JPS59131116A - Air blower - Google Patents
Air blowerInfo
- Publication number
- JPS59131116A JPS59131116A JP420583A JP420583A JPS59131116A JP S59131116 A JPS59131116 A JP S59131116A JP 420583 A JP420583 A JP 420583A JP 420583 A JP420583 A JP 420583A JP S59131116 A JPS59131116 A JP S59131116A
- Authority
- JP
- Japan
- Prior art keywords
- suction pipe
- pressure pipe
- flow rate
- pipe
- blower
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003068 static effect Effects 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 6
- 238000007664 blowing Methods 0.000 claims description 5
- 238000004378 air conditioning Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 1
- 244000046146 Pueraria lobata Species 0.000 description 1
- 235000010575 Pueraria lobata Nutrition 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F5/00—Measuring a proportion of the volume flow
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はビル空調システム用のような比較的低風圧(1
0〜160wAq)の送風機が色々なダクト配管で運転
される場合の作動風量を計測し、表示し、信号で出力す
る機能を付加した送風機に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention is applicable to relatively low wind pressure (1
The present invention relates to a blower with an additional function of measuring, displaying, and outputting the operating air volume as a signal when the blower (0 to 160 wAq) is operated in various duct pipes.
ポンプや圧縮機などの一般の流体機械の場合、配管内を
流れる作動流量は、その流体機械の特性と配管の抵抗特
性とによって決まるが、通常配管の途中に流量計を挿入
して計測される。In the case of general fluid machinery such as pumps and compressors, the operating flow rate flowing through the piping is determined by the characteristics of the fluid machinery and the resistance characteristics of the piping, and is usually measured by inserting a flow meter in the middle of the piping. .
しかしビル空調用などに使用される一般の送風機の場合
(1) 配管内を大気圧に近< (10〜160wm
AQ)、比重量の小さい(水の1/1000 )空気が
流れ、その風速が小さい(3〜IQm/s)、この為流
れが安定化せず配管内の風速分布が常に刻々と変ってい
る。However, in the case of general blowers used for building air conditioning, etc. (1) The pressure inside the piping is close to atmospheric pressure (10 to 160w
AQ), air with a small specific weight (1/1000 of water) flows, and its wind speed is small (3 to IQm/s), so the flow is not stabilized and the wind speed distribution inside the pipe is constantly changing. .
(2)シかも実用化されている風量値が小風量かう大風
量ノ広範囲(10〜5000m3/rIuJt)にわた
っており、配管(即ちダクト)も小さいものから大きい
ものまで存在している。(2) The air volume values that have been put into practical use range from small air volumes to large air volumes (10 to 5000 m3/rIuJt), and there are pipes (i.e. ducts) ranging from small to large.
(3)シかもダクトの形状が水管のように標準化されて
おらず、色々な形のダクトが存在する。(3) The shape of ducts is not standardized like water pipes, and ducts of various shapes exist.
その上その使われ方からそのダクト配管に曲り、分岐断
面変化部分が多く存在して、ダストの直線部分の長さが
ダクト径の割に小さい。Moreover, due to the way it is used, the duct piping has many curved and branched cross-sectional changes, and the length of the straight part of the dust is small compared to the duct diameter.
以上の(1)〜(3)の為送風機のダスト内流量の計測
装置として、どんな大きさのダクトにも、どんな形状の
ダクトにも、どんな配管状態のダクトにも使用可能な、
手がるに使えて、安価で、しかも、標準化されている計
測装置は見当らない。Because of the above (1) to (3), it can be used as a measuring device for the internal dust flow rate of a blower, for any size duct, any shape, and any piping condition.
There is no readily available, inexpensive, and standardized measuring device available.
従って一般の流体機械のように配管内に流量計を入れて
その作動流量を計測することがむつかしい。そこで従来
は仕方なくビル空調用送風機のダクト内流量の計測とし
ては、現地に据付けられた送風機のモードルの電流値を
測定し、この測定値をもとにして送風機の性能曲線を用
いて求めた送風量からダクト内空気流量を推定するか、
或いは熱線式風速計を使用し風管各位置の風速を測定し
この測定値よりダクト内空気流量を積算して算出して求
めているのが現状である。Therefore, it is difficult to measure the operating flow rate by inserting a flow meter into the piping as in general fluid machines. Therefore, in the past, the flow rate in the duct of a building air conditioning blower had to be measured by measuring the current value of the model of the blower installed on site, and based on this measurement value, it was calculated using the blower's performance curve. Estimate the air flow rate in the duct from the air flow rate, or
Alternatively, the current method is to use a hot-wire anemometer to measure the wind speed at each position in the wind pipe, and then integrate and calculate the air flow rate in the duct from the measured values.
