[go: up one dir, main page]

JPS59122225A - Detecting circuit of reference voltage - Google Patents

Detecting circuit of reference voltage

Info

Publication number
JPS59122225A
JPS59122225A JP57230989A JP23098982A JPS59122225A JP S59122225 A JPS59122225 A JP S59122225A JP 57230989 A JP57230989 A JP 57230989A JP 23098982 A JP23098982 A JP 23098982A JP S59122225 A JPS59122225 A JP S59122225A
Authority
JP
Japan
Prior art keywords
voltage
reference voltage
circuit
input
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57230989A
Other languages
Japanese (ja)
Other versions
JPH0235495B2 (en
Inventor
Osamu Shinchi
新地 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Japan Ltd
Original Assignee
Texas Instruments Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Japan Ltd filed Critical Texas Instruments Japan Ltd
Priority to JP57230989A priority Critical patent/JPS59122225A/en
Publication of JPS59122225A publication Critical patent/JPS59122225A/en
Publication of JPH0235495B2 publication Critical patent/JPH0235495B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • H03K5/2472Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors
    • H03K5/2481Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors with at least one differential stage

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Control Of Electrical Variables (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

PURPOSE:To detect reference voltage including earth voltage stably and highly accurately by using a pair of voltage dividing circuits practically having the same constitution as an input circuit and a reference voltage circuit. CONSTITUTION:When input voltage VIN crosses zero voltage from negative to possitive voltage, the impedance of depression IGFETQ2 in an input circuit 1 is reduced lower than that of a depression IGFETQ4 in a reference voltage circuit 2, the output level of an enhancement FETQ12 is increased and the output level of an enhancement FETQ14 is reduced. Consequently, an FETQ12 in an output buffer circuit 4 is turned on, an FETQ17 is turned off, an FETQ19 is turned on, and output voltage VOUT is reduced from the high level to the low level close to VSS=0V, so that the earth voltage can be detected highly accurately even at a crossing moment.

Description

【発明の詳細な説明】 本発明は半導体集積回路に関し、特に集積回路内で入力
信号が基準電圧レベルを横切る時に出力信号を変化させ
る基準電圧検出回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor integrated circuits, and more particularly to a reference voltage detection circuit that changes an output signal when an input signal crosses a reference voltage level within an integrated circuit.

種々の電子回路において入力信号が所定九準電圧を横切
る瞬間を検出する必要がある場合がある。
In various electronic circuits, it may be necessary to detect the moment when an input signal crosses a predetermined quasi-voltage.

特に入力信号が接地電圧(零電圧〕を横切る瞬間を検出
する零クロス検出器が位相制御回路等において需要が高
い。しかし通常の集積回路(工a )は接地電圧と電源
電圧との間で作動するため、工Cチップ内で接地電圧や
作動電圧とは逆極性の電圧を検出できるものはなかった
。これらの基準電圧検出器は個別部品を用いてプリント
基盤上に組んでいた為費用や信頼性、プリント基盤の小
型化等に問題が多かった〇 一般にインバータ等のロジック回路における参照電圧は
与えられた電源電圧V(OV)とvDDS (0−MOS 、 N−MOSでは正極性、P −MO
Sでは負極性)との間の作動電圧範囲内に設定される。
In particular, zero-cross detectors that detect the moment when an input signal crosses the ground voltage (zero voltage) are in high demand in phase control circuits, etc. However, ordinary integrated circuits (A) operate between the ground voltage and the power supply voltage. Therefore, there was no device within the engineering C chip that could detect a voltage with the opposite polarity to the ground voltage or operating voltage.These reference voltage detectors were assembled on a printed circuit board using individual components, resulting in low cost and reliability. In general, the reference voltage in logic circuits such as inverters is the given power supply voltage V (OV) and vDDS (positive polarity in 0-MOS, N-MOS, P-MO
S is set within the operating voltage range between (negative polarity).

