[go: up one dir, main page]

JPS59127891A - Manufacture of distributed feedback type semiconductor laser - Google Patents

Manufacture of distributed feedback type semiconductor laser

Info

Publication number
JPS59127891A
JPS59127891A JP58002676A JP267683A JPS59127891A JP S59127891 A JPS59127891 A JP S59127891A JP 58002676 A JP58002676 A JP 58002676A JP 267683 A JP267683 A JP 267683A JP S59127891 A JPS59127891 A JP S59127891A
Authority
JP
Japan
Prior art keywords
distributed feedback
semiconductor laser
laser
feedback type
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58002676A
Other languages
Japanese (ja)
Other versions
JPH0531320B2 (en
Inventor
Tomoo Yanase
柳瀬 知夫
Yoshitake Katou
芳健 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58002676A priority Critical patent/JPS59127891A/en
Publication of JPS59127891A publication Critical patent/JPS59127891A/en
Publication of JPH0531320B2 publication Critical patent/JPH0531320B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/013Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials

Landscapes

  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明(1、都−波擬で発振する分布帰還型半纏体レー
ザの!/造方法に閃するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention (1) is inspired by a method for manufacturing a distributed feedback semi-coupled laser that oscillates in a wave-like manner.

光牛丞体貴子及び光ファイバの進歩によって、デ゛、フ
ァイバ通信の実用化が開始されている。しかし、光フア
イバ通信の特性を天分に利用する一Eでは、単一波長で
安定に発振する半導体レーザが心壁である。単一波長で
安定に発振樗ることが出来ない半導体レーザを光1m信
に用いると、光ファイバの材料分散により伝送0J頷な
41)域が狭くなったり、波扶が変る時大きな雑音を発
生し、伝送系の信号対雑音比が劣化し、伝送品質の低1
を招いたりする。このような理由から、単一で安定な波
長で発振する半導体レーザを目的として、分布帰還型半
纏体レーザが研究されでいる。分布帰還型子導体レーザ
は、通常の半導体レーザが共儀器として結晶の臂開面を
用いるのに対し、活性層の近傍もしくは活性層に設けら
れた凹凸によるブラック反射器を用いている。このため
、通常の半導体レーザは多波長で発振しやすいが、分布
匍還型千尋体レーザはブラック反射器によって選択され
た波長だけが発振することが出来る。しかし、従来の製
造方法においては周期的凹凸を工、チングで形成した後
、すぐにその半導体層上に活性層を含む各層構造を形成
している。このため作製された分布帰漿型半導体レーザ
は、以下に述べる間肪点がある。それは、通常の半導体
レーザに比べて1分布帰還型半導体レーザの駆動電流が
高いことと、寿命が短かいことである。駆動電流が高く
なる原因は、フラッグ反射器として用いられている活性
層近傍もしくは活性層に存在する凹凸が浅くしか形成出
来ず、そのためフラッグ反射器の反射率が低いためであ
る。又、寿命が知かい理由け、凹凸基板上に形成された
結晶の品質が低く、結晶の転位が多く存在するためであ
る。
Due to advances in optical fibers and optical fibers, fiber communications have begun to be put to practical use. However, in 1E, which takes advantage of the characteristics of optical fiber communication, the main wall is a semiconductor laser that stably oscillates at a single wavelength. If a semiconductor laser, which cannot stably oscillate at a single wavelength, is used for optical 1m transmission, the transmission range will become narrow due to material dispersion of the optical fiber, and large noise will occur when the wave width changes. However, the signal-to-noise ratio of the transmission system deteriorates, resulting in poor transmission quality.
I invite people. For these reasons, distributed feedback semi-integral lasers have been studied with the aim of producing semiconductor lasers that oscillate at a single, stable wavelength. Distributed feedback type conductor lasers use a black reflector formed by unevenness provided near or in the active layer, whereas a normal semiconductor laser uses an open face of a crystal as a symmetry device. For this reason, a normal semiconductor laser tends to oscillate at multiple wavelengths, but a distributed-return type asteroid laser can only oscillate at a wavelength selected by the black reflector. However, in the conventional manufacturing method, after forming periodic irregularities by etching or etching, each layer structure including an active layer is immediately formed on the semiconductor layer. For this reason, the distributed plasma laser diode fabricated has an interstitial point as described below. This is because the drive current of the monodistribution feedback semiconductor laser is higher than that of a normal semiconductor laser, and its life is short. The reason why the drive current is high is that the irregularities existing near or in the active layer used as the flag reflector can only be formed shallowly, and therefore the reflectance of the flag reflector is low. Moreover, the reason why the lifetime is unknown is that the quality of the crystal formed on the uneven substrate is low and there are many crystal dislocations.