しかしこのような方法では多大な労力と時間を必要とし
て、常時ダクト内空気流量を検知して、運転管理を行な
う、或いはその情報により空調システムの運転制御を行
なうことは不可能である。However, such a method requires a great deal of labor and time, and it is impossible to constantly detect the air flow rate in the duct and perform operational management, or to control the operation of the air conditioning system using this information.
本発明は、送風機の場合配管が複雑で全ての配管で実用
的に使用可能な流量計の製品化がむつかしいので、その
作動風量と一般の流体機械のように配管中に流量計を入
れて計測するという考えでなく、送風機自身に、常時そ
の作動風量を計測し表示し信号で出力できる機能を付加
させるという考えにもとすき、精度よく、安価で、標準
化された形でのそのような送風機の提供することを目的
とする。In the case of a blower, the piping is complicated and it is difficult to commercialize a flowmeter that can be used practically for all piping. The idea is to add a function to the blower itself that can constantly measure and display the operating air volume, and output it as a signal. The purpose is to provide the following.
本発明は、送風機の吸込管のベルマウス整流作用と羽根
車の吸引作用によって吸込管内の流れとその風速分布が
安定していることに着目し、その場所に僅かのバイパス
空気量が流れるバイパス空気路をもうけ、その途中に熱
線式抵抗体のような僅かの流量で出力可能な微流量検出
体を設置し、バイパス流量を検出して送風機の作動風量
を計測するようにした点に特徴がある。The present invention focuses on the fact that the flow in the suction pipe and its wind speed distribution are stable due to the bellmouth rectification action of the suction pipe of the blower and the suction action of the impeller. The unique feature is that a small flow rate detection device such as a hot wire resistor that can output a small flow rate is installed in the middle of the path to detect the bypass flow rate and measure the operating air volume of the blower. .
実施例
第1図は本発明の原理図を示すもので、lはケーシング
、2は送風機、3は吸入管である。バイパス流路は図の
Sの範囲、すなわちL/D≧1の範囲に設置される。(
A)、(B)、(C)は各点の風速分布を示し、上記S
の範囲内では、この分布が比較的安定している。Embodiment FIG. 1 shows a diagram of the principle of the present invention, where l is a casing, 2 is a blower, and 3 is a suction pipe. The bypass flow path is installed in the range S in the figure, that is, in the range L/D≧1. (
A), (B), and (C) show the wind speed distribution at each point, and the above S
Within the range of , this distribution is relatively stable.
第2図は本発明の一実施例を示す。図において20はバ
イパス空気路で、その内部に微流量検出手段として代表
的な熱線式抵抗体23を納めて勝る。21は一端がバイ
パス空気路20に連通された静圧管でその他端24はブ
ラケット26を貫通して吸込管3の送風方向と直交する
方向(非送風方向)に開口されている。22は一端がバ
イパス空気路20に連通された総圧管で、その他端は前
記ブラケットを貫通し且つ開口部25を介して吸込管3
の送風方向に開口されている。この場合の開口部25は
流れに面する向きとして、吸込管の大きさに応じて、吸
込管内の部分に1個以上数多く設ける。FIG. 2 shows an embodiment of the invention. In the figure, reference numeral 20 denotes a bypass air passage, in which a typical hot wire type resistor 23 is housed as a microflow detection means. Reference numeral 21 denotes a static pressure pipe whose one end communicates with the bypass air passage 20, and the other end 24 passes through a bracket 26 and is opened in a direction perpendicular to the air blowing direction of the suction pipe 3 (non-air blowing direction). 22 is a general pressure pipe whose one end communicates with the bypass air passage 20, and whose other end passes through the bracket and connects to the suction pipe 3 through the opening 25.
It is opened in the direction of air flow. In this case, one or more openings 25 are provided in the suction pipe in a direction facing the flow, depending on the size of the suction pipe.
そして総圧管22の中にその寸法を延長可能とするよう
な拡大構成手段27を設ける。Further, an enlargement means 27 is provided in the total pressure pipe 22 so that its dimension can be extended.