さらにプロセスパラメータや回路定数で決まるあるオー
バードライブ電圧があり、入力電圧が(参照電圧子オー
バードライブ電圧〕を超えないと出力信号は反転しない
。したがって従来の回路では参照電圧として零電圧を印
加し、入力信号として正負に変化する信号を印加しても
、入力信号が零電圧をクロスする点を正確に検出するこ
とはできなかった。さらに作動電圧と逆極性の参照電圧
を用いることも集積回路の構造上不可能であった。
Furthermore, there is a certain overdrive voltage determined by process parameters and circuit constants, and the output signal will not be inverted unless the input voltage exceeds (reference voltage element overdrive voltage).Therefore, in conventional circuits, zero voltage is applied as the reference voltage, Even if a signal that changes between positive and negative is applied as an input signal, it is not possible to accurately detect the point where the input signal crosses zero voltage.Furthermore, using a reference voltage with a polarity opposite to the operating voltage is also a problem for integrated circuits. It was structurally impossible.

本発明は集+回路内で入力信号が接地電圧をクロスする
瞬間をも高精度に検出できる基準電圧検出回路を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a reference voltage detection circuit that can detect with high accuracy even the moment when an input signal crosses a ground voltage in an integrated circuit.

本発明によれば、ヂプレツシーヨンモード絶縁デートa
h効果トランジスタ(XG −FBGT )を含み、実
質的に同一構成の1対の分圧回路を入力回路、参照電圧
回路として用い、各出力を比較回路で比較増幅すること
により、安定で高精度の基準電圧検出ができる。簡単で
経済的な回路構成であるにもかかわらず電源電圧変動や
温度変化に対しても極めて安定動作が得られる。さらに
全構成要素を工G −FETで構成でき、プロセス的に
も従来のままの工程で製造出来る。入力回路と参照電圧
回路とをデプレツションエG −FETのみで構成すれ
ば製造プロセスにおけるパラメータの変動、露光1エツ
チング工程のばらつき等に対しても安定であり、製造が
容易で、歩留りを高くすることかで薯る。
According to the invention, the compression mode insulation date a
A pair of voltage divider circuits with substantially the same configuration including an h-effect transistor (XG-FBGT) is used as an input circuit and a reference voltage circuit, and each output is compared and amplified by a comparator circuit to achieve stable and high precision. Reference voltage can be detected. Despite having a simple and economical circuit configuration, extremely stable operation can be achieved even with power supply voltage fluctuations and temperature changes. Furthermore, all the components can be constructed from G-FETs, and the process can be manufactured using conventional processes. If the input circuit and reference voltage circuit are composed only of depletion E-G-FETs, it will be stable against variations in parameters in the manufacturing process, variations in exposure and etching steps, etc., and manufacturing will be easy and yields will be high. Eat it.

以下実施例に沿って説明する。第1図において、零電圧
検出回路は入力回路1、参照電圧回路2、比較回路3、
出力バッファ回路4を含む。入力回路1、参照電圧回路
2は入力端子5の入カ電圧■エヨ’ Vssラインの接
地電圧■。4−oを受けて、作動電圧範囲(VSS −
vDD )内の比較用電圧五7゜参照電圧■ を発生す
る。■よ、は”INと逆方向EF に変化する反転信号である。デプレッションXa−FK
T Ql + Q3は全く同等の特性を有しくQ□==
Q3λゼロバイアスされて所定の抵抗値を示す。デプレ
ツションエG−11T Q2 、 Q4も全く同等の特
性を有しくQ2=Q4)、それぞれのデートは入力端子
5、接地■ ラインに接続され、V  、v  =ov
にss           工N   G4対応する
インピーダンスヲ示ス。Ql−Q2 + Qs−Q4の
各直列接続が分圧回路を構成する。たとえば第2図に示
すように工G−FET Q、l r Q2 z Q3 
r Q4は工0基板内で互に近接して同一方向に沿って
配置される。Q工+Q3は同−設計寸法であり、Q21
94も同−設計寸法である。電源ライン18、接地ライ
ン19に接続して拡散領域11.11’。
The following will be explained along with examples. In FIG. 1, the zero voltage detection circuit includes an input circuit 1, a reference voltage circuit 2, a comparison circuit 3,
Includes an output buffer circuit 4. The input circuit 1 and the reference voltage circuit 2 are the input voltage of the input terminal 5 and the ground voltage of the Vss line. 4-o, the operating voltage range (VSS -
Generates a reference voltage (57°) for comparison within (vDD). ■Yo is an inverted signal that changes in the opposite direction EF from “IN”.Depression Xa-FK
T Ql + Q3 have exactly the same characteristics Q□==
Q3λ is zero biased and exhibits a predetermined resistance value. The depression G-11T Q2 and Q4 have exactly the same characteristics (Q2=Q4), and their respective dates are connected to the input terminal 5 and the ground line, and V, v = ov
Shows the impedance corresponding to SS Engineering G4. Each series connection of Ql-Q2 + Qs-Q4 constitutes a voltage divider circuit. For example, as shown in Fig. 2, G-FET Q, l r Q2 z Q3
rQ4 are arranged close to each other and along the same direction within the substrate. Q engineering + Q3 is the same - design dimension, Q21
94 also has the same design dimensions. Diffusion region 11.11' connected to power line 18 and ground line 19.

