[go: up one dir, main page]

JPS59101880A - Thin film solar battery - Google Patents

Thin film solar battery

Info

Publication number
JPS59101880A
JPS59101880A JP57212191A JP21219182A JPS59101880A JP S59101880 A JPS59101880 A JP S59101880A JP 57212191 A JP57212191 A JP 57212191A JP 21219182 A JP21219182 A JP 21219182A JP S59101880 A JPS59101880 A JP S59101880A
Authority
JP
Japan
Prior art keywords
layer
thin film
film solar
solar battery
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57212191A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Uchida
内田 喜之
Masakazu Ueno
正和 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP57212191A priority Critical patent/JPS59101880A/en
Publication of JPS59101880A publication Critical patent/JPS59101880A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/17Photovoltaic cells having only PIN junction potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/10Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material
    • H10F71/103Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials
    • H10F71/1035Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials having multiple Group IV elements, e.g. SiGe or SiC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は接合を形成する非晶質半導体層の互に相異する
■練元素からなる〜テロ接合を有する薄膜太陽電池に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thin film solar cell having a telojunction made of mutually different elements in amorphous semiconductor layers forming the junction.

近年、非晶質半導体が新たな電子材料として、注目され
、代表的なものが非晶質シリコンであり、特に太陽電池
への応用が進められている。非晶質シリコンは、真空蒸
着などにより得られることが古(から知られていたが、
欠陥(主に原子間の結合が切れたダングリングボンド)
が多数存在するため、半導体としての性質は非常に悪い
ものであった。ところがモノシラン(SiH4)ガスの
グロー放電分解法により、基板上に堆積した非晶質シリ
コンは膜中に取り込まれた水素がダングリングボンドな
中和(ターミネート)し、しかもホウ素、リンなどを添
加することにより価電子制御が可能となった。またター
ミネータとしては水素の外に弗素等のハロゲン元素でも
よい。
In recent years, amorphous semiconductors have attracted attention as new electronic materials, with amorphous silicon being a typical example, and its application to solar cells in particular is progressing. It has long been known that amorphous silicon can be obtained by vacuum evaporation, etc.
Defects (mainly dangling bonds where bonds between atoms are broken)
Because of the presence of a large number of , its properties as a semiconductor were very poor. However, by using the glow discharge decomposition method of monosilane (SiH4) gas, the amorphous silicon deposited on the substrate is neutralized (terminated) by the hydrogen incorporated into the film as a dangling bond, and furthermore, boron, phosphorus, etc. are added. This made it possible to control valence electrons. In addition to hydrogen, the terminator may be a halogen element such as fluorine.

このような水素等でダングリングボンドをターミネート
した非晶質シリコンは、1.7eV程度の禁止帯中を持
つ半導体であるが、一方、1j−i−n型(第1図は禁
止帯幅と太陽電池の理論効率の関係を示し、これから分
かるように1.4eV付近の禁止帯幅値において最高効
率が得られる。また光の入射側の層(pまたはn層)は
光の透過性の向上の見変化させることが考えられる。例
えば炭素を組み込むことによって禁止帯幅を大きくシ、
ゲルマ−ラムを組み込むことによって禁止帯幅な小さく
することかできる。
Amorphous silicon whose dangling bonds are terminated with hydrogen or the like is a semiconductor with a forbidden band of about 1.7 eV, but on the other hand, it has a 1j-i-n type (Figure 1 shows the forbidden band width). The relationship between the theoretical efficiency of solar cells is shown, and as can be seen from this, the highest efficiency is obtained at a bandgap value around 1.4 eV.Also, the layer on the light incident side (p or n layer) improves the light transmittance. For example, by incorporating carbon, the forbidden band width can be increased,
The bandgap can be reduced by incorporating gelmaram.