本発明の目的は、駆動電流が低く、寿命が長い特性を有
する単一波長で安定に発振する分布帰還型半導体レーザ
の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a distributed feedback semiconductor laser that stably oscillates at a single wavelength and has characteristics of low driving current and long life.

本発明の製造方法は、まず半導体屑表面VCJ#!期的
な凹凸を形成し、次いで、直線状の浅い凹凸を気体中で
工、チングし深くする工程と、前記深い凹凸が形成され
た半導体層上に活性層を含む多屋)構造をエピタキシャ
ル成長により形成させる工程とを連続して行なう構成と
なっている。
In the manufacturing method of the present invention, first, the surface of semiconductor scrap VCJ#! A process of forming shallow linear irregularities by etching them in a gas to deepen them, and forming a structure containing an active layer on the semiconductor layer on which the deep irregularities are formed by epitaxial growth. The structure is such that the step of forming the wafer and the step of forming the wafer are performed continuously.

次に図面を用いて本発明を説明す、る。第1図は本発明
の−’st楕例をα、明する図であり、p′i w状の
凹凸を気体中で工、チングで形成する1稈と、凹凸の上
に半導体層をエピタキシャル成長させる工程とを連続し
て行なう装置の概略図である。又第2図線本発明の工程
の概略を示す工程図である。
Next, the present invention will be explained using the drawings. Figure 1 is a diagram illustrating a -'st elliptical example of the present invention, in which one culm is formed by etching and etching p'i w-shaped unevenness in a gas, and a semiconductor layer is epitaxially grown on the unevenness. FIG. FIG. 2 is a process diagram showing an outline of the process of the present invention.

直線状の凹凸形状は、第2図(、)に小すように半梼体
基板上に通常行なわれる。レーザの干渉φを4;11用
したフォトリソグラフィー法で書られる。本実施例では
、半導体基板にn形InP基板22を用い。
Linear concavo-convex shapes are usually formed on semi-barrel substrates, as shown in FIG. 2 (,). It is written using a photolithography method using laser interference φ of 4:11. In this embodiment, an n-type InP substrate 22 is used as the semiconductor substrate.

フォトレジスト21にAZ−1350、レーザFニヘリ
ウム・カドミウムレーザを用いた。そして、周期状に除
去されたフォトレジスト21が被覆し、でいるInP%
に板22をクロムメタノールで工、ナングすることによ
り、絢期的に円形のくばみ23が形成される。従来の製
造方法では、この円形のくぼみ23の上に半導体t +
I!i接エピタキシャル放長させていたが、凹凸の稼さ
が浅いためフラッグ反射器の反射率が低く、駆動電流が
増大する原因となっていた。又、ブロムメタノールで工
、ナングする工程はケミカルエヤ千ングであり、成技工
程とは別工程であったため、InP半導体の凹凸表面が
酸化されやすく、エピタキシャル成長層の結晶の品質が
低くなり、転位が成長層中に多く発生し、寿命を短かく
する原因となっていた。本実施例では、浅く形成された
凹凸を有するInP基板を、第1図に示す反応炉15の
内の基板ホルダー16KInP基板22を設置し、塩化
水素ガスで工、チングを行なう0本実施例では、700
℃の基板温度で1%塩化水素ガス中に20秒間さらすと
第2図(b)K示す、深い凹凸が得られた。さらに、第
1図に25は第1図のInメルト12にHCIガスを送
り反応させ、細管111CPH4とH,8ガスを送るこ
とによって得た。ノンドープInGaAsP26け、I
nメル)12とGaメルト13にHC1ガスを送り反応
させ、細管11にPH,とA、H,ガスを送り得た。
AZ-1350 was used as the photoresist 21, and a laser F nihelium cadmium laser was used. Then, the InP% covered by the photoresist 21 removed periodically is
By etching the plate 22 with chrome methanol, a circular recess 23 is formed. In the conventional manufacturing method, the semiconductor t +
I! Although the i-contact epitaxial emission was performed, the reflectance of the flag reflector was low because the unevenness was shallow, which caused the drive current to increase. In addition, the process of etching with bromo-methanol was a chemical air cleaning process and was a separate process from the formation process, so the uneven surface of the InP semiconductor was easily oxidized, the quality of the crystal in the epitaxially grown layer was poor, and dislocations were caused. It occurs in large quantities in the growth layer, causing a shortened lifespan. In this example, an InP substrate having shallowly formed irregularities is placed in the substrate holder 16KInP substrate 22 in the reactor 15 shown in FIG. 1, and etched with hydrogen chloride gas. ,700
When the substrate was exposed to 1% hydrogen chloride gas for 20 seconds at a substrate temperature of .degree. C., deep irregularities as shown in FIG. 2(b) K were obtained. Furthermore, 25 in FIG. 1 was obtained by feeding HCI gas to the In melt 12 in FIG. 1 to cause a reaction, and feeding H, 8 gas to the capillary tube 111CPH4. Non-doped InGaAsP26,I
HC1 gas was sent to the n-mel) 12 and Ga melt 13 to cause a reaction, and PH, A, H, and gases were sent to the thin tube 11.

