JPS59116990A - Photomagnetic recording medium - Google Patents
Photomagnetic recording mediumInfo
- Publication number
- JPS59116990A JPS59116990A JP22599582A JP22599582A JPS59116990A JP S59116990 A JPS59116990 A JP S59116990A JP 22599582 A JP22599582 A JP 22599582A JP 22599582 A JP22599582 A JP 22599582A JP S59116990 A JPS59116990 A JP S59116990A
- Authority
- JP
- Japan
- Prior art keywords
- film thickness
- layer
- reflection layer
- heat insulating
- recording medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010410 layer Substances 0.000 description 32
- 230000000694 effects Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 239000000696 magnetic material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910017061 Fe Co Inorganic materials 0.000 description 3
- 229910052789 astatine Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910001004 magnetic alloy Inorganic materials 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 230000005374 Kerr effect Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/04—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam
- G11C13/06—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam using magneto-optical elements
Abstract
Description
【発明の詳細な説明】
技術分野
本発明は新規な層構成を有する書きかえ可能な光磁気記
録媒体に関する。さら釦詳しくは、本発明は断熱性反射
層を有する光磁気記録媒体に関する。DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a rewritable magneto-optical recording medium having a novel layer structure. More specifically, the present invention relates to a magneto-optical recording medium having a heat insulating reflective layer.
従来技術
各種光メモリ装置のうち特に記憶材料として種々の垂直
磁化膜を用いた磁気光学装置は情報の書きかえが可能で
あることから注目されている。Among various conventional optical memory devices, magneto-optical devices using various perpendicularly magnetized films as storage materials are attracting attention because they allow information to be rewritten.
しかし、この種の材料は再生信号レベルが低い、特にカ
ー効果再生方式においてはカー回転角が小さいためS/
Nを高めることが困難であるなどの欠点を有する。そこ
で、上記欠点を解消するために、磁性材料を改良したり
SiOや8102などの断熱層やAtなとの反射層を設
けることが提案されている(例えば、特開昭57−66
549号公報参照)。しかしながら、多層であるため膜
作製が複雑であって制御が困難である。また、断熱層の
膜厚によって記録エネルギーが大きく変動しさらに光学
的干渉効果による吸収、反射および断熱効果が大ぎく変
動するという問題がある。However, this type of material has a low reproduction signal level, especially in the Kerr effect reproduction method, because the Kerr rotation angle is small, so the S/
It has drawbacks such as difficulty in increasing N. Therefore, in order to eliminate the above-mentioned drawbacks, it has been proposed to improve the magnetic material or provide a heat insulating layer such as SiO or 8102, or a reflective layer such as At (for example, JP-A-57-66
(See Publication No. 549). However, since the film is multilayered, the film fabrication is complicated and control is difficult. Another problem is that recording energy varies greatly depending on the thickness of the heat insulating layer, and absorption, reflection and heat insulating effects due to optical interference effects also vary greatly.
目 的
本発明は上記問題に鑑みてなされたものであって、その
一つの目的は光磁気記録媒体にレーザ記録する場合記録
媒体の特性変動によってし−ザ記録エネルギーが大きく
変動しない光磁気記録媒体を提供することである。Purpose The present invention has been made in view of the above-mentioned problems, and one of its objects is to provide a magneto-optical recording medium in which the recording energy does not vary greatly due to changes in the characteristics of the recording medium when laser recording is performed on a magneto-optical recording medium. The goal is to provide the following.
また、本発明の別の目的は記り信号を記録媒体からレー
ザ光で読み出す場合に記録媒体の特性変動によって磁気
光学効果、ファラデー回転角が大きく変動しない光磁気
記録媒体を提供することである。Another object of the present invention is to provide a magneto-optical recording medium in which the magneto-optic effect and the Faraday rotation angle do not vary greatly due to variations in the characteristics of the recording medium when a recorded signal is read out from the recording medium using a laser beam.
構成
上記目的を達成するために、本発明は断熱層と反射層と
を兼備した断熱性反射層を用いることを特徴とするもの
である。Structure In order to achieve the above object, the present invention is characterized by using a heat insulating reflective layer that functions as both a heat insulating layer and a reflective layer.