更にバイパス空気路20.静圧管21.総圧管22いず
れかに、その通風面積が他の通風路面積に比べ一段と小
さく、バイパス風量を規制し、且つそのバイパス流量を
調整して制御することが可能なバイパス流路制御手段2
8を設ける。更に熱線式抵抗体23に接続され、ボック
ス29に内蔵されたブリッジ回路にその出力信号を調整
可能とするブリッジ回路出力信号制御手段30を接続し
て設ける。Furthermore, a bypass air passage 20. Static pressure tube 21. A bypass flow path control means 2 is provided in either of the total pressure pipes 22, the ventilation area of which is much smaller than the other ventilation path areas, and capable of regulating the bypass air volume and adjusting and controlling the bypass flow rate.
8 will be provided. Further, a bridge circuit output signal control means 30 is connected to the hot wire type resistor 23 and built in the box 29 to enable adjustment of its output signal.
また熱線式抵抗体23はそれに接続するブリッジ回路、
その回路を包含するボックス29とそれぞれ一体となっ
てバイパス空気路20から取はずし可能のように設ける
。In addition, the hot wire resistor 23 is connected to a bridge circuit,
Each of the circuits is provided integrally with a box 29 containing the circuit so as to be removable from the bypass air passage 20.
更に上記のブリッジ回路出力信号制御手段は、出力信号
を容易に調整可能とする必要性によってブリッジ回路か
ら分離して設ける。Further, the bridge circuit output signal control means described above is provided separately from the bridge circuit due to the need to easily adjust the output signal.
更に本発明は流量の測定値を、バイパス流路制御手段2
8とによって又はブリッジ回路出力信号制御手段30と
の両方によって、運転開始時初期調整を行なって測定値
を補正することができるような構成としており、色々な
配管に取りつけられ使用されても誤差が少なく精度よく
使用できるようになっている。Further, in the present invention, the measured value of the flow rate is transmitted to the bypass flow path control means 2.
8 or both with the bridge circuit output signal control means 30, the structure is such that initial adjustment can be made at the start of operation to correct the measured value, and even if it is installed and used in various piping, there will be no error. It can be used with less and more precision.
その上本発明は、熱線式抵抗体23とブリッジ回路とが
一体となってバイパス空気路20より取りはずし可能な
構成となっており、高精度が要求され、高価な熱線式抵
抗体とブリッジ回路とを一種類用意する丈で、種々の大
きさのダクトに取り付は可能な流量計側装置を構成する
ことができ、色々なダクト配管に対して標準化され、安
価な流量計測装置を提供できる。Furthermore, the present invention has a configuration in which the hot wire type resistor 23 and the bridge circuit are integrated and can be removed from the bypass air path 20, and high precision is required and the expensive hot wire type resistor and bridge circuit are combined. It is possible to construct a flow meter side device that can be installed in ducts of various sizes with one type of length, and it is possible to provide an inexpensive flow rate measuring device that is standardized for various duct piping.
第3図、第4図は本発明の他の実施例を示すものである
。図において、総圧管22が静圧管の内部に設けられ、
静圧管の通風路が、静圧管と総圧管の間に構成されてい
る。総圧管22の一端は、7ランジ36が取り付けられ
、それに設けた取り付人37を使ってボルトで、バイパ
ス空気路に連通するように取り付けられている。3 and 4 show other embodiments of the present invention. In the figure, a total pressure pipe 22 is provided inside the static pressure pipe,
A static pressure pipe ventilation path is configured between the static pressure pipe and the total pressure pipe. A seven flange 36 is attached to one end of the total pressure pipe 22, and is attached with a bolt using a fitting 37 provided thereon so as to communicate with the bypass air passage.
静圧管21の他端は、吸込管3の送風方向と直交する方
向に開口されている。この静圧管21は吸込管3に取り
付けられた金具32に、ナツト33を介して覗り付けら
れている。この際に静圧管21と金具の間には、ゴム等
のリング状の/くツキング35を設けてあり、吸込管に
取り付けられた金具32と静圧管21とはバイノくス空
気路を形成するように一体化されている。この場合、総
圧管22の開口部25は容易にダクト1の流れに面する
向きに合わすことが出来、かつ固定されるような構成と
なっている。The other end of the static pressure pipe 21 is opened in a direction perpendicular to the air blowing direction of the suction pipe 3 . This static pressure pipe 21 is peered into a metal fitting 32 attached to the suction pipe 3 via a nut 33. At this time, a ring-shaped fitting 35 made of rubber or the like is provided between the static pressure pipe 21 and the metal fitting, and the metal fitting 32 attached to the suction pipe and the static pressure pipe 21 form a binox air path. It is integrated like this. In this case, the opening 25 of the total pressure pipe 22 can be easily aligned to face the flow of the duct 1 and is configured to be fixed.
