハ側にバイアス電圧を印加できるため、j膜
成長と同時に103周波(1律)エソチンクが行なえる
結果、第2図に符号3で示ず段差f↑1つにおいても平
坦に膜成長か行なえる利点がある。The above-mentioned sputtering is carried out by disposing a stage 6 in which a cathode 7 and a cathode 9 are placed in a chamber 5 as schematically shown in FIG. The film is grown on the wafer 9 by introducing a processing gas into the wafer 5 and performing high-voltage discharge, and the processing temperature is as low as room temperature, and a bias voltage can be applied to the wafer. Therefore, 103-frequency (one-temperature) esochinking can be performed simultaneously with the J film growth, which has the advantage that the film can be grown flat even on a single step f↑, which is not indicated by reference numeral 3 in FIG.
(3)従来技術と問題点
とごろが、肖ひ第3図を参照すると、スパックリングに
よってウェハ9以外の部分、例えばナエンハ5の内壁や
ウェハ9を保持するツノ8に成長じたj漢は、ある程度
の厚さになるとひび割れ等を起して剥がれ易いことが経
験されている。そのため同図のようにウェハ9を水平に
置いた場合にはチェンバ5の内壁に成長した膜の剥離片
かウェハ9の表面に落下する間1題がある。(3) Regarding the prior art and problems, referring to FIG. 3, the parts that have grown into parts other than the wafer 9 due to spackling, such as the inner wall of the wafer 5 and the horns 8 that hold the wafer 9, It has been experienced that when the thickness reaches a certain level, cracks occur and the film easily peels off. Therefore, when the wafer 9 is placed horizontally as shown in the figure, there is a problem when peeled pieces of the film grown on the inner wall of the chamber 5 fall onto the surface of the wafer 9.
他方、第4図に示すようにターゲット7、ステージ6お
よびウェハ9を鉛直方向4i(にして配設した場合は、
上述したチェンバから剥離片が落下する問題はなくなる
か、ツメ8に成長した1次が剥がれてウェハ9にイ」着
するため、当該ツメ8を使用できなくなる間1値がある
。また、マスクパターン形成技術であるトリレベルに使
用する二酸化シ” コン(5i02 ) Hを成長する
場合などは、既に塗布されているレジストか150°C
以上の温度で変形することから、処理中ウェハを低温に
保つ必要があるか、従来技術ではウェハの温度管理をす
ることができない問題がある。On the other hand, if the target 7, stage 6, and wafer 9 are arranged in the vertical direction 4i (as shown in FIG. 4),
The value remains 1 until the above-mentioned problem of the peeled piece falling from the chamber disappears, or the claw 8 becomes unusable because the primary particles grown on the claw 8 are peeled off and deposited on the wafer 9. In addition, when growing silicon dioxide (5i02) H used for tri-level, which is a mask pattern forming technology, it is necessary to grow the resist that has already been applied or at 150°C.
Since the wafer deforms at temperatures above this level, there is a problem in that it is necessary to keep the wafer at a low temperature during processing, or the conventional technology cannot control the temperature of the wafer.
なお、トリレベル処理とは、例えば脣の微細パターンを
形成する場合、Δβ層を形成し、その上に鴫にレジスト
IW、 5102膜、レジスト層を形成し、次には逆に
上I−のレシスl−1#7のパターニングから始めて下
層のレジスト層をバターニングした後に八βJ−をバタ
ーニングする力′l去である。Note that tri-level processing means, for example, when forming a fine pattern on the back, a Δβ layer is formed, a resist IW layer, a 5102 film, and a resist layer are formed on top of the Δβ layer, and then the upper I-resist layer is formed. Starting with the patterning of #7, the underlying resist layer is patterned, and then the patterning of 8βJ- is performed.
(4)発明の目的
本発明は上記fjt来の問題点に漏、b、スパッタリン
グQこよる1模成−区におい−(、ウェハへの1AII
tilt片の例着かなく、かつ、ウェハを恒温Gこ保
ちなからII東成−長を行うことか可(jシな半導体装
置の製造方法を提供することを目的とする。(4) Purpose of the Invention The present invention solves the above-mentioned problems of fjt, b.