f)  InP層27け、pドーパントとしてzn ガ
スを送り同様にして書た。本実施例では、HCI によ
る気体工、チングであるため、結晶の(111)5− 面が選択的に工、ナング、 ’!、、第2図(blに示
すような深い凹凸が得られた。又、工、チング後、連続
してエピタキシャルbv i+が行なわれるため、I、
P基板表向が#f化嘔れずに、良好なエピタキシャル成
長層か寿られた。そのため、成長層に含まれる転位曇コ
、少なく、寿命が短かくなることが防がれた。よって1
本発明によると、駆動電流の低い。
f) InP layer 27 was written in the same manner except that ZN gas was supplied as a P dopant. In this example, since gas etching is performed using HCI, the (111)5-plane of the crystal is selectively etched, nang, '! ,,Deep unevenness as shown in Fig. 2 (bl) was obtained.In addition, since epitaxial bv i+ is performed continuously after machining and ching, I,
A good epitaxial growth layer was obtained without #f change on the surface of the P substrate. As a result, the number of dislocation clouds contained in the growth layer was reduced, and shortening of the lifespan was prevented. Therefore 1
According to the present invention, the driving current is low.

寿命の長い、単一波長で安定に発振する分布帰還型半導
体レーザのを盾方法が得られる。
A method for shielding a distributed feedback semiconductor laser that has a long lifetime and stably oscillates at a single wavelength can be obtained.

上記実施例では、In0aAsP/IIP系であったが
In the above example, the In0aAsP/IIP system was used.

この拐科rc ii定されず、GaA IAs / (
iaAs 。
This family has not been determined, and GaA IAs/(
iaAs.

InGaAsP / GaAs 、 InGaA IP
 / GaAs  等でも良いことは明らかである。
InGaAsP/GaAs, InGaA IP
It is clear that materials such as /GaAs may also be used.

上記夾施伊1では、浅い11!1凸を7オ)IJソゲラ
フイー法によ−)たが仙の方γk、例えは電子ビーム露
光法、レーサ脅き込み法等を用いてもよい。
In the above-mentioned method 1, the shallow 11!1 convexity is formed by the IJ Sogera-Fie method.

【図面の簡単な説明】[Brief explanation of drawings]

記1図けt−4¥、明を買施する丸めの装置であり、1
1は細管、12uln  メルト、13け(31//l
z6− ト、15Fi反応管、16は基板ホルダーである。 第2図は本発明の製造工程を示す概略図で、各工程にお
けるウェファの断面形状の変化を示している。(、)け
フォトリソグラフィー法によって浅い凹凸が得られたウ
ェファ、(b)は気体中で工、チングされた鋭い凹凸を
有するウェファ、(c)はエピタキシャル成長後のウェ
ファの断面形状をそれぞれ示し、21け7オトレジスト
、23け浅い凹面、22はInP基板、24は深い凹凸
面、25はn−InPクラッド層、26はノンドープI
nGaAsP 活性層、27はp −InPクラッド層
を示す。 IU
Figure 1 t-4 ¥, a rounding device for purchasing light, 1
1 is a thin tube, 12 uln melt, 13 pieces (31//l
z6-to, 15Fi reaction tube, 16 is a substrate holder. FIG. 2 is a schematic diagram showing the manufacturing process of the present invention, and shows changes in the cross-sectional shape of the wafer in each process. (,) shows a wafer with shallow irregularities obtained by photolithography, (b) shows a wafer with sharp irregularities etched in gas, and (c) shows the cross-sectional shape of the wafer after epitaxial growth. 7 photoresist, 23 shallow concave surface, 22 InP substrate, 24 deep uneven surface, 25 n-InP cladding layer, 26 non-doped I
nGaAsP active layer, 27 indicates p-InP cladding layer. IU

Claims (1)

