[go: up one dir, main page]

JPS59180666A - Calculating circuit of difference degree - Google Patents

Calculating circuit of difference degree

Info

Publication number
JPS59180666A
JPS59180666A JP58053610A JP5361083A JPS59180666A JP S59180666 A JPS59180666 A JP S59180666A JP 58053610 A JP58053610 A JP 58053610A JP 5361083 A JP5361083 A JP 5361083A JP S59180666 A JPS59180666 A JP S59180666A
Authority
JP
Japan
Prior art keywords
circuit
value
adder
complement
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58053610A
Other languages
Japanese (ja)
Inventor
Yukikazu Kaburayama
蕪山 幸和
Eiichiro Yamamoto
山本 栄一郎
Yoshihisa Fujii
敬久 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58053610A priority Critical patent/JPS59180666A/en
Publication of JPS59180666A publication Critical patent/JPS59180666A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Algebra (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Complex Calculations (AREA)
  • Character Discrimination (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は2つの非負の値の絶対値の累積オロを求める相
違[W計算回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a difference [W calculation circuit for calculating the cumulative value of the absolute value of two non-negative values.

(2)従米独術と問題点 例えば音声認識等の分野において2つの成形の類似度を
求める場合VC2つの波形の対応する非負の値AiとB
iの差の絶対値lA1−B11を求めこれを各点VCつ
いて累積した累積和。Σ1Ai−Bit1=1    
       −1 を用いることが行なわれる。
(2) Problems with American-American-German techniques For example, when determining the similarity of two shapes in the field of speech recognition, the corresponding non-negative values Ai and B of the two VC waveforms
A cumulative sum obtained by calculating the absolute value lA1-B11 of the difference between i and accumulating this for each point VC. Σ1Ai-Bit1=1
−1 is used.

この目的に用いられる従来の回路を第1図に示す。第1
図において1は比較器、2は選択回路、3は補数回路、
4は選択回路、5および6は加算回路、7はレソスタで
ある。第1図の回路において比較器1は入力する値Ai
およびBiの大小を比較してその大小の情報を選択回路
2および4に送る。選択回路2は入力値Ai s Bi
をそのま\入力し、選択回路4は補数回路3を介して入
力値Ai、Biの1の補数値肩および酊 を入力する。
A conventional circuit used for this purpose is shown in FIG. 1st
In the figure, 1 is a comparator, 2 is a selection circuit, 3 is a complement circuit,
4 is a selection circuit, 5 and 6 are adder circuits, and 7 is a resistor. In the circuit of FIG. 1, comparator 1 has an input value Ai
and Bi, and sends information on the magnitude to the selection circuits 2 and 4. The selection circuit 2 selects the input value Ais Bi
are input as they are, and the selection circuit 4 inputs the one's complement values of the input values Ai and Bi through the complement circuit 3.

比較器1がAi<Biであると判定した場合は選択回路
2は大きい方の値Biを出力し、選択回路4は小さい方
の値Aiの1の被数凋 を出力し両方の値と値lは加算
回路5において加算されその値IAi−Bitはつぎの
加算回路6に送られる。加算回路6においては加算回路
5の出力値とレヅスタ7に蓄積された値を加算してレノ
スタフに送る。
When the comparator 1 determines that Ai<Bi, the selection circuit 2 outputs the larger value Bi, and the selection circuit 4 outputs the decimal point of 1 of the smaller value Ai, and selects both values. l is added in an adder circuit 5, and the value IAi-Bit is sent to the next adder circuit 6. In the adder circuit 6, the output value of the adder circuit 5 and the value accumulated in the register 7 are added together and sent to the Renostaph.

l AI  Bl  lをレノスタフに送る前に信号C
IJARによシレソスタ7の値を0にしておけばレノス
タフの出力には$積和、ΣlA1B11 が得られl=
1 る。
l AI Bl Signal C before sending l to Lenostav
If you set the value of the sire so star 7 to 0 using IJAR, you will get $ product sum, ΣlA1B11 in the output of Renostaph, and l=
1.

第1図のごとき従来の相違度計算回路においては比較器
や選択回路等回路部品の点数が多くな9回路が複雑且つ
冒価なものとなる。
In the conventional dissimilarity calculation circuit as shown in FIG. 1, the nine circuits have many circuit parts such as comparators and selection circuits, making the circuit complex and expensive.

(3)発明の目的 本発明はか\る従来技術の欠点にかんがみ選択回路や比
較器を有することなく筒片な回路構成によシ冥現できる
相違度計算回路を提供することを目1’1勺とする。
(3) Purpose of the Invention In view of the drawbacks of the prior art, it is an object of the present invention to provide a dissimilarity calculation circuit that can be realized with a simple circuit configuration without having a selection circuit or a comparator. 1 person.