13 、13’が形成されており、中間にさらに拡散領
域12 、12’が形成されている。拡散領域間のチャ
ンネルとなる領域上にゲート電極15 、15’。
13 and 13' are formed, and further diffusion regions 12 and 12' are formed in the middle. Gate electrodes 15, 15' are provided on regions that will become channels between the diffusion regions.

16 、16’が形成されている。番号11,12゜1
3.15.16で示す部分と番号11’、12’。
16 and 16' are formed. Number 11, 12゜1
3.15.16 and numbers 11' and 12'.

13’、 15’、 1 B’で示す部分は同一寸法、
同一材料であり、同じプロセスで作成される。従って露
光工程やエッチ工程の過不足、マスク合わせの誤差等の
プロセスパラメータの変動は各トランジスタに同等に影
響し、電圧分割の相対関係には影響を与えない。従って
、製造が容易で高い歩留りが得られる。又トランジスタ
。xpQ2pQ3rQ4は全てデプレッション型であり
、単なる分FE@路として働くので、動作条件の変動に
対しても影響を受ケニくい。分圧比は各トランジスタの
チャンネルの寸法比(w/L)のみで決定され、電源電
圧の変動や温度変化等に対しても影響を受けにくく、極
めて安定した高精度の動作が得られる。
The parts indicated by 13', 15', and 1 B' have the same dimensions,
Made of the same material and created by the same process. Therefore, variations in process parameters such as excess or deficiency in exposure or etching steps, errors in mask alignment, etc. affect each transistor equally and do not affect the relative relationship of voltage division. Therefore, manufacturing is easy and a high yield can be obtained. Also a transistor. Since xpQ2pQ3rQ4 are all depletion type and act as mere branch FE@paths, they are not easily affected by changes in operating conditions. The voltage division ratio is determined only by the size ratio (w/L) of the channels of each transistor, and is not easily affected by fluctuations in power supply voltage, temperature changes, etc., and extremely stable and highly accurate operation can be obtained.

・ デプレッションエG−FHT Q2.。、QaG;
i逆バイアスを含む所定のデートバイアスを印加したと
iに有限のソース・ドレイン間インピーダンスを示すよ
うに設計される。ざらにデプレッションエG−FETC
h −Q2 r Qs −Q4の各分圧が後段の比較回
路3を動作させるのに適当な電圧となるように各トラン
ジスタの設計定数を選定する。比較回路3は比較用電圧
信号■工、と参照電圧信号■RE Fとを比較する。
・ Depression E G-FHT Q2. . ,QaG;
It is designed to exhibit a finite source-drain impedance at i when a predetermined date bias including a reverse bias is applied to i. Zarani Depression E G-FETC
The design constants of each transistor are selected so that each divided voltage of h - Q2 r Qs - Q4 becomes a voltage suitable for operating the comparison circuit 3 in the subsequent stage. The comparison circuit 3 compares the comparison voltage signal (1) and the reference voltage signal (2)REF.

