[go: up one dir, main page]

JPS59101879A - Thin film solar battery - Google Patents

Thin film solar battery

Info

Publication number
JPS59101879A
JPS59101879A JP57211675A JP21167582A JPS59101879A JP S59101879 A JPS59101879 A JP S59101879A JP 57211675 A JP57211675 A JP 57211675A JP 21167582 A JP21167582 A JP 21167582A JP S59101879 A JPS59101879 A JP S59101879A
Authority
JP
Japan
Prior art keywords
layer
solar battery
mixed gas
sih4
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57211675A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Uchida
内田 喜之
Masakazu Ueno
正和 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP57211675A priority Critical patent/JPS59101879A/en
Publication of JPS59101879A publication Critical patent/JPS59101879A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/10Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material
    • H10F71/103Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials
    • H10F71/1035Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials having multiple Group IV elements, e.g. SiGe or SiC
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/17Photovoltaic cells having only PIN junction potential barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a P-I-N type thin film solar battery wherein the forbidden band width of an I-layer is in the neighborhood of 1.4eV and that of a window layer is made as large as possible by changing the I-layer into an amorphous film with Si and Ge as the main constituent and the window layer into an amorphous film with Si and Ci as the main constituent. CONSTITUTION:An ITO film 2 is formed on a glass substrate 1 by vapor deposition, and amorphous films are formed thereon in the order of a P-layer 3, an I- layer 4, and an N-layer 5. The P-layer 3 is formed by the glow discharge decomposition of the mixed gas with an Si hydrogen compound such as SiH4 or an Si fluoride, hydrocarbon such as CH4, B2H6, etc., and the I-layer 4 by the mixed gas with an Si compound such as SiH4 and a Ge compound, respectively. The N- layer 5 can be formed by the mixed gas with SiH4 and PH3 in the same manner as a conventional solar battery. A photovoltage generated by the incidence of a light 7 can be led out from connection conductors 8 and 9 by providing a metallic electrode 6 on the N-layer 5. The forbidden band width of the P-layer 3 with Si and C as the main constituent increase as C-content increases.

Description

【発明の詳細な説明】 に関する。[Detailed description of the invention] Regarding.

近年、非晶質半導体が新たな電子材料として注目され、
代表的なものが非晶質シリコンであり特許こ太IG 1
11.池への応用が進められている。非晶質シリコンは
、真空蒸看などにより得られることが古くから知られて
いたが、欠陥(主に原子間の結合が切れたタンクリング
ボンド)が多数存在するため、半導体としての性質は非
常に悪いものであった。ところがモノシラン(Si1(
4)ガスのグロー放1(4分解法により、基板上に堆積
した非晶質シリコンは、膜中に取り込まれた水素がダン
グリングボンドを中和(ターミネータ)シ、しかもほう
素。
In recent years, amorphous semiconductors have attracted attention as new electronic materials.
A typical example is amorphous silicon, which is patented as IG 1.
11. Application to ponds is underway. It has been known for a long time that amorphous silicon can be obtained by vacuum evaporation, but because it has many defects (mainly tank ring bonds where bonds between atoms are broken), its properties as a semiconductor are extremely poor. It was bad. However, monosilane (Si1(
4) Glow release of gas 1 (4) In the amorphous silicon deposited on the substrate by the decomposition method, the hydrogen taken into the film neutralizes (terminators) the dangling bonds, and moreover, the boron.

りんなどを添加することにより価電子制御が出来ること
が解かった。ターミネータとしては水素の他に弗素等の
ハロゲン元素を用いるこきもできる。
It was found that valence electrons could be controlled by adding phosphorus or the like. In addition to hydrogen, a halogen element such as fluorine can also be used as a terminator.

このような水素等でダングリングボンドをターミネート
した非晶質シリコンは、1.7eV程度の禁止帯幅を持
一つ半導体である。いまp − i − n型の太陽電
池を考えると、主たる電流発生領域であるi層の禁止帯
幅は、太陽電池の有効利用という点から1.7eVより
小さいことが望ましい。ml図には太陽電池の活性領域
を構成する半導体の禁止帯幅と太陽電池の理論効率の関
係を示している。
Amorphous silicon in which dangling bonds are terminated with hydrogen or the like is a semiconductor having a forbidden band width of about 1.7 eV. Considering a p-i-n type solar cell, it is desirable that the forbidden band width of the i-layer, which is the main current generation region, be smaller than 1.7 eV from the viewpoint of effective use of the solar cell. The ml diagram shows the relationship between the forbidden band width of the semiconductor constituting the active region of the solar cell and the theoretical efficiency of the solar cell.

これかられかるように1,4eV附近が最高値を得る。As you will see, the highest value is obtained around 1.4 eV.