(4)発明の構成 この目的は本発明によればAiとBiなる2つの非負の
値の差の絶対値lAi  Bilの総和、Σ1Ai−−
1 Bilを求める回路において、値Aiと値Biの1の補
数百1 を加算回路によシ加算を行ない、該加算回路の
出力にあられれるキャリーにより前記AiおよびBiO
値の大小を判定してその計算結果より累積和Σ1Aj−
Bilを求めることを特徴とす1−す る相違度計算回路を提供することによって達成さオLる
(4) Structure of the Invention According to the present invention, the purpose is to obtain the sum of the absolute value lAi Bil of the difference between two non-negative values Ai and Bi, Σ1Ai--
In the circuit for calculating 1 Bil, the value Ai and the 1's complement 101 of the value Bi are added together in an adder circuit, and the Ai and BiO are added by the carry at the output of the adder circuit.
Determine the magnitude of the value and use the calculation result to calculate the cumulative sum Σ1Aj−
This is achieved by providing a dissimilarity calculation circuit that is characterized by calculating Bil.

(5)  発明の実施例 以下本発明にか\る回路の実施’v弓について詳細に説
明する。
(5) Embodiments of the Invention The implementation of the circuit according to the present invention will now be described in detail.

い捷2種類の値をAlt 、Btとしこれら(l″in
inピノ絶対値表現されたものとすると、0<A1<2
 −1          fllO≦Blに2 −1
        121またBi  の各ビットの0.
1を反転したもの(1の補数)をBi  で表わすと Bi=(2−1)  Bi         t、31
となる。こ\にDi=lAi −Bi lとすると第(
3)式%式% (4) ) (5) ここでAi十Biの演算ヲ考えるとPJ(31式よりA
i+Bi=2n 1士(Aj  Bi)      (
6)であるから、 (1)  Aj>Biのと@は Aj−Bi)Olつ捷りA1−B1〉1であるから第(
6)式より AltBi>2 となりnビットの演算を行なうとキャリー(桁上り)が
発生する。
Let the two types of values be Alt and Bt, and these (l″in
If expressed in pinot absolute value, 0<A1<2
-1 flIO≦Bl 2 -1
121 and 0.121 of each bit of Bi.
If the inverted version of 1 (1's complement) is expressed as Bi, then Bi = (2-1) Bi t, 31
becomes. If we set Di=lAi −Bi l, then the (
3) Formula % Formula % (4) ) (5) Here, considering the calculation of Ai + Bi, PJ (from formula 31, A
i+Bi=2n 1st person (Aj Bi) (
6), so (1) Aj>Bi and @ are Aj-Bi)Ol and A1-B1>1, so the (th)
From equation 6), AltBi>2, and when n-bit operations are performed, a carry occurs.

(fil  Ai≦Biのときは この関係と第(1)式、第(2)式よシー(2n−1)
<A1−B1<0 であるから冴」、(6)式より 0<Ai+Hi≦2−1 となりnビットの演算を行なうとキャリー(桁上り)が
発生しない。
(fil When Ai≦Bi, this relationship, equation (1), equation (2), C(2n-1)
<A1-B1<0, so from equation (6), 0<Ai+Hi≦2-1, and when n-bit operations are performed, no carry occurs.

ITってAi十酊ニよるキャリーでAi、Biの大小!
14I定ができる。
IT is a carry that depends on Ai and Bi, and the size of Ai and Bi!
14I can be determined.

そこでAi + ]3iの演算によるキャリーをci 
 としこれをnビット並べた数値をCI  とすると(
A)  Ai>Biのとき第(4)式および(1)より
01−1であるので Di==Ai+B1−2n+1=Ai+Bi+1=(A
i士Hi)e、)Ci士ci(7) 第(7)式において−2は下位nビットはオール“0″
であるからnビット′LA算では無お2し、てよい。
Therefore, the carry by the operation of Ai + ]3i is ci
If the number obtained by arranging n bits is CI, then (
A) When Ai>Bi, it is 01-1 from equation (4) and (1), so Di==Ai+B1-2n+1=Ai+Bi+1=(A
ishiHi)e,)Cishici(7) In equation (7), -2 means that the lower n bits are all “0”
Therefore, n-bit 'LA calculation can be done without any problem.

tB)  Ai(:Biのときは第・5)式および(1
1)よpci二〇であるので 〈 1)i = (Ai十Bi)[有]C1−10i   
      t9)となる。こ\に■は2数の対応する
ビットの排他的論理λ[1を意味する。
tB) Ai (:When Bi, the fifth) formula and (1
1) Since pci is 20, < 1) i = (Ai 10 Bi) [Yes] C1-10i
t9). Here, ■ means exclusive logic λ[1 of two corresponding bits.