デプレツションエG−FET G7 、エンハンスメン
) XG−FETQsの直列接続は、電流安定化用工G
−FETQ15に定電圧バイアスを供給する。すなわち
デート・ソース直結の工G−FET G7は定電流をデ
ート・ドレイン直結の工G −FE’[’ Qsへ供給
し、定電圧素子的に働く工G −FET QBが安定化
したブトバイアスをFET G15へ供給する。FET
G15を流れる定電流がQll−Qlzの枝とQls 
−G14の枝とに流れ、電流切換型差動アンプを構成す
る。
(Depression G-FET G7, Enhancement) The series connection of XG-FETQs is
- Supply constant voltage bias to FETQ15. In other words, the date/source directly connected G-FET G7 supplies a constant current to the date/drain directly connected G -FE' Supply to G15. FET
The constant current flowing through G15 is the branch of Qll-Qlz and Qls
-G14 branch, and constitutes a current switching type differential amplifier.

Qll + G13はゼ0/々イアスされたデプレツシ
ョツ工G −FIICTであり、Q□21Qよ、は差動
アンプへの各入力信号を受けるエンハンスメントエG−
FITである。電流切換型差動アンプの2出力は互に逆
方向に変化する。
Qll + G13 is the depreciation filter G-FIICT which is biased to zero, and Q□21Q is the enhancement filter G-FIICT which receives each input signal to the differential amplifier.
It is FIT. The two outputs of the current switching type differential amplifier change in opposite directions.

出力バッファ回路4はエンハンスメントエG−FET 
Qよ。、Q工y+Qユ、とデプレッションエG−FIC
TQ工、とを含み、差動アンプの2出力を受けて所望の
電圧スイング巾を有する矩形波出力電圧を発生する。
The output buffer circuit 4 is an enhancement G-FET.
Q. , Q engineering y + Q yu, and depression e G-FIC
It receives the two outputs of the differential amplifier and generates a rectangular wave output voltage having a desired voltage swing width.

第6図を参照して、NチャンネルMO3−工0の場合を
例にとって説明する。入力電圧■工、が負極性から正極
性にしだいに増加すると考える。■工、が負極性の間は
G2の抵抗値がG4の抵抗値より高く、■ は■”゛ 
 よりハイレベルである。VINはQ12工N    
 REF で反転され、G16.G19がオフとなり、出力端子6
の電圧■  をハイレベル(■DD)にする。入力UT 電圧が零電圧を横切ると、G2のインピーダンスがG4
のインピーダンスより小さくなり、Qよ、の出力レベル
を上げ、Q工、の出力レベルを下げる。
Referring to FIG. 6, the case of N-channel MO3-MO0 will be explained as an example. It is assumed that the input voltage (input voltage) gradually increases from negative polarity to positive polarity. While ■ is negative polarity, the resistance value of G2 is higher than the resistance value of G4, and ■ is ■"゛
It is at a higher level. VIN is Q12N
REF inverted, G16. G19 turns off and output terminal 6
Set the voltage ■ to high level (■DD). When the input UT voltage crosses zero voltage, the impedance of G2 becomes G4.
becomes smaller than the impedance of Q, increases the output level of Q, and lowers the output level of Q.

従ってG16がオン、G17がオフ、G19がオンとな
り出力電圧V。UTはV、=OVに近いローレベルに下
がる。
Therefore, G16 is on, G17 is off, and G19 is on, resulting in an output voltage of V. UT falls to a low level close to V,=OV.

つまり比較回路の参照電圧■R]lcFはOVでG1な
いが、■エヨが丁度o■をクロスした時にVユがVゆア
をクロスし、出力反転波形が得られる。工G −PET
Q2とG4とを全く同じ構成とし、工G −PET Q
工とG3も全く同じ構成としであるので、入力電圧V工
、が正から負に又負から正に基準電圧0■を横切る瞬間
に比較用電圧右マも参照電圧■RB、Fを横切る。
In other words, the reference voltage (R]lcF of the comparator circuit is OV and G1 is not present, but when (Eyo) crosses (O)), VU (VU) crosses (VYA), and an inverted output waveform is obtained. Engineering G-PET
Q2 and G4 have exactly the same configuration, and the engineering G-PET Q
Since G and G3 have exactly the same configuration, the comparison voltage R also crosses the reference voltages RB and F at the moment the input voltage V crosses the reference voltage 0 from positive to negative and from negative to positive.