しかしこの様にして得られたヘテロ接合は、単結晶半導
体の場合と同様に、格子不整合により接合面での欠陥力
で増加し、太陽電池特性が悪化していた。
However, in the heterojunction thus obtained, as in the case of a single crystal semiconductor, the defect force at the junction surface increases due to lattice mismatch, and the solar cell characteristics deteriorate.

本発明はこの欠点を除き、ヘテロ接合を有するが格子不
整合による特性悪化のない薄膜太陽電池を提供すること
を目的とする。
An object of the present invention is to eliminate this drawback and provide a thin film solar cell having a heterojunction but without deterioration of characteristics due to lattice mismatch.

この目的はへテロ接合を形成する非晶質半導体層の隣接
する層がそれぞれ同一の■族元素を含むことによって達
成される。
This objective is achieved by each adjacent layer of the amorphous semiconductor layer forming the heterojunction containing the same group (I) element.

以下図を引用して本発明の実施例について説明する。第
2図は本発明による実施例の構造概念図である。ガラス
基板1上にITO膜2・を蒸着し、その上に非晶質膜を
9層3,1層4,1層5の順に形成する。9層3は、S
iH4,CH4,GeH4とB2H6の混合ガス、1層
4は、SiH4,GeH4の混合ガス、さらに1層5は
、SiH4,PH3の混合ガスのグロー放電分解により
形成する。それぞれのガス比を変えることで、Si、 
C,Geからなるp層、  81.Geからなる1層の
禁示帯幅は各々1.8〜2eV、 1.4〜1.5eV
に調整される。9層3にはその後に形成される1層4の
中の■族元素であるStとGoの双方を含んでいて、p
−1界面の格子不整合を大巾に低減する作用をしている
。また1層には、1層5の中の■族元素Stが含まれて
いて、同様に格子不整合を低減している。このあと1層
5の上に金属電極6を蒸着すれば入射光7により生ずる
光起電力を接続導体8,9から取り出すことのできる太
陽電池ができ上がる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a conceptual structural diagram of an embodiment according to the present invention. An ITO film 2 is deposited on a glass substrate 1, and nine amorphous films 3, 1 layer 4, and 1 layer 5 are formed thereon in this order. 9 layer 3 is S
The first layer 4 is formed by a mixed gas of iH4, CH4, GeH4 and B2H6, and the first layer 5 is formed by glow discharge decomposition of a mixed gas of SiH4 and PH3. By changing the respective gas ratios, Si,
p layer consisting of C, Ge, 81. The forbidden band width of one layer made of Ge is 1.8 to 2 eV and 1.4 to 1.5 eV, respectively.
is adjusted to The 9th layer 3 contains both St and Go, which are Group 2 elements in the 1st layer 4 formed subsequently, and p
It has the effect of greatly reducing the lattice mismatch at the −1 interface. Furthermore, the first layer contains the Group Ⅰ element St in the first layer 5, which similarly reduces lattice mismatch. If a metal electrode 6 is then vapor-deposited on the first layer 5, a solar cell is completed in which the photovoltaic force generated by the incident light 7 can be taken out from the connecting conductors 8, 9.

以上述べたように本発明はへテロ接合を形成する非晶質
半導体層の接合界面における格子不整合を隣接層相互に
同じ■族元素が含まれているようにすることにより低減
させるもので、各層の禁示帯幅ケ任意に調整できるヘテ
ロ接合の特長を生かした特性の良好な太陽電池を得るこ
とができ、得られる効果は極めて大きい。
As described above, the present invention reduces the lattice mismatch at the junction interface of amorphous semiconductor layers forming a heterojunction by making the adjacent layers contain the same group Ⅰ element. It is possible to obtain a solar cell with good characteristics by taking advantage of the feature of a heterojunction in which the forbidden band width of each layer can be adjusted arbitrarily, and the obtained effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は太陽電池の変換効率と構成半導体の禁止帯幅の
関係線図、第2図は本発明の一実施例の概念的断面図で
ある。 1・・・ガラス板、2・・・透明電極、3・・・81(
C,Ge)p層、4−8t(Ge)1層、5− Sin
層。 オ 1図 1 12 1.4 1.6  +、8 2禁止榮中 オ 2図 忙7
FIG. 1 is a diagram showing the relationship between the conversion efficiency of a solar cell and the forbidden band width of the constituent semiconductors, and FIG. 2 is a conceptual cross-sectional view of an embodiment of the present invention. 1...Glass plate, 2...Transparent electrode, 3...81(
C, Ge) p layer, 4-8t(Ge) 1 layer, 5-Sin
layer. O 1 Figure 1 12 1.4 1.6 +, 8 2 Ban Eichu O 2 Figure Busy 7