また、総圧管22は、第5図にその詳細を示すように吸
込管付近でナツト33を介して取りはずし可能に接続さ
れている。Further, the total pressure pipe 22 is removably connected via a nut 33 near the suction pipe, as shown in detail in FIG.
本発明では、バイパス空気流路に内蔵された熱線式抵抗
体23に接続されたブリッジ回路をボックス29内に内
蔵している。第6図はその代表的なブリッジ回路の一実
権例を示す。第6図では熱線式抵抗体13即ち流量測定
用抵抗体73aおよび温度補償用抵抗体73bと、抵抗
器71,72゜Q1
73でホイートストンブリッジを構成し、その中点の電
位差をオペアンプ70を用いた差動増幅回路で検出して
いる。この信号をトランジスター74のペースに入力し
、ブリッジ中点の電位が常に等しくなるように閉ループ
制御している。ブリッジ平衡条件により流量測定用抵抗
体73aの抵抗R1は次式で表わされる。In the present invention, a bridge circuit connected to a hot wire type resistor 23 built in the bypass air flow path is built in the box 29. FIG. 6 shows an example of a typical bridge circuit. In FIG. 6, a Wheatstone bridge is constructed with the hot wire resistor 13, that is, the flow rate measuring resistor 73a and the temperature compensation resistor 73b, and the resistors 71, 72°Q1 73, and the potential difference at the midpoint is measured using an operational amplifier 70. It is detected by a differential amplifier circuit. This signal is input to the pace of the transistor 74, and closed-loop control is performed so that the potential at the midpoint of the bridge is always equal. According to the bridge equilibrium condition, the resistance R1 of the flow rate measuring resistor 73a is expressed by the following equation.
但し R鵞は抵抗71の抵抗値
R鵞は抵抗72の抵抗値
R3は抵抗73の抵抗値
R,は温度補償用抵抗体73bの抵抗値である。実際に
はa、>Rtとなっており、流量測定用抵抗体73aは
加熱された状態となり、温度補償抵抗体73bは僅かに
加熱されるがほとんど大気温度に等しい。従って空気温
度が上昇したときRtもそれにつれて抵抗が増加し、空
気温度の上昇による影響を補償している。また空気温度
が一定ならばR1は一定となり%RWは空気流量(lO
)
の如何にか\わらず一定値となるようにオペアンプ74
が作動してブリッジに流す電流を制御する。However, R is the resistance value of the resistor 71, R is the resistance value of the resistor 72, R3 is the resistance value of the resistor 73, and R is the resistance value of the temperature compensation resistor 73b. In reality, a>Rt, the flow rate measuring resistor 73a is in a heated state, and the temperature compensating resistor 73b is slightly heated, but almost equal to the atmospheric temperature. Therefore, when the air temperature rises, the resistance of Rt also increases accordingly, compensating for the influence of the rise in air temperature. Also, if the air temperature is constant, R1 is constant and %RW is the air flow rate (lO
) so that it is a constant value regardless of the operational amplifier 74.
is activated to control the current flowing through the bridge.
即ちバイパス空気路20を流れる空気流量はこのブリッ
ジの中点の電位又はトランジスター74のエミッタの電
位によって知ることができ、従ってバイパス空気路20
の空気流量が求められる。That is, the air flow rate flowing through the bypass air path 20 can be determined by the potential at the midpoint of this bridge or the potential at the emitter of the transistor 74;
The air flow rate is required.
このブリッジ回路の出力信号をVt とすると、バイパ
ス空気路20を通る空気流量qとの間に次の関係がある
。Letting the output signal of this bridge circuit be Vt, the following relationship exists between it and the air flow rate q passing through the bypass air passage 20.
V I= Ct +Cz y′1−(2)なお、c、j
c、は熱線式抵抗体に関する定数である。V I= Ct +Cz y'1-(2) In addition, c, j
c is a constant related to the hot wire resistor.
本発明の微淀量検出手段としては、電磁流量計、超音波
流量計、うす流量針を用いてもよい。As the minute stagnation amount detection means of the present invention, an electromagnetic flow meter, an ultrasonic flow meter, or a thin flow needle may be used.