すなわち、本発明の光磁気記録媒体は透明基板上に磁性
膜層および断熱性反射層を順次に設けたものである。必
要に応じて、保護層を断熱性反射層の上に設けてもよい
。That is, the magneto-optical recording medium of the present invention is one in which a magnetic film layer and a heat-insulating reflective layer are sequentially provided on a transparent substrate. If necessary, a protective layer may be provided on the heat insulating reflective layer.
本発明における磁性膜厚としては、例えば遷移金属(F
e、 Go、N1、Mnなど)と希土類金属(Ga、T
b%Dy%Ho、Er、 Y、 Sm5Euなど)との
種々の組合せから得られた磁性合金膜例えばTb−Fe
、()d−Fe、 Gd−Tb−Fe、 Gd−Dy−
Fe、 Tb−Fe−Co、 Tb−Dy−Fe−Co
1Gd−Tb−Fe−Coなどを用いること75(でき
る。この際これらの磁性合金膜の吸光度が太きいので膜
厚は5oon以下でなければlよらない。The magnetic film thickness in the present invention is, for example, a transition metal (F
e, Go, N1, Mn, etc.) and rare earth metals (Ga, T
Magnetic alloy films obtained from various combinations, such as Tb-Fe
, ()d-Fe, Gd-Tb-Fe, Gd-Dy-
Fe, Tb-Fe-Co, Tb-Dy-Fe-Co
It is possible to use 1Gd-Tb-Fe-Co, etc.75 (possible).In this case, since the absorbance of these magnetic alloy films is large, the film thickness must be 5 ounces or less.
また、酸化物磁性体を用いることもできるカニキュリ一
温度が低い物が選ばれる。酸化物磁性体は一般にキュリ
一温度が400℃以上と高イのでキュリ一温度を下げる
組成に変えねばならない。Further, an oxide magnetic material may be used, and a material having a low temperature is selected. Oxide magnetic materials generally have a high Curie temperature of 400° C. or higher, so the composition must be changed to lower the Curie temperature.
例えば、BaFe12019はキュリ一温度が450℃
以上と使用できないのでBacotOTil、0F10
o19のようにFeの1部を他の原子に置き換えてキュ
リ一温度を下げる方法がとられる。さらに、本発明の磁
性膜層として以下の酸化物磁性体を用いることもできる
がFeの1部を他の原子に置き換えてキュリ一温度を下
げる必要がある。For example, BaFe12019 has a Curie temperature of 450°C.
BacotOTil, 0F10 because it cannot be used with more than
A method is used to lower the Curie temperature by replacing part of Fe with other atoms, as in o19. Further, the following oxide magnetic material can be used as the magnetic film layer of the present invention, but it is necessary to lower the Curie temperature by replacing a part of Fe with other atoms.
MeMzFe 12−zO19、MeMxMyFe12
−(x+y)O19またはCOMzFe2−ZO8
上記各式中、MeはBa、 Sr、 !3c、 、Pb
、 Caなどを示し、MxはCo、 Zn、 At、
Cr、 Mn、 Ni、T1.3n 、 Cu。MeMzFe12-zO19, MeMxMyFe12
-(x+y)O19 or COMzFe2-ZO8 In each of the above formulas, Me is Ba, Sr, ! 3c, ,Pb
, Ca, etc., and Mx represents Co, Zn, At,
Cr, Mn, Ni, T1.3n, Cu.
pbなどを示し、MyはCo、 At、 Cr、 Mn
、 Ni、Ti。pb, etc., and My is Co, At, Cr, Mn
, Ni, Ti.
Sn、 Cu、 Pbなどを示しく但しMxNMy)そ
してM2に’1. At、 Zn、 Cr、 Mn、
Ni、3n、 Ti、pbなどを示す。酸化物磁性体は
磁性合金膜よシ透過性がよく膜厚は600〜1oooo
Xの範囲である。Indicates Sn, Cu, Pb, etc. (MxNMy) and '1.' in M2. At, Zn, Cr, Mn,
Indicates Ni, 3n, Ti, pb, etc. Oxide magnetic material has better permeability than magnetic alloy film, and the film thickness is 600 to 100 mm.
It is within the range of X.