Claims (1)

【特許請求の範囲】[Claims] 1)へテロ接合を形成する非晶質半導体層の隣接する層
がそれぞれ同一の周期律表■族元素を含むことを特徴と
する薄膜太陽電池。
1) A thin film solar cell characterized in that adjacent layers of amorphous semiconductor layers forming a heterojunction each contain the same Group I element of the periodic table.
JP57212191A 1982-12-03 1982-12-03 Thin film solar battery Pending JPS59101880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57212191A JPS59101880A (en) 1982-12-03 1982-12-03 Thin film solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57212191A JPS59101880A (en) 1982-12-03 1982-12-03 Thin film solar battery

Publications (1)

Publication Number Publication Date
JPS59101880A true JPS59101880A (en) 1984-06-12

Family

ID=16618427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57212191A Pending JPS59101880A (en) 1982-12-03 1982-12-03 Thin film solar battery

Country Status (1)

Country Link
JP (1) JPS59101880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262079A (en) * 1988-08-29 1990-03-01 Hitachi Ltd Silicon-based amorphous solar cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511397A (en) * 1979-06-05 1980-01-26 Shunpei Yamazaki Semiconductor device with continuous connection and its production method
JPS5664476A (en) * 1979-08-30 1981-06-01 Plessey Overseas Armophous silicon solar battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511397A (en) * 1979-06-05 1980-01-26 Shunpei Yamazaki Semiconductor device with continuous connection and its production method
JPS5664476A (en) * 1979-08-30 1981-06-01 Plessey Overseas Armophous silicon solar battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262079A (en) * 1988-08-29 1990-03-01 Hitachi Ltd Silicon-based amorphous solar cell

Similar Documents

Publication Publication Date Title
US5066340A (en) Photovoltaic device
US4113531A (en) Process for fabricating polycrystalline inp-cds solar cells
JPS6249672A (en) Amorphous photovoltaic device
JPS59205770A (en) Photovoltaic device
US4451838A (en) Semiconductor photoelectric conversion device
US5521400A (en) Semiconductor photoelectrically sensitive device with low sodium concentration
JPH0693519B2 (en) Amorphous photoelectric conversion device
US4704624A (en) Semiconductor photoelectric conversion device with partly crystallized intrinsic layer
JPS6334632B2 (en)
JPH0653151A (en) Amorphous silicon thin film and solar cell using it
JPS59101880A (en) Thin film solar battery
JPH0473305B2 (en)
JPH05275725A (en) Photovoltaic device and its manufacture
JPS62159475A (en) Amorphous Si solar cell
JPS61120480A (en) Photoelectric converter
JPS59101879A (en) Thin film solar battery
JPS6030181A (en) Amorphous thin film photovoltaic element
JP2775460B2 (en) Manufacturing method of amorphous solar cell
JPH0376020B2 (en)
JP2713799B2 (en) Thin film solar cell
JPS6135569A (en) photovoltaic device
JPS63274184A (en) Photoelectric transducer and manufacture thereof
JPS618979A (en) Method for manufacturing a photovoltaic device
JPS58168215A (en) Amorphous semiconductor
JPS6074584A (en) Method for manufacturing amorphous silicon solar cells