一方光の入射側の層は、光の透過性の向上という点で、
大きい禁止帯幅が望ましい。
On the other hand, the layer on the light incident side has the advantage of improving light transmittance.
A large forbidden band width is desirable.

本発明はそれ故i層の禁止帯幅が1. 4 e V附近
にあり、光の入射側の層(窓層)の禁止帯幅ができるだ
け大きいp − i − n型の薄膜太陽電池を提供す
ることを目的とする。
Therefore, in the present invention, the forbidden band width of the i layer is 1. An object of the present invention is to provide a p-i-n type thin-film solar cell in which the bandgap of the layer (window layer) on the light incident side is as large as possible, and the bandgap is around 4 eV.

この目的は窓層が主としてけい素お、よび炭素からなり
、i層が主としてけい素およびゲルマニウムからなるこ
とによって達成される。
This objective is achieved in that the window layer mainly consists of silicon and carbon, and the i-layer mainly consists of silicon and germanium.

以下図を引用して本発明の実施例について説明する。第
2図は本発明の実施例としての薄膜太陽電池の構造概念
図である。ガラス基板1上にITO膜2を蒸着により形
成し、その上に非晶質膜を9層3,1層4,0層5の順
に形成する。9層3は8iH,等のシリコン水素化合物
またはシリコン弗化物と、CH,等の炭化水素ならびに
B2H6などの混合ガスのグロー放電分解により、また
1層4はSiH。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a conceptual diagram of the structure of a thin film solar cell as an embodiment of the present invention. An ITO film 2 is formed on a glass substrate 1 by vapor deposition, and amorphous films are formed thereon in the order of 9 layers 3, 1 layer 4, and 0 layers 5. The 9th layer 3 is formed by glow discharge decomposition of a silicon hydride compound or silicon fluoride such as 8iH, a hydrocarbon such as CH, and a mixed gas such as B2H6, and the 1st layer 4 is formed by SiH.

等のシリコン化合物とGe化合物の混合ガスによりそれ
ぞれ形成される。0層5は従来の太陽電池と同様にSi
H,とPH3との混合ガスによって形成すればよい。0
層5の上に金属電極6を設けることにより光7の入射に
よって生ずる光起電力を接続導体8および9から敗り出
すことができる。8iとCとを主成分とする9層3の禁
止帯幅はCの含壱量が増加するにつれて糟太し、Si対
Cの原子比が1:1の時には2 e Vs  O,3:
 0.7の時には2、2 e Vになる。しかし非晶質
膜形成の技術的困難さはCの含有量が20〜40原子チ
で1.4 e Vの値が実現できることが解かった。こ
のような禁止帯幅値はターミネータとして水素以外の弗
素などを用いた場合にも得ることができる。
These are formed by a mixed gas of a silicon compound and a Ge compound, respectively. 0 layer 5 is Si as in conventional solar cells.
It may be formed using a mixed gas of H, and PH3. 0
By providing a metal electrode 6 on layer 5, the photovoltaic force generated by the incidence of light 7 can be extracted from connecting conductors 8 and 9. The forbidden band width of the 9-layer 3 whose main components are 8i and C increases as the content of C increases, and when the atomic ratio of Si to C is 1:1, 2 e Vs O, 3:
When it is 0.7, it becomes 2.2 eV. However, it has been found that the technical difficulty in forming an amorphous film is that a value of 1.4 eV can be achieved when the C content is 20 to 40 atoms. Such a bandgap value can also be obtained when a terminator other than hydrogen, such as fluorine, is used.

以上述べたように本発明はp −i −n型の太陽電池
においてi層に8iとGeとを主成分とする非晶質膜、
窓層にSiとCとを主成分とする非晶質膜から形成する
ことにより、i層は最高理論効率が得られる1、4eV
附近の禁止帯幅を持つ半導体よりなり、窓層は2eV以
上の禁止帯幅を持つ透過性良好な半導体よりなる理想に
近い薄膜太陽電池を得ることができる。従って太陽電池
の特性向上の上で得られる効果は極めて大きい。
As described above, the present invention provides a p-i-n type solar cell with an amorphous film mainly composed of 8i and Ge in the i-layer.
By forming the window layer from an amorphous film containing Si and C as main components, the i-layer can achieve the highest theoretical efficiency of 1.4 eV.
It is possible to obtain a near-ideal thin-film solar cell made of a semiconductor having a band gap of 2 eV or more, and the window layer being made of a semiconductor with good transparency and a band gap of 2 eV or more. Therefore, the effect obtained in improving the characteristics of solar cells is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は太陽電池の変換効率と構成半導体の禁止帯幅の
関係線図、第2図は本発明の一実施例の概念的断面図で
ある。 l・・・ガラス板、2・・・透明電極、3・・・5i(
C)p層、4−8i(Ge)i層。
FIG. 1 is a diagram showing the relationship between the conversion efficiency of a solar cell and the forbidden band width of the constituent semiconductors, and FIG. 2 is a conceptual cross-sectional view of an embodiment of the present invention. l...Glass plate, 2...Transparent electrode, 3...5i (
C) p layer, 4-8i(Ge)i layer.