また、本発明における断熱性反射層は293°にで測定
したときの熱伝導率Kが100 (w/m、dθg)以
下および反射率が20チ以上(800nmのレーザ光忙
対して)の材料によって構成される。In addition, the heat insulating reflective layer in the present invention is made of a material having a thermal conductivity K of 100 (w/m, dθg) or less and a reflectance of 20 or more (for 800 nm laser light) when measured at 293°. Consisted of.
かかる材料の例として、BN(K=11)、ZrN(K
=14)、’I’aN (K= I O)、Tln(x
=29)、A2N 、(K=15)、MgN (K中3
0)、CrN (K中50)、HfN (K中20)、
NbN (K中20)などの窒化物をあげることができ
る。Examples of such materials include BN (K=11), ZrN (K
=14), 'I'aN (K= I O), Tln(x
=29), A2N, (K=15), MgN (3 in K
0), CrN (50 in K), HfN (20 in K),
Nitrides such as NbN (20% in K) can be mentioned.
実施例
以下本発明に係る一実施例を従来技術の例と対比して図
面により詳しく説明する。EXAMPLE Hereinafter, an example according to the present invention will be explained in detail with reference to the drawings in comparison with an example of the prior art.
第1図は従来技術に係る光磁気記録媒体の層構成を示す
模式図であり、ガラスまたはプラスチック(例えばポリ
メチルメタクリレート、ポリカーボネートなと)の基板
の上に磁性膜層2(例えばGd−Fe)、断熱層3(例
えば5i02 )、反射層4(例えばAt)を順次スパ
ッタリング、蒸着など延よって積J@することにより形
成し基板側からレーザ光を照射する。この場合、断熱層
の膜厚によって記録エネルギーが大きく影響し、膜厚忙
よって光学的干渉効果による吸収、反射および断熱効果
が太き(変動する。また膜作製が多層で複雑であシ制御
することが困難である。FIG. 1 is a schematic diagram showing the layer structure of a magneto-optical recording medium according to the prior art. , a heat insulating layer 3 (for example, 5i02), and a reflective layer 4 (for example, At) are formed by sequentially stacking them by sputtering, vapor deposition, etc., and are irradiated with laser light from the substrate side. In this case, the recording energy is greatly affected by the thickness of the heat insulating layer, and depending on the thickness, the absorption, reflection, and heat insulating effects due to optical interference effects become thicker (variable).Furthermore, the film fabrication is multi-layered and complicated, so it is difficult to control the recording energy. It is difficult to do so.
第2図は本発明に係る光磁気記録媒体の層構成を示す模
式図であって基板1に磁性膜層2を設けることは第1図
に示したと同様であるが、図示のように本発明では断熱
性反射層5が従来の断熱層と反射層とを兼備している点
が異なりこれによって断熱性反射層の膜厚は例えばディ
スク状に形成した場合その厚さが片面3朋以内であれば
何等制約されないのでディスクの作製が容易である。FIG. 2 is a schematic diagram showing the layer structure of the magneto-optical recording medium according to the present invention, and the provision of the magnetic film layer 2 on the substrate 1 is the same as shown in FIG. The difference is that the heat-insulating reflective layer 5 functions as both a conventional heat-insulating layer and a reflective layer, so that the thickness of the heat-insulating reflective layer, for example, when formed into a disk shape, can be up to 3 mm on one side. Since there are no restrictions, it is easy to manufacture a disk.
効果
次に、本発明における断熱性反射層の材料としてTaN
を使用した場合を例にとってその効果を従来技術のもの
と対比して説明する。Effect Next, TaN is used as a material for the heat insulating reflective layer in the present invention.
The effect will be explained by taking as an example the case of using the method and comparing it with that of the prior art.
従来技術に対しては、第1図に示すようにガラス基板に
膜厚200AのTb−Fe磁磁性膜−と膜厚3000X
の反射層を設け、5102断熱層の膜厚を変化して記録
媒体を作成し、これに半導体レーザ(79onm)を用
いてI MHzの周波数で記録した結果を第6図に示す
。第3図において実線は膜厚と記録に必要なエネルギー
(レーザパワー)との関係を示しそして点線は膜厚とフ
ァラデー回転角との関係を示す。これから5102膜厚
によって、レーザ記録エネルギーが大きく変動すること
が明らかである。5102の膜厚のバラツキを±10%
に制御することは困難であり、記録エネルギーを高いレ
ベルに設定しなければならない。In contrast to the conventional technology, as shown in FIG.