つさ゛に本発明の実施例を第2図に示す。An embodiment of the present invention is briefly shown in FIG.

42図において8は補数回路のインバータ群、9は加算
器、10はインバータ、11は排他論理来日・洋、12
はカ目算著、−,,13はレノスタをそれぞれ示す。
In Figure 42, 8 is the inverter group of the complement circuit, 9 is the adder, 10 is the inverter, 11 is the exclusive logic, 12
The letters ``Kame Sansho'' and ``-,'' and 13 indicate "Renosta," respectively.

記2図の回路において入力データAi 、 Biはクロ
ック(CLoCKi)に同期してその1直が変る。筐た
最初の入力データA、 、 B、の入力以前にv−)ヌ
タ13はクリア(0LEA1.tl、 )によシフリア
して訃く。
In the circuit shown in FIG. 2, the input data Ai and Bi change in synchronization with the clock (CLoCKi). Before inputting the first input data A, , B, v-) Nuta 13 clears (0LEA1.tl, ) and dies.

入力データBi はインバータ#8にそシその補数値π
1 に変換される、この値頂 と入力データAi は加
A器9によシ加算される。加算器9の出力がAt +頂
と桁上りC1となるとインバータ10と排他論理オロ群
11によシ゛(Ai十百Dり百が出力される。その出刃
は加算器12に送られレジスタ13の出力5i−1と(
At士■)■函とOiが加算されるので Si−+ 十(Ai −1−J3i )■Ci十Oiが
出力される。これをレジスタ13で捉えてSlを出力す
る。すなわち 5i=Si=1・+(Ai + Bi ) OCi +
0i=Si−1+l At −Bi t  (第(9)
式による)レジスタ13は予めクリアされているのでS
。二〇であるから となる。
Input data Bi is input to inverter #8 and its complement value π
This value Ai, which is converted to 1, and the input data Ai are added by an adder 9. When the output of the adder 9 becomes At + top and carry C1, the inverter 10 and the exclusive logic group 11 output Ai100D minus 100.The output is sent to the adder 12 and stored in the register 13. Output 5i-1 and (
Since Atshi (■)■box and Oi are added, Si-+ 10(Ai-1-J3i)■Ci0Oi is output. This is captured by the register 13 and outputted as Sl. That is, 5i=Si=1・+(Ai + Bi) OCi +
0i=Si−1+l At −Bi t (No. (9)
Since register 13 (according to the formula) is cleared in advance, S
. This is because it is twenty.

第3図は不され明の他の実施例を示す。第3図において
インバータ井14、加算器15.19、レジスタ20は
それぞれ第2図の8.9.12および13と同じである
。たソ第2図と異なるところrよレジスタ16か刀口わ
ったことである。この実施レリ9こおいてはなも2図の
ぢ“、合に比べてクロックの周Jlをよシ早くできる。
FIG. 3 shows another embodiment of the present invention. In FIG. 3, inverter well 14, adder 15, 19 and register 20 are the same as 8.9.12 and 13 in FIG. 2, respectively. The difference from Figure 2 is that the register 16 has been changed. In this case, the clock frequency Jl can be made much faster than in the case shown in Figure 2.

最小周期は入力At 、 B175;仰足し期]算器1
5の出力が確定する1での1寺間Tiとレジスタ16の
値が4’ji定してから加算器19の出力する捷での時
間T2  の大きい方の値U、’ = max (T、
 、 I2 )により決まる。
The minimum period is input At, B175; exaggeration period] Calculator 1
The larger value U,' = max (T,
, I2).

丑だレジスタ16を加′σ器15の直後に置かず加′s
、器19の直前に14<ことも可能である。
Addition register 16 should not be placed immediately after adder 15.
, 14< just before the vessel 19 is also possible.

