JPS59134874A - Manufacturing method of semiconductor device - Google Patents
Manufacturing method of semiconductor deviceInfo
- Publication number
- JPS59134874A JPS59134874A JP58007243A JP724383A JPS59134874A JP S59134874 A JPS59134874 A JP S59134874A JP 58007243 A JP58007243 A JP 58007243A JP 724383 A JP724383 A JP 724383A JP S59134874 A JPS59134874 A JP S59134874A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- semiconductor device
- auge
- eutectic
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/62—Electrodes ohmically coupled to a semiconductor
Landscapes
- Electrodes Of Semiconductors (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は半導体装置、特にG aA pのような閃亜鉛
鉱型結晶構造を有する半導体基体音用いた半導体装置に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a semiconductor device using a semiconductor substrate having a zincblende crystal structure such as GaAp.
但離音4高遮断周波数、高出力等の特長を有するマイク
ロ波トランジスタとして、G9A8(砒化ガリウム)シ
ョットキ障壁ゲート電界効果トランジヌタ(GaAs
−8B G F ET )が一般に知られている。However, G9A8 (gallium arsenide) Schottky barrier gate field effect transistor (GaAs
-8BGFET) is generally known.
本願発明者が以前に開発したG−aAs −8B G
FET素子けn導電型の能動領域表面(主面)にソース
、ドレインとなるオーミック接触電極を設けるとともに
、その中間にケートとなるショットキ接合電極′に1つ
あるいは2つ設けて、それぞれシングルゲート構造ある
いはデニアルゲート構造金構成した構造となっている。G-aAs-8B G previously developed by the inventor of the present application
Ohmic contact electrodes serving as the source and drain are provided on the surface (principal surface) of the active region of the FET element's n-conductivity type, and one or two Schottky junction electrodes are provided in the middle to serve as the gate, resulting in a single gate structure. Alternatively, it has a denial gate structure made of gold.
また、前記ソース・ドレイン電極はその製造において、
n型GaAeエピタキシャル層上にAuG @ 、 N
1+ Au t”順次積層形成した後、アロイ処理(
400℃前後で数分処理)ヲ行ってG、Afiエピタキ
シャル層とのオーミック性接合を図ることによって形成
される。Further, in manufacturing the source/drain electrodes,
AuG@, N on the n-type GaAe epitaxial layer
1+ Au t'' is sequentially laminated and then alloyed (
It is formed by performing ohmic contact with the G and Afi epitaxial layers by performing a treatment at around 400° C. for several minutes.
ところで、AuGeけAu5s%、 Ge 12%のと
き約356℃で共晶を作ることが一般に知られている。By the way, it is generally known that a eutectic is formed at about 356° C. when AuGe is 5s% Au and 12% Ge.
このこともあってか、従来のAuGeの組成比はGeは
最大でも12重量%となっている。Perhaps for this reason, the composition ratio of conventional AuGe is 12% by weight of Ge at most.
しかし、このような組成比を有するAuGeではT分な
オーSツク性接合が得られないことが本願出願人の測定
検査の結果明らかとなった。However, as a result of measurement and inspection conducted by the present applicant, it has become clear that AuGe having such a composition ratio cannot provide an oscillatory bond of T.
この点について考察して見ると、GaA3化合物半導体
基体にオーミックをとる際、AuGe電極(AuGe共
晶[棒構成層)を用いることが多いが、これはオーミッ
クコンタクト形成のための合金化熱処理の際、GaがG
aA Fl中に拡散し7、ドナーとなってGaAEI
表面を高濃度化する結果、この高濃度l−とAuとの間
にトンネル現象が起こシ、オーミックコンタクトが得ら
れる、とする解釈が一般的である。したがって、Geの
量を多くしてやれけGaAs表面がより高キャリア濃度
となシ、よシ低抵抗となることが推定できる。Considering this point, when creating an ohmic on a GaA3 compound semiconductor substrate, an AuGe electrode (AuGe eutectic [rod constituent layer]) is often used; , Ga is G
aA Diffuses into Fl7 and becomes a donor to GaAEI
The general interpretation is that as a result of increasing the surface concentration, a tunneling phenomenon occurs between this highly concentrated l- and Au, resulting in ohmic contact. Therefore, it can be inferred that by increasing the amount of Ge, the GaAs surface has a higher carrier concentration and has a lower resistance.