A recording medium was prepared by providing a reflective layer of 5102 and varying the film thickness of the 5102 heat insulating layer, and recording was performed on the medium at a frequency of I MHz using a semiconductor laser (79 onm). The results are shown in FIG. In FIG. 3, the solid line shows the relationship between the film thickness and the energy (laser power) required for recording, and the dotted line shows the relationship between the film thickness and the Faraday rotation angle. It is clear from this that the laser recording energy varies greatly depending on the 5102 film thickness. ±10% variation in film thickness of 5102
is difficult to control, and the recording energy must be set at a high level.
一方、本発明の記録媒体を第2図に示すよう圧力ラス基
板上に膜厚200XのTb−Fe磁性膜層を設け、Ta
N断熱性反射層の膜厚を変化して作成し、これに半導体
レーザ(900nm )を用いてI MH2の周波数で
記録しても第4図に示すように’l”aNの膜厚てよっ
てレーザパワーは変化しない。ここで第4図における実
線および点線・の意味は第3図と同様である。On the other hand, in the recording medium of the present invention, as shown in FIG.
Even if the thickness of the N adiabatic reflective layer is varied and recorded using a semiconductor laser (900 nm) at a frequency of IMH2, the thickness of the N a The laser power does not change.The solid lines and dotted lines in FIG. 4 have the same meanings as in FIG. 3.
また、第3図妃示すように従来技術では5i02の膜厚
圧よってファラデー回転角(θF)が著しく変化するが
、これは5to2層の光学的干渉効果によるものであっ
て大きな問題点である。これに対して、第4図に示すよ
うに本発明ではファラデー回転角(θF)は殆ど変化し
ない。また、断熱性反射層としてTaNに代えて、Cr
N、 AtNおよびMgNにそれぞれを用いて記録媒体
を膜厚な変えて調製し特性を調べたところそれぞれθF
が0.54°、0,46°およびo、68°であり膜厚
依存性が殆どなかった。Furthermore, as shown in FIG. 3, in the conventional technology, the Faraday rotation angle (θF) changes significantly depending on the film thickness of 5i02, but this is due to the optical interference effect of the 5to2 layer and is a major problem. On the other hand, as shown in FIG. 4, in the present invention, the Faraday rotation angle (θF) hardly changes. Also, instead of TaN, Cr
When we prepared recording media with different film thicknesses using N, AtN, and MgN and investigated their characteristics, we found that θF
were 0.54°, 0.46°, and 0.68°, and there was almost no film thickness dependence.
以上本発明の詳細な説明の都合上TaNを例にとって述
べてきたが、他の材料についても同様の結果が得られる
ことはもちろんである。Although TaN has been described above as an example for the sake of detailed explanation of the present invention, it goes without saying that similar results can be obtained with other materials.
第1図は従来技術の光磁気記録媒体の構成を示す模式図
であシ、第2図は本発明の光磁気記録媒体の構成を示す
模式図であり、第5図および第4図は膜厚と記録エネル
ギーとファラデー回転角との関係を示すグラフである。
1・・・基板、2・・・磁性膜層、3・・・断熱層、4
・・・反射層、5・・・断熱性反射層。FIG. 1 is a schematic diagram showing the structure of a conventional magneto-optical recording medium, FIG. 2 is a schematic diagram showing the structure of a magneto-optical recording medium of the present invention, and FIGS. It is a graph showing the relationship between thickness, recording energy, and Faraday rotation angle. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Magnetic film layer, 3... Heat insulation layer, 4
... Reflective layer, 5... Heat insulating reflective layer.