第7図及び第8図は送風機の吸込管の形状寸法が別の場
合の例を示す。吸込管をケーシングlよシ外の部分まで
延長して構成している。この場合第1図に示すように吸
込管のベルマウス整流作用と羽根車の吸引力の作用が吸
込管内の流れが風速分布への影響を及ぼす範囲からL寸
法はL≦Dと(11)
する。FIGS. 7 and 8 show examples in which the shape and dimensions of the suction pipe of the blower are different. The suction pipe is configured to extend beyond the casing l to the outside part. In this case, as shown in Figure 1, the L dimension is L≦D (11) because the bellmouth rectification effect of the suction pipe and the suction force of the impeller affect the flow in the suction pipe on the wind speed distribution. .
本発明の場合はバイパス空気路をケーシングlより外の
部分に設けて構成している。第8図の例では、その上、
吸込管内に直管部分を含む。In the case of the present invention, the bypass air passage is provided outside the casing l. In the example of Figure 8, in addition,
Contains a straight pipe section within the suction pipe.
以上の実権例は多翼ファン、ターボファンの場合丈でな
く斜流ファン、軸流ファンの場合も適用される。The above examples apply not only to multi-blade fans and turbo fans, but also to mixed flow fans and axial fans.
第9図は斜流ファンに適用した場合の実施例を示す。第
10図は軸流ファンに適用した場合の実施例を示す。本
発明の場合総圧管22の長さを吸込管の断面全体にわた
らず、その途中までとした構成の場合も含まれている。FIG. 9 shows an embodiment in which the present invention is applied to a mixed flow fan. FIG. 10 shows an embodiment in which the present invention is applied to an axial fan. The present invention also includes a configuration in which the length of the total pressure pipe 22 does not extend over the entire cross section of the suction pipe, but extends halfway there.
本発明によれば、送風機の吸込管のベルマウス整流作用
と羽根車の吸引力の作用とによシその流れと風速分布が
安定している送風機の吸込管内の僅かなバイパス流量に
より送風機の作動風量を計測する方式のもので、送風機
が色々な配管で使用さ′れても精度よく計測が可能であ
る。According to the present invention, the blower is operated by a slight bypass flow rate in the suction pipe of the blower, which has a stable flow and wind speed distribution in addition to the bellmouth rectification action of the blower suction pipe and the suction force action of the impeller. This method measures the air volume, allowing accurate measurement even when the blower is used in a variety of pipes.
(12)
第1図は本発明の動作原理を説明するための図、第2図
は本発明の一実施例を示す要部縦断面図、第3図、第4
図は本発明の他の実施例の要部縦断面図である。第5図
は本発明における総圧管の一例を示す要部縦断面図、第
6図は流量検知用ブリッジ回路の一例を示す図、第7図
〜第1O図は各6本発明の他の実権例を示す図である。
3・・・吸込管、20・・・バイパス空気路、21・・
・静圧管。
(13)
不1図
第 2 図
て 3 図
第 5 図
24
葛 7 図
Z 6 図
/jb
冨 9 図
第 3 図(12) Fig. 1 is a diagram for explaining the operating principle of the present invention, Fig. 2 is a vertical cross-sectional view of main parts showing an embodiment of the present invention, Figs.
The figure is a longitudinal sectional view of a main part of another embodiment of the present invention. FIG. 5 is a vertical cross-sectional view of a main part showing an example of a total pressure pipe according to the present invention, FIG. 6 is a diagram showing an example of a bridge circuit for flow rate detection, and FIGS. It is a figure which shows an example. 3... Suction pipe, 20... Bypass air path, 21...