一方、前記のように、AuGeは1296Ga濃度で共
晶となるため、Gea度が12%程度あるいけ12%匂
下でけ、GeがAuに吸収され、(−すなわちAuGe
共晶をつくるためのみにGaが反応してしまい)充分に
GaAs中に拡散しないと推定できる。On the other hand, as mentioned above, since AuGe becomes eutectic at a 1296Ga concentration, if the Ge degree is about 12% or under a 12% odor, Ge is absorbed by Au (-i.e., AuGe
It can be assumed that Ga reacts only to form a eutectic and does not diffuse sufficiently into GaAs.
そこで、本発明者はGe濃度全12重量%を延えて多ぐ
しておけU″共晶る以外の過剰GeがGaAs中に拡散
され、低抵抗オーミックが祷られるとの考えのもとに本
発明を成した。Therefore, the present inventor developed the present invention based on the idea that if the total Ge concentration is increased to 12% by weight, excess Ge other than the U'' eutectic will be diffused into GaAs, resulting in low ohmic resistance. accomplished.
他方、前記り型GaAEIエピタキシャル層(n型Ga
AB基体)上のAuGe 、Ni 、Auiアo4処理
すると、第1図に示すようにAuGeが局部的に盛り上
がり、ゲート電極の微細化やワイヤボンダビリティを悪
化させるいわゆるポールアップ現象が生じることが多い
。これは、AuGe自体が表面張力が大きく、AuGe
が生成されると丸く固まろうとする性贋があることによ
ると一般にいわれている。なお、図中、1はGaAθ基
体、2はAuGe層、3はAuGe共晶層、4はN1層
、5はAu層をそれぞれ示す。On the other hand, the above-mentioned type GaAEI epitaxial layer (n-type GaAEI epitaxial layer)
When AuGe, Ni, and Au (AB substrate) are treated with Ao4, the AuGe locally swells as shown in FIG. 1, and a so-called pole-up phenomenon often occurs, which worsens the miniaturization of gate electrodes and wire bondability. This is because AuGe itself has a large surface tension.
It is generally said that this is due to the fact that there is a tendency to harden into a round shape when it is produced. In the figure, 1 is a GaAθ substrate, 2 is an AuGe layer, 3 is an AuGe eutectic layer, 4 is an N1 layer, and 5 is an Au layer.
ところで、前記AuGe層2.Ni層4.Au層50厚
享は従来たとえげ1200A、300A。By the way, the AuGe layer 2. Ni layer4. The thickness of the Au layer 50 is conventionally 1200A and 300A.
1.30OAとなっていて、AuGe層2とAu層5と
の厚さ比は略1:1稈度となっているが、本発明者は1
300Aと薄いAu層5ではAuGe共晶層のポールア
ソプカに抗し得ないのではないかとの考メのもとに順次
Au層の厚さを厚くすることによっである厚さ以上では
ポールアップ現象を抑えることができることを発見し、
本発明を成した。1.30OA, and the thickness ratio of the AuGe layer 2 and the Au layer 5 is approximately 1:1.
Considering that the Au layer 5, which is as thin as 300A, may not be able to resist the pole assopsis of the AuGe eutectic layer, the thickness of the Au layer is gradually increased to prevent the pole up phenomenon above a certain thickness. discovered that it is possible to suppress
The present invention has been accomplished.
したがって、本発明の目的はオーミック抵抗の低い半導
体装置を提供することにある。Therefore, an object of the present invention is to provide a semiconductor device with low ohmic resistance.
また、本発明の他の目的はポーリングアップのない半導
体装置を提供することにある。Another object of the present invention is to provide a semiconductor device without polling up.
9下、実施例により本発明を説明する。9 below, the present invention will be explained by way of examples.
第2図は本発明の一実施列によるGaAe−8BGFE
T素子の要部を示す平面図、第3図は第2図のIll
−II線に沿う断面図、第4図(al〜lclは素子の
製造方法を示す各工程での断面図、第5図はオーミック
電極構造を示す模式図である。FIG. 2 shows a GaAe-8BGFE according to one implementation of the present invention.
A plan view showing the main parts of the T element, Figure 3 is Ill of Figure 2.
FIG. 4 is a cross-sectional view taken along line -II (al to lcl are cross-sectional views at each step showing the manufacturing method of the element, and FIG. 5 is a schematic diagram showing the ohmic electrode structure.