今、入力端子5に第4図に示すように正弦波電圧が印加
されたとする。■工、〉0のtlの期間は、V  >V
   となりV。UTは■DDに近いハイレペIN  
   FtEF ルを出力する。Vよ、がOVをクロスして、■工、〈0
のt2の期間に入る瞬間から■工H<VRF、Fとなり
、比較器が反転して■。UTはローレベルとなる。従っ
てt1=t2となり入力信号の位相に正確に一致した出
力信号が得られる。出力の矩形波信号は同一チップ上の
ロジック回路やメモリ回路等のタイミング位相制御他人
い用途に用いることができる。
Assume now that a sine wave voltage is applied to the input terminal 5 as shown in FIG. ■The period of tl for >0 is V >V
Next door is V. UT is high-repe IN close to ■DD
Output FtEF le. V crosses OV, ■work, <0
From the moment when period t2 begins, ■H<VRF, F, and the comparator is reversed. UT becomes low level. Therefore, t1=t2, and an output signal that accurately matches the phase of the input signal is obtained. The output rectangular wave signal can be used for timing and phase control of logic circuits, memory circuits, etc. on the same chip.

零電圧を正確に検出してすばやく出力信号を変化できる
ので信号レベルが変化している間の回路の不感時間をな
くすことができ、回路設計の自由度も大巾に増加させる
ことができる。
Since zero voltage can be detected accurately and the output signal can be quickly changed, dead time in the circuit while the signal level is changing can be eliminated, and the degree of freedom in circuit design can be greatly increased.

本実施例の構成要素はすべて工G −FF1Tで設計さ
れ、工0チップ上の他の回路の構成要素と同゛時に同一
工程で作成でき、一旦マスクが出来上れば製造工程は従
来と同様である。
All the components of this example are designed using the G-FF1T, and can be created at the same time and in the same process as other circuit components on the chip. Once the mask is completed, the manufacturing process is the same as before. It is.

上記実施例では基準電圧はOVであったが、0■以外の
基準電圧検出も容易に行なえる。
In the above embodiment, the reference voltage was OV, but reference voltages other than 0■ can also be easily detected.

第5図に他の実施例を示す。第1図の実施例における工
G−FET Ql 、G3の代わりに抵抗R1,R3を
用い工G、−FIT G4のデートを基準電圧入力端子
7へ導出した点綴外は第1図の実施例と同様である。こ
の場合も抵抗R工とR3とを全く同等に、又工G−FE
TQ2とG4とを全く同等に作成することが重要である
。抵抗R1,R3はたとえば拡散抵抗、イオン注入抵抗
、ポーリシリコン抵抗で形成できる。
FIG. 5 shows another embodiment. Resistors R1 and R3 are used in place of the G-FET Ql and G3 in the embodiment shown in FIG. 1, and the dates of the FET G and -FIT G4 are derived to the reference voltage input terminal 7. It is similar to In this case, the resistors R and R3 are made completely equal, and the resistor G-FE is
It is important to create TQ2 and G4 exactly the same. The resistors R1 and R3 can be formed of, for example, a diffused resistor, an ion implanted resistor, or a polysilicon resistor.

VG4電圧を例えばマイナス1.OVとかプラス1.5
Vの如く特定の反転出力を期待する値に設定することに
より自由に調整が出来るので「マイナス1、Ov検出器
」や「プラス1.5■検出器」が可能である。この場合
基準電圧V。4の与え方として内部で作る方法又は外部
に■。4端子を設けて外から基準電圧を与える方法の両
方が可能である。
For example, set the VG4 voltage to minus 1. OV or something plus 1.5
Since it can be freely adjusted by setting a specific inverted output such as V to an expected value, it is possible to use a "minus 1 Ov detector" or a "plus 1.5 ■ detector". In this case, the reference voltage V. How to give 4: How to make it internally or externally■. Both methods of providing four terminals and applying a reference voltage from the outside are possible.

・ なお、作動電圧に対し逆極性の電圧を含む入力信号
を工Cチップに入力するための保護手段としてはたとえ
ば第6図のような構成をとればよい。
・As a protection means for inputting an input signal containing a voltage with a polarity opposite to the operating voltage to the C-chip, for example, a configuration as shown in FIG. 6 may be used.