Claims (1)
たことを特徴とする、光磁気記録媒体。A magneto-optical recording medium, characterized in that a magnetic film layer and a heat-insulating reflective layer are sequentially provided on a transparent substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22599582A JPS59116990A (en) | 1982-12-24 | 1982-12-24 | Photomagnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22599582A JPS59116990A (en) | 1982-12-24 | 1982-12-24 | Photomagnetic recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59116990A true JPS59116990A (en) | 1984-07-06 |
JPH0583971B2 JPH0583971B2 (en) | 1993-11-30 |
Family
ID=16838138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22599582A Granted JPS59116990A (en) | 1982-12-24 | 1982-12-24 | Photomagnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59116990A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0264944A (en) * | 1988-08-30 | 1990-03-05 | Mitsubishi Electric Corp | Magneto-optical recording medium |
JPH0323532A (en) * | 1989-06-20 | 1991-01-31 | Nec Home Electron Ltd | Optical disk and its production |
US5560998A (en) * | 1990-03-27 | 1996-10-01 | Teijin Limited | Magneto-optical recording medium |
US5576102A (en) * | 1991-07-23 | 1996-11-19 | Mitsubishi Chemical Corporation | Magneto optical recording medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50104602A (en) * | 1974-01-21 | 1975-08-18 | ||
JPS57105839A (en) * | 1980-12-24 | 1982-07-01 | Ricoh Co Ltd | Photo-thermal magnetic recording medium |
JPS57169996A (en) * | 1981-04-09 | 1982-10-19 | Sharp Corp | Magnetooptic storage element |
JPS598150A (en) * | 1982-07-02 | 1984-01-17 | Sharp Corp | Magnetooptical storage element |
-
1982
- 1982-12-24 JP JP22599582A patent/JPS59116990A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50104602A (en) * | 1974-01-21 | 1975-08-18 | ||
JPS57105839A (en) * | 1980-12-24 | 1982-07-01 | Ricoh Co Ltd | Photo-thermal magnetic recording medium |
JPS57169996A (en) * | 1981-04-09 | 1982-10-19 | Sharp Corp | Magnetooptic storage element |
JPS598150A (en) * | 1982-07-02 | 1984-01-17 | Sharp Corp | Magnetooptical storage element |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0264944A (en) * | 1988-08-30 | 1990-03-05 | Mitsubishi Electric Corp | Magneto-optical recording medium |
JPH0323532A (en) * | 1989-06-20 | 1991-01-31 | Nec Home Electron Ltd | Optical disk and its production |
US5560998A (en) * | 1990-03-27 | 1996-10-01 | Teijin Limited | Magneto-optical recording medium |
US5576102A (en) * | 1991-07-23 | 1996-11-19 | Mitsubishi Chemical Corporation | Magneto optical recording medium |
Also Published As
Publication number | Publication date |
---|---|
JPH0583971B2 (en) | 1993-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61117747A (en) | 2-layer-film optical magnetic recording medium | |
JPS6227459B2 (en) | ||
JPS6148148A (en) | Thermooptical magnetic recording medium | |
EP0698881A1 (en) | Magnetooptical recording medium and method for reproducing information from the medium | |
JPH06124500A (en) | Magneto-optical recording medium and playback method of this medium | |
US5639563A (en) | Magneto-optical recording medium | |
JPS59116990A (en) | Photomagnetic recording medium | |
US5958575A (en) | Magneto-optical recording medium | |
US4777082A (en) | Optical magnetic recording medium | |
JP2556563B2 (en) | Magneto-optical recording medium | |
JPS61258353A (en) | Photomagnetic recording medium | |
JPS59201247A (en) | Photomagnetic recording medium | |
JPH07320324A (en) | Magneto-optical recording medium and reproducing method thereof | |
JPS63282944A (en) | Thermomagneto-optical recording medium | |
JPH0528555A (en) | Magneto-optical recording medium | |
KR950006415B1 (en) | Making method of optical magneto | |
JPS62267949A (en) | Magneto-optical recording medium | |
JPH0660452A (en) | Magneto-optical recording medium | |
JP2705066B2 (en) | Photothermal magnetic recording media | |
JP2763913B2 (en) | Magnetic film and method of manufacturing the same | |
JPH04232632A (en) | Magneto-optic recording element containing zirconium | |
JPS60182536A (en) | Optomagnetic recording medium | |
JPH039544B2 (en) | ||
JPS6057556A (en) | Magneto-optical multilayer media | |
JPH0341644A (en) | Magneto-optical recoding medium |