この実施例の素子は、ソース電極(S)とドレイン電極
(D)との間に2本のゲート電ff1(G+。The device of this example has two gate electrodes ff1 (G+) between the source electrode (S) and the drain electrode (D).
os)、’i設けた、いわゆるデュアルゲート構造とな
っている。なお、第2図は素子の表面を被うパッシベー
ション膜は省略しである。It has a so-called dual gate structure with os) and 'i. Note that the passivation film covering the surface of the element is omitted in FIG.
この素子は、Crを拡散させて絶縁体となったGaAs
基板(GaAs基体)6の主面にメサエ・ソチングによ
って形成されたメサ構造のn型エピタキシャル層7を有
している。GaAs基板6は厚さが350〜400μm
程度の厚さとなシ、能動層となるn型エピタキシャル層
7け0.3μmと極めて薄くなっている。This element is made of GaAs that has become an insulator by diffusing Cr.
An n-type epitaxial layer 7 having a mesa structure is formed on the main surface of a substrate (GaAs base) 6 by mesa soching. The thickness of the GaAs substrate 6 is 350 to 400 μm.
The thickness of the n-type epitaxial layer 7 serving as the active layer is extremely thin at 0.3 μm.
Jjlエピタキシャル層7の主面中央には1μm〜1.
5μ口のゲート長ざ金有する2本のゲート電極が平行(
間隔1μm)に配設されている。2本のゲート電極はそ
れぞれ第1ゲート電極(G1 )8、第2ゲート電極(
Gz)9を形作っている。The center of the main surface of the Jjl epitaxial layer 7 has a thickness of 1 μm to 1.5 μm.
Two gate electrodes with gate length grooves of 5μ are parallel (
They are arranged at intervals of 1 μm). The two gate electrodes are a first gate electrode (G1) 8 and a second gate electrode (G1), respectively.
Gz) forms 9.
また、2本のゲート電極を挾んで別々にソース電極(s
)io、ドレイン電極(D)11が配設これている。Also, separate source electrodes (s) are placed between the two gate electrodes.
) io, a drain electrode (D) 11 is provided.
第1・第2ゲート電極8,9は厚ざ6000λ稈度のア
ルミニウムによって形成され、ショットキ障壁接合とな
っている。甘た、ソース・ドレイン電極1 (1、’1
1は第5図で示すように、最下層の+2oo′Aの厚ツ
のAuGe層12 (G eの組成比は12重量%?越
え、たとえば20%)中層の厚さ300 AのN1層1
3.上層の埋で2400〜4500只のA u 414
/+・らなる多1曲構造となるとともに、霜極形成彼
の400℃、5分のアロイ処理によってniエビタギシ
ャル層7とのオーミ、ツク性接合化が図られている。The first and second gate electrodes 8 and 9 are made of aluminum with a thickness of 6000λ and form a Schottky barrier junction. Sweet, source/drain electrode 1 (1,'1
1, as shown in FIG. 5, the bottom layer is an AuGe layer 12 with a thickness of +2oo'A (the composition ratio of Ge is over 12% by weight, for example, 20%), the middle layer is an N1 layer 1 with a thickness of 300A
3. 2400-4500 A u 414 in the upper layer
It has a multi-curve structure of /+・, and an ohmic and solid bonding with the nitride virtual layer 7 is achieved by an alloy treatment at 400° C. for 5 minutes to form frost poles.
他方、第1ゲート電極8および第2ゲート電極9の一端
は0型工ピタキシヤル層7から外れてG a、 A t
3基板6上に延在し、その先端に幅広のポンディングパ
ッド15.16’に形作っている。また、素子の主面は
絶縁膜(バ・ノシベーション膜)17で被われている。On the other hand, one ends of the first gate electrode 8 and the second gate electrode 9 are separated from the type 0 pittaxial layer 7, so that Ga, A t
3 on the substrate 6, and is formed into a wide bonding pad 15, 16' at its tip. Further, the main surface of the element is covered with an insulating film (vanosivation film) 17.
この隙、第2図の二点鎖線枠で敞91まれるゲート、ド
レイン、ソース用の各ポンディングパッド15,16.