Claims (1)

【特許請求の範囲】[Claims] ])p−i−n構造を有する非晶質半導体薄膜を備える
ものにおいて、光の入射側にあるp層あるいはn層が主
としてけい素および炭素よりなり、1層が主としてけい
素およびゲルマニウムからなることを特徴とする薄膜太
陽電池。
]) In a device comprising an amorphous semiconductor thin film having a p-i-n structure, the p-layer or n-layer on the light incident side mainly consists of silicon and carbon, and one layer mainly consists of silicon and germanium. A thin film solar cell characterized by:
JP57211675A 1982-12-02 1982-12-02 Thin film solar battery Pending JPS59101879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57211675A JPS59101879A (en) 1982-12-02 1982-12-02 Thin film solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57211675A JPS59101879A (en) 1982-12-02 1982-12-02 Thin film solar battery

Publications (1)

Publication Number Publication Date
JPS59101879A true JPS59101879A (en) 1984-06-12

Family

ID=16609727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57211675A Pending JPS59101879A (en) 1982-12-02 1982-12-02 Thin film solar battery

Country Status (1)

Country Link
JP (1) JPS59101879A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352486A (en) * 1986-08-22 1988-03-05 Hitachi Ltd Amorphous solar battery
JPH0262079A (en) * 1988-08-29 1990-03-01 Hitachi Ltd Silicon-based amorphous solar cell
CN107093656A (en) * 2017-05-17 2017-08-25 厦门科锐捷半导体科技有限公司 LED based on vertical structure and preparation method thereof
RU2698491C1 (en) * 2019-03-06 2019-08-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет" Manufacturing method of solar energy converter with high efficiency

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664476A (en) * 1979-08-30 1981-06-01 Plessey Overseas Armophous silicon solar battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664476A (en) * 1979-08-30 1981-06-01 Plessey Overseas Armophous silicon solar battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352486A (en) * 1986-08-22 1988-03-05 Hitachi Ltd Amorphous solar battery
JPH0262079A (en) * 1988-08-29 1990-03-01 Hitachi Ltd Silicon-based amorphous solar cell
CN107093656A (en) * 2017-05-17 2017-08-25 厦门科锐捷半导体科技有限公司 LED based on vertical structure and preparation method thereof
RU2698491C1 (en) * 2019-03-06 2019-08-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет" Manufacturing method of solar energy converter with high efficiency

Similar Documents

Publication Publication Date Title
US4758527A (en) Method of making semiconductor photo-electrically-sensitive device
KR910001742B1 (en) Photovoltaic devices
US4379943A (en) Current enhanced photovoltaic device
US4433202A (en) Thin film solar cell
US7879644B2 (en) Hybrid window layer for photovoltaic cells
JPS59205770A (en) Photovoltaic device
JPS58199710A (en) P type amorphous oxygen and silicon alloy with improved wide band gap and application device
JPS6249672A (en) Amorphous photovoltaic device
JP2006080557A (en) Improved stabilization characteristics of amorphous silicon-based devices fabricated by high hydrogen dilution low temperature plasma deposition
GB2116364A (en) Photovoltaic device having incident radiation directing means
US5043772A (en) Semiconductor photo-electrically-sensitive device
US5419783A (en) Photovoltaic device and manufacturing method therefor
JPH06267868A (en) Formation of silicon oxide semiconductor film
US5391893A (en) Nonsingle crystal semiconductor and a semiconductor device using such semiconductor
AU2011219223B2 (en) Thin-film photoelectric conversion device and method for production thereof
IE54573B1 (en) Improved back reflector system and devices utilizing same
JPH065774B2 (en) Solar cell
JP2692091B2 (en) Silicon carbide semiconductor film and method for manufacturing the same
US4903102A (en) Semiconductor photoelectric conversion device and method of making the same
JPS6334632B2 (en)
JPS59101879A (en) Thin film solar battery
US7038238B1 (en) Semiconductor device having a non-single crystalline semiconductor layer
Ohashi et al. High performance hydrogenated amorphous silicon solar cells made at a high deposition rate by glow discharge of disilane
JPS6152992B2 (en)
JP2757896B2 (en) Photovoltaic device