It is an object of the present invention to provide a method for manufacturing a semiconductor device that allows the growth to be performed without depositing a tilt piece and without keeping the wafer at a constant temperature.
(5)発明′の構成
そしてこの目的は本発明によれば、試料の温度を1li
1節する温度管理手段を備えた葡寸熱性静電チャックを
用い、該試料を垂直に保持してスパッタリングにより該
試料上に膜成長を行うことを特徴とする半導体装置の製
造方法を提供するごとによって達成される。(5) Structure and purpose of the invention' According to the present invention, the temperature of the sample is reduced to 1 liters.
To provide a method for manufacturing a semiconductor device, characterized in that a film is grown on the sample by sputtering while holding the sample vertically using a thermostatic electrostatic chuck equipped with temperature control means as described in Section 1. achieved by
(6)発明の実施例 以下本発明実施例を図面により6゛f、説する。(6) Examples of the invention Embodiments of the present invention will be described below with reference to the drawings.
第5図は発明実施例に係わる静電チャックの構造を示す
図で、同図を参1j@すると、当該静電チャック10は
爾熱性絶縁膜10a内に吸着用電極12a(正)および
12b(負)を設け、これら電極12aおよび12bに
よって形成される静電場によってウェハ9を吸着するも
ので、従来のようにツメを必要としない利点がある。FIG. 5 is a diagram showing the structure of an electrostatic chuck according to an embodiment of the invention. Referring to the figure, the electrostatic chuck 10 has suction electrodes 12a (positive) and 12b ( The wafer 9 is attracted by the electrostatic field formed by these electrodes 12a and 12b, which has the advantage of not requiring claws as in the conventional case.
また、絶縁膜10内には熱電対]4を配設して常にウェ
ハの温度を検出し、静電チャック10に具備される温度
管理装置17によりウェハ9の温度を恒温に1呆つこと
ができる。Furthermore, a thermocouple 4 is disposed within the insulating film 10 to constantly detect the temperature of the wafer, and a temperature control device 17 provided in the electrostatic chuck 10 can maintain the temperature of the wafer 9 at a constant temperature. can.
上記温度管理装置17は、例えはウェハ9の吸着水分を
除去する場合などのようにウェハ9を100〜200℃
の温度に保たなければならないときは、渦巻状のコイル
13を配設した加熱装置を、他方例えば前述したトリレ
ベルにおりる二酸化シリコン欣の成長の場合のように、
100°C以下に保たな4Jれはならないときは、冷却
水を循環する構造の冷却装置を取り伺ける。なお、ウェ
ハ9の温度J−昇ば、例えば膜成長速度を向上するため
に印加電圧を上昇させたり、ウェハとターゲソ1〜との
距離を縮めたりする場合に起る。The temperature control device 17 heats the wafer 9 at a temperature of 100 to 200°C, for example when removing adsorbed moisture on the wafer 9.
When it is necessary to maintain the temperature at
If it is not possible to maintain the temperature below 100°C, a cooling system with a structure that circulates cooling water can be used. Incidentally, an increase in the temperature J- of the wafer 9 occurs when, for example, the applied voltage is increased in order to improve the film growth rate, or when the distance between the wafer and the target saw 1 is shortened.
第6図は上述した耐熱性静電チャ・ツクを用いたスパッ
タリング装置の概略図で、同図を参照するとチェンバ1
5内に上述した静電チャ・ツク10を鉛直方向縦にして
配設し、これに対向してターゲット19を配置し、当該
クーゲット19は、電磁石20a(S型)および20b
(N型)を内設したモータ22によって回転する台
23上に設けられる。そして台23の回転は、電磁石2
0aおよび20bによゲ(均一・かつ強いものとする効
巣があり、その結果電−rかこの磁束に捕えられてガス
の活性化が進み、プラスマ密度の同上、ひいては膜成長
などの処理速度が向上するリノ果がある。FIG. 6 is a schematic diagram of a sputtering apparatus using the heat-resistant electrostatic chuck mentioned above.
5, the electrostatic chuck 10 described above is disposed in a vertical direction, and a target 19 is disposed opposite to this, and the target 19 is connected to electromagnets 20a (S type) and 20b.