18.19は前記パッシベーション膜17では被われな
い。そして、この素子ケ用いてGaAs−8B()FF
2T(装置)を組み立てる際にtよ、前記ボンデイング
パ、ノド15.16,18.19にワイヤが接続はれる
。In this gap, each of the gate, drain, and source bonding pads 15, 16.
18 and 19 are not covered with the passivation film 17. Then, using this element, GaAs-8B()FF
When assembling 2T (apparatus), wires are connected to the bonding pads and nodes 15, 16 and 18, 19.
ここで、このような素子の製造方法について、第4図(
al〜tel ’i参照しながら簡単に説明する。まず
、350〜400pmの厚さのGaA3基板6を用意し
た後、その主面に0.3μmのn型エピタキシャル層7
全形成し、かつ常用のホトエツチングによってメサエッ
チを施こし、n型エピタキシャル層7のメサ構造化を図
る。Here, the method for manufacturing such an element will be explained as shown in Fig. 4 (
A brief explanation will be given with reference to al to tel'i. First, a GaA3 substrate 6 with a thickness of 350 to 400 pm is prepared, and then a 0.3 μm n-type epitaxial layer 7 is formed on its main surface.
After the entire structure is formed, mesa etching is carried out by conventional photoetching to form the n-type epitaxial layer 7 into a mesa structure.
つぎに、同図1blに示すように、能動層となるn型エ
ピタキシャル層7上に常用の蒸着技術によってAu()
e層/ N L層/ A u層からなるソース電極10
、ドレイン電極11を前述のパターン通シに形成し、オ
ーミックを得るためにアロイ処理(400℃、5分)′
に行なう。Next, as shown in FIG. 1bl, Au() is deposited on the n-type epitaxial layer 7 that will become the active layer by a commonly used vapor deposition technique.
Source electrode 10 consisting of e layer/NL layer/Au layer
, the drain electrode 11 was formed in the pattern described above, and alloy treatment (400° C., 5 minutes) was performed to obtain ohmic properties.
go to
つぎに、常用の部分蒸着技術によって前述のパターン通
シにn型エピタキシャル層7およびGaAθ基板6上に
亘ってアルミニウムを取シ付けて、同図1cIで示すよ
うに、ショットき障壁接合の第1・第2ゲート電極8,
9奮形成する。Next, aluminum is attached over the n-type epitaxial layer 7 and the GaAθ substrate 6 through the pattern described above using a commonly used partial vapor deposition technique, and as shown in FIG.・Second gate electrode 8,
9 to form.
つぎに、第4図では図示しないポンディングパッド15
.16,18.19を除く素子の主面全域’にパッシベ
ーション膜17で核い素子’t−a造スる。このパッシ
ベーション膜17け常用の各種膜形成方法で適宜な物質
で形成する。Next, a bonding pad 15 not shown in FIG.
.. A passivation film 17 is formed over the entire main surface of the element except for areas 16, 18, and 19. This passivation film 17 is formed using a suitable material using various commonly used film forming methods.
このような素子ではつぎのような効果を奏する。Such an element has the following effects.
(1)、AuGe層におけるGOの組成比はAu Ge
の共晶を起す12重置火を越えた、たとえば20重量%
であるため、アロイ時にけGeが共晶化のためにAuに
吸収されるとしても、Geはその量が多いいことから、
共晶化に費されないGeも多量に存在することから、G
eは従来品に比較して多量Kn型エピタキシャル層7に
拡散される。この結果、オーミック抵抗は従来品に比較
して低下する。(1), the composition ratio of GO in the AuGe layer is AuGe
For example, 20% by weight exceeds 12 times of heating to cause eutectic
Therefore, even if Ge is absorbed into Au due to eutectic formation during alloying, since the amount of Ge is large,
Since there is a large amount of Ge that is not consumed in eutectic formation, G
A larger amount of e is diffused into the Kn type epitaxial layer 7 than in the conventional product. As a result, the ohmic resistance is lower than that of conventional products.
したがって、トランジスタのgm 、 NF等の特性が
向上する。Therefore, characteristics such as gm and NF of the transistor are improved.
(2k 第5図に示すように、オーミック霜゛極のA
uu層4の厚さは従来品の1309Aに比較して240
0〜4500久と厚く、かつAuGe層12の厚さに比
較して、約2倍以上となっている。したがって、本発明
渚の実験によって硲昭しであるが、この各層の厚さ構成
によってAuGe層12の共晶化にあっても従来のよう
なポールアップ現象は生じない。(2k As shown in Figure 5, A of the ohmic frost pole
The thickness of uu layer 4 is 240mm compared to 1309A of the conventional product.