図示のNチャンネルMO3−工Cにおいて、■ユと■D
Dとの間にN領域21.22F基板から成るラテラルバ
イポーラトランジスタが形成されている。
In the illustrated N-channel MO3-C, ■U and ■D
A lateral bipolar transistor consisting of an N region 21 and 22F substrate is formed between the N region 21 and the 22F substrate.

■工、が負電圧になると、N領域21から注入される電
子は基板内に拡がることなくN領域22に収集され、負
電圧である■工、はそのまま入力重工G−FET Q2
のケゝ−トに印加され、そのソース・ドレイン間抵抗を
調整する。第5図の実施例の場合は、入力端子5、基準
電圧端子7の各々に第6図の保護手段を設ければ作動電
圧と逆極性の基準電圧も人力できる。
When the voltage becomes a negative voltage, the electrons injected from the N region 21 are collected in the N region 22 without spreading into the substrate, and the negative voltage, ■, becomes the input G-FET Q2.
The voltage is applied to the gate of the gate to adjust its source-drain resistance. In the case of the embodiment shown in FIG. 5, if the protection means shown in FIG. 6 are provided for each of the input terminal 5 and the reference voltage terminal 7, the reference voltage having the opposite polarity to the operating voltage can be manually generated.

以上実施例に沿って本発明を説明したが種々の変形、組
合わせ、変更が可能なことは当業者に自明であろう。
Although the present invention has been described above with reference to the embodiments, it will be obvious to those skilled in the art that various modifications, combinations, and changes can be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の回路図、第2図は第1図の
回路を組み込む工aチップの部分上面図、第6図、第4
図は第1図の回路の特性図、第5図符号の説明 1・・・入力回路、2・・・参照電圧回路、3・・・比
較回路、4・・・出力バッファ回路、5・・・入力端子
、6・・・出力端子。 代理人 浅 村   皓 外4名 第1図 ト □−二 牙3図 牙4図
FIG. 1 is a circuit diagram of one embodiment of the present invention, FIG. 2 is a partial top view of a chip incorporating the circuit of FIG. 1, FIGS.
The figure is a characteristic diagram of the circuit in Figure 1, and Figure 5. Explanation of symbols 1... Input circuit, 2... Reference voltage circuit, 3... Comparison circuit, 4... Output buffer circuit, 5... - Input terminal, 6... Output terminal. Agent Asamura Kōgai 4 people Figure 1 To □ - Niga 3 Figure 4

Claims (1)

【特許請求の範囲】 (1)所定の電源電圧■ゆ、接地電圧■ssを与えられ
、両電圧間の電圧範囲で作動する集積回路において、 (a)  上記電圧範囲を超える電圧レベルを含む入力
信号を受けるための入力回路と、選択された基準電圧信
号を受けるための参照電圧回路とであって、両回路はデ
プレッションモード電界効果トランジスタを含む実質的
に同一構成の電圧分割型回路を含み、入力信号および基
準電圧信号に応じて上記電圧範囲(’v  、v  )
内の比SS     DD 較用電圧信号および参照電圧信号を発生する入力回路と
参照電圧回路、および (b)上記比較用電圧信号と参照電圧信号とを受け、上
記入力信号の電圧が上記基準電圧を横切った瞬間これを
検知増幅し、上記電圧範囲(VSS’■DD)内の矩形
波を発生する゛増幅回路を含む基準電圧検出回路。 (2、特許請求の範囲第1項記載の基準電圧検出回路で
あって、上記入力回路および上記参照電圧回路の各々は
直列接続されたデプレッションモード電界効果トランジ
スタを含み、上記入力信号又は上記基準電圧信号が上記
直列接続された電界効果トランジスタの1つのゲートに
印加される基準電圧検出回路。 (3)特許請求の範囲第1項記載の基準電圧検出回路で
あって、上記電界効果トランジスタは上記集積回路のチ
ップ内で互に近接し、同一方向に配置されている基準電
圧検出回路。
[Claims] (1) In an integrated circuit that is supplied with a predetermined power supply voltage (XX) and a ground voltage (SS) and operates in a voltage range between the two voltages, (a) an input that includes a voltage level exceeding the above voltage range; an input circuit for receiving the signal; and a reference voltage circuit for receiving the selected reference voltage signal, both circuits including substantially identical voltage divider circuits including depression mode field effect transistors; The above voltage range ('v, v) depending on the input signal and reference voltage signal
an input circuit and a reference voltage circuit that generate a comparison voltage signal and a reference voltage signal; A reference voltage detection circuit including an amplification circuit detects and amplifies the moment it crosses the line and generates a rectangular wave within the voltage range (VSS'DD). (2. The reference voltage detection circuit according to claim 1, wherein each of the input circuit and the reference voltage circuit includes a depression mode field effect transistor connected in series, and the input signal or the reference voltage A reference voltage detection circuit in which a signal is applied to the gate of one of the field effect transistors connected in series. (3) The reference voltage detection circuit according to claim 1, wherein the field effect transistor is connected to the integrated circuit. Reference voltage detection circuits located close to each other and in the same direction within a circuit chip.
JP57230989A 1982-12-28 1982-12-28 Detecting circuit of reference voltage Granted JPS59122225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57230989A JPS59122225A (en) 1982-12-28 1982-12-28 Detecting circuit of reference voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57230989A JPS59122225A (en) 1982-12-28 1982-12-28 Detecting circuit of reference voltage