(N type) is provided on a table 23 that is rotated by a motor 22 that has an internal motor 22 installed therein. The rotation of the table 23 is caused by the electromagnet 2
0a and 20b have an effect that makes them uniform and strong, and as a result, the electrons are captured by this magnetic flux, and the gas is activated, which increases the plasma density and the processing speed of film growth. There is a rhino fruit that improves.
なお、電磁石20a、 20bを内設する台23には水
冷装置21を設け、電磁石20a、 20bなどの加熱
を防止する。またチェンバ15には処理用ガスの導入パ
イプ16およびバルブ18を介して図示せぬ(ノド気装
置に接続する排気パイプ17が設けられている。Note that a water cooling device 21 is provided on the stand 23 in which the electromagnets 20a, 20b are installed to prevent the electromagnets 20a, 20b, etc. from being heated. Further, the chamber 15 is provided with an exhaust pipe 17 which is connected to a throat air device (not shown) via an inlet pipe 16 for processing gas and a valve 18.
上述した構成の装置であるから、従来のように剥離片か
ウェハ9に付着するごとかなく、また同時にウェハ9の
温度管理が容易に行なえ、従来の膜成長における問題を
解決するものである。また本発明においては、従来通り
ウェハのみにバイアス電圧をかげるごとかできるので、
平坦で質の良い膜を成長することができる。Since the apparatus has the above-described structure, there is no possibility that peeled pieces will adhere to the wafer 9 as in the conventional method, and at the same time, the temperature of the wafer 9 can be easily controlled, thus solving the problems in conventional film growth. In addition, in the present invention, it is possible to lower the bias voltage only to the wafer as before.
A flat, high-quality film can be grown.
(7)発明の効果
以」−詳細に説明した如く本発明によれば、温度管理か
てきる11111熱性静電チヤツクを用いることにより
、ウェハを垂直に保持してスパッタリンクによるj膜成
長か行なえるため、処理中ウェハに剥離片か付着したり
、また温度障害を起すことがなくなり、半導体装置の製
造における歩留りの向上および半導体装置の信頼性向上
に’AJ果犬である。(7) Effects of the Invention - As explained in detail, according to the present invention, by using a 11111 thermal electrostatic chuck with temperature control, film growth by sputter linking can be performed while holding the wafer vertically. As a result, there is no possibility of peeling debris adhering to the wafer during processing or temperature failure, which is a major advantage in improving the yield in the manufacture of semiconductor devices and improving the reliability of semiconductor devices.
第1図は従来のCVU法により成長した膜の断面図、第
2図はスパッタリンク法によって成長した)模の断面図
、第3図およO・第4図は従来のスパンクリング装置の
模式図、第5図は本発明にかかわる静電チャックの構造
を示す図、第6図は前記静電チャックを用いたスパッタ
リンク装置の構造を示す図である。
5.15−−9チエンバ、61.ステージ、7.19−
クーゲ・ノド、8−ツメ、9−ウェハ、1O−ii
ll[熱性静電チ峙・・ツク、11一温度管理装置、1
2a、12b−吸着用電極、13− コイル、14−熱
電対第1図
第2図
第3図
第4図
第5図Fig. 1 is a cross-sectional view of a film grown by the conventional CVU method, Fig. 2 is a cross-sectional view of a film grown by the sputter link method, and Figs. 5 and 5 are diagrams showing the structure of an electrostatic chuck according to the present invention, and FIG. 6 is a diagram showing the structure of a sputter link device using the electrostatic chuck. 5.15--9 Chamber, 61. Stage, 7.19-
Kuge Nodo, 8-claw, 9-wafer, 1O-ii
ll[Thermal electrostatic charge, 11-Temperature control device, 1
2a, 12b - Adsorption electrode, 13 - Coil, 14 - Thermocouple Figure 1 Figure 2 Figure 3 Figure 4 Figure 5
Claims (1)
チャックを用い、該試料を垂直に保持してスパッタリン
グにより該試料上に膜成長を行うことを特徴とする半導
体装置の製造方法。1. A method for manufacturing a semiconductor device, which comprises growing a film on the sample by sputtering while holding the sample vertically using a heat-resistant electrostatic chuck equipped with a temperature control means for adjusting the temperature of the sample.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5585083A JPS59181622A (en) | 1983-03-31 | 1983-03-31 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5585083A JPS59181622A (en) | 1983-03-31 | 1983-03-31 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59181622A true JPS59181622A (en) | 1984-10-16 |
Family