It is as thick as 0 to 4500 mm, and is about twice as thick as the AuGe layer 12. Therefore, although it has been shown in the experiments of the present invention, due to the thickness structure of each layer, even when the AuGe layer 12 is eutectic, the pole-up phenomenon as in the conventional case does not occur.
したがって、第5図に示すように、AuGe層12を共
晶化しても、Auu層40表面は平坦を維持する。この
結果、ポールアップ現象によって生じたAu7i1i面
の凹凸によって、第1・第2ゲート電極8,9の形成工
程におけるホトレジストの微細パターン化不遍は防止で
きる。また、Au層表面が平坦であることと、Au層が
厚いことによるGa 、Ge等のAu層表層部含有量が
極めて少ないことによって、ワイヤ(金#J)の接合性
も向上する。Therefore, as shown in FIG. 5, even if the AuGe layer 12 is made eutectic, the surface of the Auu layer 40 remains flat. As a result, uneven fine patterning of the photoresist in the process of forming the first and second gate electrodes 8 and 9 can be prevented due to the unevenness of the Au7i1i surface caused by the pole-up phenomenon. Furthermore, the bondability of the wire (gold #J) is also improved because the surface of the Au layer is flat and the content of Ga, Ge, etc. in the surface layer of the Au layer is extremely small due to the thickness of the Au layer.
なお、本発明は前記実施例に限定されない。すなわち、
本発明は他の閃亜鉛鉱型半導体装置にも適用できる。Note that the present invention is not limited to the above embodiments. That is,
The present invention is also applicable to other zinc blende semiconductor devices.
以上のように、本発明によれば、オーミック抵抗の低減
を図ることができるとともに、オーミック抵抗のポール
アップ比重抑制することができる。As described above, according to the present invention, it is possible to reduce the ohmic resistance and to suppress the pole-up specific gravity of the ohmic resistance.
このため、特性の向上9歩留の向上を図ることができ、
コスト低減化も可能となる。Therefore, it is possible to improve the characteristics and improve the yield.
Cost reduction is also possible.
第1図はオーミック電極のポールアップ現象を示す模丈
図、
第2図は本発明の一実施例によるGaAs−8BGFI
]liT素子の警部を示す平面図、第3図は第2図の0
ト1線に沿う断面図、第4図+a+〜1c1は素子の&
!I造方法を示す各工程での断面図、
第5図は本発明によるオーミック電極構造を示す模式図
である。
1.6・・GaAB基板、2,12・・・AuGe層、
4゜13・・・81層、5,14・・・Au層、7・・
・n型エピタキシャル層、8・・・第1ゲート電極、9
・・・第2ゲート電極、10・・・ソース電極、11・
・・ドレイン電極、15,16,18.19・・・ボン
ディングパノド、17・・・パッシベーシヨン膜。
第 1 図
第 2 図
第 3 図
第 4 図
[/7
7−て
第 5 図Figure 1 is a schematic diagram showing the pole-up phenomenon of an ohmic electrode, and Figure 2 is a GaAs-8BGFI according to an embodiment of the present invention.
] A plan view showing the inspector of the LiT element, Figure 3 is 0 in Figure 2.
4+a+ to 1c1 are cross-sectional views taken along line 1 and 1c1 of the element.
! FIG. 5 is a cross-sectional view showing each step of the I manufacturing method. FIG. 5 is a schematic diagram showing an ohmic electrode structure according to the present invention. 1.6...GaAB substrate, 2,12...AuGe layer,
4゜13...81 layer, 5,14...Au layer, 7...
・N-type epitaxial layer, 8...first gate electrode, 9
. . . second gate electrode, 10 . . . source electrode, 11.