Publications (2)

Publication Number Publication Date
JPS59122225A true JPS59122225A (en) 1984-07-14
JPH0235495B2 JPH0235495B2 (en) 1990-08-10

Family

ID=16916485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57230989A Granted JPS59122225A (en) 1982-12-28 1982-12-28 Detecting circuit of reference voltage

Country Status (1)

Country Link
JP (1) JPS59122225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191235A (en) * 1991-01-29 1993-03-02 Nec Corporation Semiconductor integrated circuit device having substrate potential detection circuit
US5329171A (en) * 1991-06-25 1994-07-12 Mitsubishi Denki Kabushiki Kaisha Zero cross detection circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661677A (en) * 1992-08-06 1994-03-04 Fujitsu Ltd Structure of printed board containing shelf

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191235A (en) * 1991-01-29 1993-03-02 Nec Corporation Semiconductor integrated circuit device having substrate potential detection circuit
US5329171A (en) * 1991-06-25 1994-07-12 Mitsubishi Denki Kabushiki Kaisha Zero cross detection circuit

Also Published As

Publication number Publication date
JPH0235495B2 (en) 1990-08-10

Similar Documents

Publication Publication Date Title
JP2961900B2 (en) Current measuring circuit of power MOS transistor
JP2885120B2 (en) Operational amplifier
US7208998B2 (en) Bias circuit for high-swing cascode current mirrors
US4573020A (en) Fully differential operational amplifier with D.C. common-mode feedback
US7564225B2 (en) Low-power voltage reference
JPS6070591A (en) Sense amplifier
US4068140A (en) MOS source follower circuit
JPS59122225A (en) Detecting circuit of reference voltage
Gupta et al. A wide dynamic range continuously adjustable CMOS current mirror
US6806776B2 (en) Transconductor tuning circuit
US7248099B2 (en) Circuit for generating reference current
US20020067202A1 (en) Circuit for generating a reference voltage on a semiconductor chip
US6822505B1 (en) Mobility compensation in MOS integrated circuits
JPH04349708A (en) Mos resistance circuit
US5847606A (en) Low voltage CMOS amplifier output stage
CN100356285C (en) Low Voltage Operation Current Mirror
JP2005031032A (en) Current measuring circuit and constant-current circuit using it
WO2007098073A2 (en) Current mirror with improved output impedance at low power supplies
JPH0470204A (en) Bias voltage generation circuit and operational amplifier
JPS63115407A (en) Differential amplifier utilizing single channel polarity mos transistor
JP2893738B2 (en) Voltage detection circuit
JPS6313203B2 (en)
JP2637791B2 (en) Blog programmable reference voltage generator
JPH02170707A (en) Operational amplifier
JP2647208B2 (en) Class A push-pull output circuit