・Static pressure pipe. (13) Figure 1 Figure 2 Figure 3 Figure 5 Figure 24 Kuzu 7 Figure Z 6 Figure/jb Tomi 9 Figure 3
Claims (1)
おいて、吸込管にバイパス空気路をもうけその中に微流
量検出手段を設置し、バイパス空気路の両端に静圧管お
よび総圧管を連結し、静圧管および総圧管の他端を吸込
管の非送風方向および送風方向にそれぞれ開口して構成
した、ことを特徴とする送風機。 風損。 3、バイパス空気流量を規制し且つそのパイ、バス流量
を調整することが可能なバイパス流量制御手段を設け、
且つ総圧管にその長さ寸法の延長可能な拡大構成手段を
設け、上記吸込管内の4、上記微量検出手段の電気的出
力信号を調整可能に構成した出力信号制御手段を3項の
パイ5、上記微流量球出手段としての熱線式抵抗体とブ
リッジ回路とを一体として構成し、且つバ6、上記ブリ
ッジ回路に接続して設けた出力信7、上記吸込管をケー
シングより外の部分まで、その延長長さがケーシング内
の最大直径長さま[Claims] 1. In a blower consisting of an impeller, a casing, and a suction pipe, a bypass air passage is provided in the suction pipe, a microflow detection means is installed therein, and a static pressure pipe and a total pressure pipe are provided at both ends of the bypass air passage. A blower characterized in that the other ends of the static pressure pipe and the total pressure pipe are opened in the non-blowing direction and the blowing direction of the suction pipe, respectively. Windage. 3. Provide bypass flow rate control means that can regulate the bypass air flow rate and adjust the pie and bus flow rates;
In addition, the total pressure pipe is provided with an enlargement means that can extend its length, and the output signal control means configured to be able to adjust the electrical output signal of 4 and the trace amount detection means in the suction pipe is provided as pie 5 of item 3, The hot wire type resistor as the micro-flow ball emitting means and the bridge circuit are integrated, and the bar 6, the output signal 7 connected to the bridge circuit, and the suction pipe are connected to the outside of the casing. Its extended length is the maximum diameter length inside the casing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP420583A JPS59131116A (en) | 1983-01-17 | 1983-01-17 | Air blower |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP420583A JPS59131116A (en) | 1983-01-17 | 1983-01-17 | Air blower |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59131116A true JPS59131116A (en) | 1984-07-27 |
Family
ID=11578139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP420583A Pending JPS59131116A (en) | 1983-01-17 | 1983-01-17 | Air blower |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59131116A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5426975A (en) * | 1991-06-12 | 1995-06-27 | Abb Flakt Ab | Method and apparatus for determining the total flow rate in a ventilation installation |
EP3358194A1 (en) * | 2016-09-28 | 2018-08-08 | ebm-papst Mulfingen GmbH & Co. KG | Flow unit for fan |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54113373A (en) * | 1978-02-24 | 1979-09-04 | Nippon Steel Corp | Measurement of gas flow velocity |
-
1983
- 1983-01-17 JP JP420583A patent/JPS59131116A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54113373A (en) * | 1978-02-24 | 1979-09-04 | Nippon Steel Corp | Measurement of gas flow velocity |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5426975A (en) * | 1991-06-12 | 1995-06-27 | Abb Flakt Ab | Method and apparatus for determining the total flow rate in a ventilation installation |
EP3358194A1 (en) * | 2016-09-28 | 2018-08-08 | ebm-papst Mulfingen GmbH & Co. KG | Flow unit for fan |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4020433B2 (en) | Transmitter with average pitot tube type primary element and method of use thereof | |
US8070423B2 (en) | Fan air flow measurement system | |
Klopfenstein Jr | Air velocity and flow measurement using a Pitot tube | |
CN106840296B (en) | Flow sensor assembly with integrated bypass channel | |
EP2482044B1 (en) | Flow sensor with enhanced flow range capability | |
CN100538307C (en) | A kind of wind tunnel calibration method for large flow gas pipeline averaging velocity tube flowmeter | |
US20100088044A1 (en) | Gas measurement system | |
EP0378570B1 (en) | A device for measuring the volume flow of a fan | |
US20030130815A1 (en) | Air flow sensing and control for animal confinement system | |
US8161801B2 (en) | Method of determining the viscosity of a fluid | |
JPS59131116A (en) | Air blower | |
Svedin et al. | A lift force sensor with integrated hot-chips for wide range flow measurements | |
JPH10320057A (en) | Flow rate control valve device | |
US3812714A (en) | Method and device for measuring the flow rate of an intermittent fluid flow | |
CN119096118A (en) | Pressure compensation of fluid flow parameters | |
EP0588901A1 (en) | Method and apparatus for measurement of total flow rate in ventilation installations | |
Fisk et al. | Outdoor airflow into HVAC systems: an evaluation of measurement technologies | |
JPH0256614B2 (en) | ||
JP2004198271A (en) | Duct flow measurement device | |
JPS5819510A (en) | Hot wire type airflow meter | |
JP2000002567A (en) | Combined mass flowmeter | |
CN109655116B (en) | System and method for controlling precision of small pulsating flow by utilizing gas micro-pressure difference based on PWM control method | |
JP3237366B2 (en) | Vibration type flow meter | |
RU2106640C1 (en) | Device measuring speed of flow | |
JP2735678B2 (en) | Flow sensor type flow meter |