...Drain electrode, 15, 16, 18.19... Bonding panode, 17... Passivation film. Figure 1 Figure 2 Figure 3 Figure 4 [/7 Figure 5]
Claims (1)
byはれたAuGoからなる電極構成層を有する半導体
装Wにおいて、前記AuGfJ管極構成陽極構成層含有
率は共晶層を形作る成分比を越えていることに特徴とす
る半導体装置。 2、’AuGe電極構成層におけるGeは12重量9K
を越えた含有率となっていることを特徴とする特許請求
の範囲第1項記載の半導体装置。 3 閃亜鉛鉱型半導体結晶基体と、この基体上にAuG
e層、バリヤ層、Au層とIi、1次和み重ねられてな
る電極と、を有する半導体装置において、前記Au層は
A+1Ge層の埋ネの略2倍匂上の厚さとなっているこ
とを特徴とする半導体装置1.4 前記AuGe共晶層
におけるGθll″t121量%を餠えた含有率となっ
ていること奮%徴とする特許請求の範囲第3項記載の半
導体装置。[Scope of Claims] 1. In a semiconductor device W having a semiconductor crystal substrate made of zinc blende and an electrode constituent layer made of AuGo extruded on the substrate, the content of the AuGfJ tube electrode constituent anode constituent layer is A semiconductor device characterized in that the ratio of components exceeds that which forms a eutectic layer. 2, 'Ge in the AuGe electrode constituent layer is 12 weight 9K
2. The semiconductor device according to claim 1, wherein the content exceeds . 3 Zincblende type semiconductor crystal substrate and AuG on this substrate
In a semiconductor device having an electrode formed by stacking an e layer, a barrier layer, an Au layer, and an Ii layer in a primary layer, it is noted that the Au layer has a thickness approximately twice as thick as the buried layer of the A+1Ge layer. Characteristic Semiconductor Device 1.4 The semiconductor device according to claim 3, characterized in that the content of the AuGe eutectic layer is greater than Gθll''t121%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58007243A JPS59134874A (en) | 1983-01-21 | 1983-01-21 | Manufacturing method of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58007243A JPS59134874A (en) | 1983-01-21 | 1983-01-21 | Manufacturing method of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59134874A true JPS59134874A (en) | 1984-08-02 |
JPH0516189B2 JPH0516189B2 (en) | 1993-03-03 |
Family
ID=11660564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58007243A Granted JPS59134874A (en) | 1983-01-21 | 1983-01-21 | Manufacturing method of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59134874A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02501609A (en) * | 1987-10-09 | 1990-05-31 | ヒューズ・エアクラフト・カンパニー | GaAs electrical circuit device with Langmuir-Blodgett insulating layer |
US6686616B1 (en) * | 2000-05-10 | 2004-02-03 | Cree, Inc. | Silicon carbide metal-semiconductor field effect transistors |
US6902964B2 (en) | 2001-10-24 | 2005-06-07 | Cree, Inc. | Methods of fabricating delta doped silicon carbide metal-semiconductor field effect transistors having a gate disposed in a double recess structure |
US6956239B2 (en) | 2002-11-26 | 2005-10-18 | Cree, Inc. | Transistors having buried p-type layers beneath the source region |
JP2005311151A (en) * | 2004-04-23 | 2005-11-04 | Japan Science & Technology Agency | Manufacturing method of lattice matching tunnel diode and lattice matching tunnel diode |
US7265399B2 (en) | 2004-10-29 | 2007-09-04 | Cree, Inc. | Asymetric layout structures for transistors and methods of fabricating the same |
US7326962B2 (en) | 2004-12-15 | 2008-02-05 | Cree, Inc. | Transistors having buried N-type and P-type regions beneath the source region and methods of fabricating the same |
US7348612B2 (en) | 2004-10-29 | 2008-03-25 | Cree, Inc. | Metal-semiconductor field effect transistors (MESFETs) having drains coupled to the substrate and methods of fabricating the same |
US7402844B2 (en) | 2005-11-29 | 2008-07-22 | Cree, Inc. | Metal semiconductor field effect transistors (MESFETS) having channels of varying thicknesses and related methods |
US7646043B2 (en) | 2006-09-28 | 2010-01-12 | Cree, Inc. | Transistors having buried p-type layers coupled to the gate |
US8203185B2 (en) | 2005-06-21 | 2012-06-19 | Cree, Inc. | Semiconductor devices having varying electrode widths to provide non-uniform gate pitches and related methods |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5132533A (en) * | 1974-09-10 | 1976-03-19 | Teijin Ltd |
-
1983