【特許請求の範囲】[Claims] 凹凸がMJ期的に形だ9.された半納8体層上に活性層
f:営む多層構造を形成して、分布帰還型半纏体レーザ
を製造する方法において、あらかし虻形成された浅い凹
凸を気W中で工、チングして疎くする工程と、前記深い
とi凸の上に半ψ体版をエピタキシャル成長させる工程
とを連続して行なう工程を有することを特徴とする分布
帰還型半纏体レーザの製造方法う
The unevenness is the shape of the MJ period9. In the method of manufacturing a distributed feedback type semi-structured laser by forming a multilayer structure containing an active layer f on the half-structured 8-layer structure, the shallow irregularities formed in the roughness are etched and chimed in air. A method for manufacturing a distributed feedback semi-integral laser, comprising the steps of: successively performing a step of making it sparse, and a step of epitaxially growing a semi-ψ body on the deep i-convex surface.
JP58002676A 1983-01-11 1983-01-11 Manufacture of distributed feedback type semiconductor laser Granted JPS59127891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58002676A JPS59127891A (en) 1983-01-11 1983-01-11 Manufacture of distributed feedback type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58002676A JPS59127891A (en) 1983-01-11 1983-01-11 Manufacture of distributed feedback type semiconductor laser

Publications (2)

Publication Number Publication Date
JPS59127891A true JPS59127891A (en) 1984-07-23
JPH0531320B2 JPH0531320B2 (en) 1993-05-12

Family

ID=11535905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58002676A Granted JPS59127891A (en) 1983-01-11 1983-01-11 Manufacture of distributed feedback type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS59127891A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177990A (en) * 1986-01-30 1987-08-04 Nec Corp Manufacture of semiconductor laser
US5023198A (en) * 1990-02-28 1991-06-11 At&T Bell Laboratories Method for fabricating self-stabilized semiconductor gratings
US5248621A (en) * 1990-10-23 1993-09-28 Canon Kabushiki Kaisha Method for producing solar cell devices of crystalline material
US5309472A (en) * 1991-06-24 1994-05-03 Sharp Kabushiki Kaisha Semiconductor device and a method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108589A (en) * 1975-03-12 1976-09-25 Matsushita Electronics Corp Handotaisochino seizohoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108589A (en) * 1975-03-12 1976-09-25 Matsushita Electronics Corp Handotaisochino seizohoho

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177990A (en) * 1986-01-30 1987-08-04 Nec Corp Manufacture of semiconductor laser
US5023198A (en) * 1990-02-28 1991-06-11 At&T Bell Laboratories Method for fabricating self-stabilized semiconductor gratings
US5248621A (en) * 1990-10-23 1993-09-28 Canon Kabushiki Kaisha Method for producing solar cell devices of crystalline material
US5309472A (en) * 1991-06-24 1994-05-03 Sharp Kabushiki Kaisha Semiconductor device and a method for producing the same

Also Published As

Publication number Publication date
JPH0531320B2 (en) 1993-05-12

Similar Documents

Publication Publication Date Title
JPH06291416A (en) Semiconductor laser and manufacture thereof
JPH0750448A (en) Semiconductor laser and manufacturing method thereof
US4270096A (en) Semiconductor laser device
GB2046983A (en) Semiconductor lasers
US4782035A (en) Method of forming a waveguide for a DFB laser using photo-assisted epitaxy
JPS6237904B2 (en)
JPS59127891A (en) Manufacture of distributed feedback type semiconductor laser
US4377865A (en) Semiconductor laser
JP2542570B2 (en) Method for manufacturing optical integrated device
JPH11204878A (en) Semiconductor laser and its manufacture
JPS6381887A (en) Semiconductor laser device and manufacture of the same
JPS60167488A (en) Semiconductor laser device
JPS641952B2 (en)
JPS59127892A (en) Semiconductor laser and manufacture thereof
JPS6042639B2 (en) Manufacturing method of semiconductor device
JPS6317356B2 (en)
JPH0373584A (en) Semiconductor laser device
JPS5834988A (en) Manufacture of semiconductor laser
JPH04243183A (en) Semiconductor laser and manufacture thereof
JP2003304028A (en) Optical modulator integrated semiconductor laser
JPH01162393A (en) Method for manufacturing semiconductor light emitting device
JP2547459B2 (en) Semiconductor laser device and manufacturing method thereof
JPS63194382A (en) Manufacture of semiconductor laser
KR940011105B1 (en) Laser diode and manufacturing method thereof
JPS63222476A (en) Manufacture of edge light emitting diode