(6)  発明の突ノ果 以上詳細に説明したように、本発明によれば従来技術に
比較して1ン6単な回路で実現できしかも年号の通過ダ
ート数が少ないのでクロックを速くすることができるの
で製品が安価にでき且つ高速演算が可能であるという効
果がある。
(6) Outcomes of the Invention As explained in detail above, according to the present invention, compared to the prior art, it can be realized with a 1-6 simple circuit, and the number of passing darts of the year number is small, so the clock speed can be increased. This has the advantage that the product can be manufactured at low cost and high-speed calculation is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の相違+61泊算回路の1し1]のブロッ
ク図、第2図は本発明にか\る相違度計算回路の1実施
例のブロック図、第3図は本発明にか\る他の実施例を
示す。 図面において 8、I4・・・インバータ計、9,12.15゜19・
・・力D′く慴¥:J、10.17・・・インバータ、
11゜18・・・排イ1!;論理和群、13.I6..
20・・・レジスタをそれぞれ示す。 特許出願人 富士通株式会社 を時許出願代理人 弁理士 青 木    朗 弁1里士  西  舘  和  之 づ「埋土 内  1) 幸  男 弁理士  山  (コ  昭  l 35
Fig. 1 is a block diagram of a conventional difference + 61 night calculation circuit, Fig. 2 is a block diagram of an embodiment of a dissimilarity calculation circuit according to the present invention, and Fig. 3 is a block diagram of an embodiment of a dissimilarity calculation circuit according to the present invention. \Other examples are shown below. In the drawing, 8, I4...Inverter total, 9,12.15°19.
・・Power D'kuei ¥: J, 10.17...Inverter,
11°18...Excretion 1! ; disjunctive group, 13. I6. ..
20...Represents each register. Fujitsu Limited, the patent applicant, is represented by Patent Attorney Aoki Roben 1, Roshi Nishidate Kazunozu (1) Yukio Patent Attorney Yama (Ko Sho 35)

Claims (1)

【特許請求の範囲】 AiとBiなる2つの非負の値の差の絶対値IAi−B
itの総和、Σ1Ai−Bili求める回路において、
l:1 値At  と値Bi の1の補数Bi  を加算回路に
よシ加′J!、′t−行ない、該加算Bi路の出力にあ
られれるキャリーにより前記Ai およびBi  の値
の大小を判定してその計算結果より累積和、Σ1Ai−
Bilを1=1 求めることを特徴とする相違度計算回路。
[Claims] Absolute value IAi-B of the difference between two non-negative values Ai and Bi
In the circuit that calculates the sum of it, Σ1Ai-Bili,
l:1 Add the 1's complement Bi of the value At and the value Bi to the adder 'J! , 't- is carried out, and the magnitude of the values of Ai and Bi is determined based on the carry present in the output of the addition Bi path, and from the calculation result, the cumulative sum, Σ1Ai-
A dissimilarity calculation circuit characterized by calculating Bil as 1=1.
JP58053610A 1983-03-31 1983-03-31 Calculating circuit of difference degree Pending JPS59180666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58053610A JPS59180666A (en) 1983-03-31 1983-03-31 Calculating circuit of difference degree

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58053610A JPS59180666A (en) 1983-03-31 1983-03-31 Calculating circuit of difference degree

Publications (1)

Publication Number Publication Date
JPS59180666A true JPS59180666A (en) 1984-10-13

Family

ID=12947665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58053610A Pending JPS59180666A (en) 1983-03-31 1983-03-31 Calculating circuit of difference degree

Country Status (1)

Country Link
JP (1) JPS59180666A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152632A (en) * 1974-05-27 1975-12-08
JPS55121483A (en) * 1979-03-07 1980-09-18 Ibm Absolute difference generation mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152632A (en) * 1974-05-27 1975-12-08
JPS55121483A (en) * 1979-03-07 1980-09-18 Ibm Absolute difference generation mechanism

Similar Documents

Publication Publication Date Title
US5095457A (en) Digital multiplier employing CMOS transistors
JP3345894B2 (en) Floating point multiplier
US4623872A (en) Circuit for CSD-coding of a binary number represented in two&#39;s complement
JPS59180666A (en) Calculating circuit of difference degree
GB1316322A (en) Scaling and number base converting apparatus
JP2579321B2 (en) Binary processing unit
JPH09128213A (en) Block floating processing system and method
JPS5966214A (en) Digital filter unit
SU1269152A1 (en) Two-dimensional linear interpolator
JPH07111459A (en) Data compression method
US4094138A (en) Electronic chronograph
JPS60191330A (en) Security system of data accuracy for operation
RU2018934C1 (en) Divider
SU1043639A1 (en) One-bit binary subtractor
JPH07129405A (en) Nonfuzzy system and method
SU1667053A1 (en) Logarithmic code adder
US4141077A (en) Method for dividing two numbers and device for effecting same
JP2881318B2 (en) Conversion circuit of distance value in character recognition device
JPS63204324A (en) floating point multiplication method
SU1113798A1 (en) Device for computing values of trigonometrical and hyperbolic functions
SU374643A1 (en) REVERSIBLE DECIMAL COUNTER
SU1481740A1 (en) Operational device
JPS62118473A (en) Accumulator
SU1124282A1 (en) Transformer from binary code to binary-coded decimal code of angular units
JPH04109756A (en) Matrix arithmetic circuit and image sensor