- 1983-01-21 JP JP58007243A patent/JPS59134874A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5132533A (en) * | 1974-09-10 | 1976-03-19 | Teijin Ltd |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02501609A (en) * | 1987-10-09 | 1990-05-31 | ヒューズ・エアクラフト・カンパニー | GaAs electrical circuit device with Langmuir-Blodgett insulating layer |
US6686616B1 (en) * | 2000-05-10 | 2004-02-03 | Cree, Inc. | Silicon carbide metal-semiconductor field effect transistors |
US7067361B2 (en) | 2000-05-10 | 2006-06-27 | Cree, Inc. | Methods of fabricating silicon carbide metal-semiconductor field effect transistors |
US6906350B2 (en) | 2001-10-24 | 2005-06-14 | Cree, Inc. | Delta doped silicon carbide metal-semiconductor field effect transistors having a gate disposed in a double recess structure |
US6902964B2 (en) | 2001-10-24 | 2005-06-07 | Cree, Inc. | Methods of fabricating delta doped silicon carbide metal-semiconductor field effect transistors having a gate disposed in a double recess structure |
US6956239B2 (en) | 2002-11-26 | 2005-10-18 | Cree, Inc. | Transistors having buried p-type layers beneath the source region |
US7297580B2 (en) | 2002-11-26 | 2007-11-20 | Cree, Inc. | Methods of fabricating transistors having buried p-type layers beneath the source region |
JP2005311151A (en) * | 2004-04-23 | 2005-11-04 | Japan Science & Technology Agency | Manufacturing method of lattice matching tunnel diode and lattice matching tunnel diode |
US7265399B2 (en) | 2004-10-29 | 2007-09-04 | Cree, Inc. | Asymetric layout structures for transistors and methods of fabricating the same |
US7348612B2 (en) | 2004-10-29 | 2008-03-25 | Cree, Inc. | Metal-semiconductor field effect transistors (MESFETs) having drains coupled to the substrate and methods of fabricating the same |
US7326962B2 (en) | 2004-12-15 | 2008-02-05 | Cree, Inc. | Transistors having buried N-type and P-type regions beneath the source region and methods of fabricating the same |
US8203185B2 (en) | 2005-06-21 | 2012-06-19 | Cree, Inc. | Semiconductor devices having varying electrode widths to provide non-uniform gate pitches and related methods |
US7402844B2 (en) | 2005-11-29 | 2008-07-22 | Cree, Inc. | Metal semiconductor field effect transistors (MESFETS) having channels of varying thicknesses and related methods |
US7646043B2 (en) | 2006-09-28 | 2010-01-12 | Cree, Inc. | Transistors having buried p-type layers coupled to the gate |
US7943972B2 (en) | 2006-09-28 | 2011-05-17 | Cree, Inc. | Methods of fabricating transistors having buried P-type layers coupled to the gate |
Also Published As
Publication number | Publication date |
---|---|
JPH0516189B2 (en) | 1993-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59134874A (en) | Manufacturing method of semiconductor device | |
US5260603A (en) | Electrode structure of semiconductor device for use in GaAs compound substrate | |
JPS5844771A (en) | Junction field effect transistor and its manufacturing method | |
JPS59500542A (en) | Ohmic contact device for N-type GaAs | |
JPS5935182B2 (en) | Electrode structure of semiconductor devices | |
JPS6298674A (en) | Gallium arsenide semiconductor device | |
JPS5994866A (en) | Semiconductor device having schottky junction | |
JPS6024026A (en) | Compound semiconductor element | |
JPH07273316A (en) | Semiconductor device | |
JPS6014445A (en) | Compound semiconductor device | |
JPH0226790B2 (en) | ||
JPS641050B2 (en) | ||
JPS63204658A (en) | compound semiconductor device | |
JPS5763837A (en) | Semiconductor device | |
JPH0131310B2 (en) | ||
JPH0491441A (en) | Method for manufacturing field effect transistors | |
JPS592380A (en) | Method for manufacturing semiconductor light emitting device | |
JPS5928376A (en) | Semiconductor device and manufacture thereof | |
JPS61101081A (en) | Gallium arsenide semiconductor device and its manufacturing method | |
JPS6058674A (en) | Mos type transistor | |
JPS60120560A (en) | semiconductor equipment | |
JPS60211974A (en) | semiconductor element | |
JPS63160280A (en) | Gallium arsenioe semiconductor device | |
JPS60200570A (en) | Electronic device | |
JPS5987889A (en) | Manufacture of semiconductor element |