ID=13010512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5585083A Pending JPS59181622A (en) | 1983-03-31 | 1983-03-31 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59181622A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6250462A (en) * | 1985-08-30 | 1987-03-05 | Hitachi Ltd | Sputtering device |
US5221450A (en) * | 1990-08-07 | 1993-06-22 | Kabushiki Kaisha Toshiba | Electrostatic chucking method |
US5810933A (en) * | 1996-02-16 | 1998-09-22 | Novellus Systems, Inc. | Wafer cooling device |
US6252758B1 (en) * | 1998-07-06 | 2001-06-26 | Ngk Insulators, Ltd. | Method for reducing particles from an electrostatic chuck and an equipment for manufacturing a semiconductor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5277671A (en) * | 1975-12-24 | 1977-06-30 | Toshiba Corp | Method and equipment of masking |
JPS53139980A (en) * | 1977-05-11 | 1978-12-06 | Philips Nv | Method of and device for producing microminiature solid state device |
JPS57148356A (en) * | 1981-03-09 | 1982-09-13 | Hitachi Ltd | Sample holding device |
-
1983
- 1983-03-31 JP JP5585083A patent/JPS59181622A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5277671A (en) * | 1975-12-24 | 1977-06-30 | Toshiba Corp | Method and equipment of masking |
JPS53139980A (en) * | 1977-05-11 | 1978-12-06 | Philips Nv | Method of and device for producing microminiature solid state device |
JPS57148356A (en) * | 1981-03-09 | 1982-09-13 | Hitachi Ltd | Sample holding device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6250462A (en) * | 1985-08-30 | 1987-03-05 | Hitachi Ltd | Sputtering device |
US5221450A (en) * | 1990-08-07 | 1993-06-22 | Kabushiki Kaisha Toshiba | Electrostatic chucking method |
US5810933A (en) * | 1996-02-16 | 1998-09-22 | Novellus Systems, Inc. | Wafer cooling device |
US6252758B1 (en) * | 1998-07-06 | 2001-06-26 | Ngk Insulators, Ltd. | Method for reducing particles from an electrostatic chuck and an equipment for manufacturing a semiconductor |
US6975497B2 (en) | 1998-07-06 | 2005-12-13 | Ngk Insulators, Ltd. | Method for reducing particles from an electrostatic chuck and an equipment for manufacturing a semiconductor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0139793B1 (en) | Film Formation Method | |
JPH0642480B2 (en) | Method for treating the backside of a semiconductor wafer | |
JP2002057106A (en) | Treatment unit and its cleaning method | |
US10550470B2 (en) | Film forming apparatus and operation method of film forming apparatus | |
JP4716566B2 (en) | Plasma processing chamber for reducing copper oxide on a substrate and method thereof | |
JP2000208498A (en) | Surface treatment method and apparatus | |
JPS61170050A (en) | Formation of low resistance contact | |
JP3024940B2 (en) | Substrate processing method and CVD processing method | |
JPH0529251A (en) | Manufacture of semiconductor integrated circuit wiring metal film | |
JPH1112738A (en) | Cvd film forming method | |
JPS59181622A (en) | Manufacture of semiconductor device | |
JPH11307480A (en) | Method for reducing stress in blanket tungsten film by chemical vapor deposition | |
JP3131860B2 (en) | Film processing equipment | |
JPH06168914A (en) | Etching process | |
JP3066673B2 (en) | Dry etching method | |
JPS63290269A (en) | sputtering equipment | |
JPH05109702A (en) | Manufacture of semiconductor device | |
JP2509820B2 (en) | Film forming equipment | |
JP7590630B1 (en) | Method for manufacturing a hard mask | |
JP2728176B2 (en) | Film forming apparatus and method | |
JPH08115903A (en) | Method for manufacturing semiconductor device and plasma etching apparatus | |
JP3261795B2 (en) | Plasma processing equipment | |
JP2010147142A (en) | Method for manufacturing semiconductor, and apparatus | |
JPH02298270A (en) | Film formation | |
JP2001131752A (en) | Plasma cleaning method |