JPS59100561A - Semiconductor device and method of producing same - Google Patents
Semiconductor device and method of producing sameInfo
- Publication number
- JPS59100561A JPS59100561A JP58213176A JP21317683A JPS59100561A JP S59100561 A JPS59100561 A JP S59100561A JP 58213176 A JP58213176 A JP 58213176A JP 21317683 A JP21317683 A JP 21317683A JP S59100561 A JPS59100561 A JP S59100561A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- silicon
- coating
- polycrystalline
- amorphous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 16
- 238000000034 method Methods 0.000 title description 23
- 229910052710 silicon Inorganic materials 0.000 claims description 25
- 239000010703 silicon Substances 0.000 claims description 25
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 24
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 22
- 238000000151 deposition Methods 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 68
- 238000000576 coating method Methods 0.000 description 38
- 239000011248 coating agent Substances 0.000 description 27
- 239000010408 film Substances 0.000 description 17
- 230000008021 deposition Effects 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 238000010606 normalization Methods 0.000 description 10
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 9
- 230000003746 surface roughness Effects 0.000 description 9
- 238000001069 Raman spectroscopy Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 7
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000004627 transmission electron microscopy Methods 0.000 description 4
- 238000001919 Rayleigh scattering spectroscopy Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 150000003376 silicon Chemical class 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001493 electron microscopy Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241000233855 Orchidaceae Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000001350 scanning transmission electron microscopy Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/32055—Deposition of semiconductive layers, e.g. poly - or amorphous silicon layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Recrystallisation Techniques (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Semiconductor Integrated Circuits (AREA)
- Chemical Vapour Deposition (AREA)
- Photovoltaic Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は半導体装置および構体、特に集積回路装置お
よび構体の多結晶シリコン層に関する。DETAILED DESCRIPTION OF THE INVENTION This invention relates to semiconductor devices and structures, and more particularly to polycrystalline silicon layers for integrated circuit devices and structures.
半導体装置特に集積回路構体には複数の多結晶層が含ま
れていることは公知である。このような装置が小型化し
、設計が複雑化するに従って、各種材料の層を垂直方向
に多数重ねるようになって来た。このような装置は多結
晶シリコン層を複数個含み、その層の全部または一部が
バタン形成され、種々の材料でドーピングされ、酸化さ
れて2酸化シリコン等の上被層を形成されることが多い
。It is known that semiconductor devices, particularly integrated circuit structures, include multiple polycrystalline layers. As such devices have become smaller and more complex in design, many vertical layers of various materials have been stacked one on top of the other. Such devices include multiple layers of polycrystalline silicon, all or part of which can be battened, doped with various materials, and oxidized to form an overcoat layer such as silicon dioxide. many.
半導体構体および装置に対する設計条件が厳しくなるに
つれて、各層の厚さを薄くシ、性質を均一にすると共に
平滑度を向上する必要がある。そ17)層が2酸化シリ
コンのような誘電材料を一方または両方が粗面の多結晶
シリコンから成る2枚の導電層の間に挾むと、その構体
に印加される電界がその導電層の表面の突起部に偏在集
中し、さらに強い電界を生じて隣接する誘電層を破損す
ることがある。さらに重要なことには、導電層の一方ま
たは両方の表面の突起まだは隆起したところで間の1透
電層を・貫通して2枚の導電層間に電流が流れ易くム・
ることか判明した。このような現象は時間経過上共に絶
縁破壊を起すことになる。従ってその多結晶シリコン層
はできるだけ平Pftなことが9ノ件しい。As design requirements for semiconductor structures and devices become more stringent, it is necessary to reduce the thickness of each layer, make the properties uniform, and improve smoothness. 17) When a dielectric material such as silicon dioxide is sandwiched between two conductive layers, one or both of which are made of rough polycrystalline silicon, the electric field applied to the structure is The electric field may be localized and concentrated on the protrusions of the electrode, generating an even stronger electric field and damaging the adjacent dielectric layer. More importantly, current can easily flow between the two conductive layers by penetrating the conductive layer between the protrusions or protrusions on the surface of one or both of the conductive layers.
It became clear that this was the case. Such a phenomenon will cause dielectric breakdown over time. Therefore, it is essential that the polycrystalline silicon layer has as flat a Pft as possible.
この平滑度に対する極めて厳しい条件の他に、複雑な集
積回路装置の多結晶シリコン層は歪が殆んとなく、各結
晶粒内の結晶の完全塵がよく、表面が滑らかで結晶粒構
造が均一で、集積回路の製造に必要な微細な写真製版パ
タンに適することを′決する。In addition to this extremely strict requirement for smoothness, the polycrystalline silicon layer of complex integrated circuit devices has almost no distortion, has good crystal integrity within each grain, has a smooth surface, and has a uniform grain structure. It was determined that the material was suitable for the fine photolithography patterns required for the manufacture of integrated circuits.
無定形(アモルファス)状態または無定形(アモルファ
ス)多結晶状態におけるシリコンの成長は公知であり、
このような薄膜を約850〜1.OOO’Cて焼きなら
してこれを多結晶状態に変換するととも公知である。し
かし一般に、半導体装置の製造で形成される多結晶シリ
コン層は多結晶状態で形成される。これはシリコン層が
無定形状態よシ多結晶状態において相当短時間で形成さ
れ、また専門家の中には無定形状態で形成された層の方
が比較的不安定と考えている人もあるためである。その
上従来このような装置に対する条件は多結晶状態で形成
した層を許容し得るようにすることであったが、多結晶
状態で形成したシリコン層は将来の複雑な多層半導体装
置に対する厚さと平滑度の条件に適合し得ない。The growth of silicon in an amorphous or amorphous polycrystalline state is known;
Such a thin film has a thickness of about 850 to 1. It is also known that OOO'C is normalized to convert it into a polycrystalline state. However, generally, polycrystalline silicon layers formed in the manufacture of semiconductor devices are formed in a polycrystalline state. This is because a silicon layer is formed in a much shorter time in an amorphous state than in a polycrystalline state, and some experts believe that a layer formed in an amorphous state is relatively unstable. It's for a reason. Furthermore, while the traditional requirement for such devices has been to be able to tolerate layers formed in a polycrystalline state, silicon layers formed in a polycrystalline state will require thickness and smoothness for future complex multilayer semiconductor devices. It cannot meet the conditions of degree.
この発明によシ、複雑な多層半導体装置はそのシリコン
層を無定形状態で形成し、焼きならしにより多結晶状態
にすることにより著しく改善されることが判った。In accordance with the present invention, it has been found that complex multilayer semiconductor devices can be significantly improved by forming the silicon layer in an amorphous state and normalizing it to a polycrystalline state.
1枚またはそれ以上の多結晶シリコンの層ヲ含む複雑な
多層半導体その他の電子装置は、その層を無定形状態で
成長さぜ、焼きならしてこれを多結晶状態に変換するこ
とにより、その層に特別な表面平滑度、結晶完全塵およ
び微視的均一度を与えることによって改善される。この
特別の平滑度が多結晶層で保存されることは驚異的であ
る。Complex multilayer semiconductors and other electronic devices containing one or more layers of polycrystalline silicon can be grown by growing the layer in an amorphous state and normalizing it to convert it to a polycrystalline state. Improved by giving the layer special surface smoothness, crystal perfectness and microscopic homogeneity. It is surprising that this particular smoothness is preserved in the polycrystalline layer.
この発明は多結晶シリコン層を1つまたはそれ」ソ土有
する半導体装置捷たけ他の電子装置に関するか、このユ
うな装置または構体は通常電子回路を含むか、その一部
を成している。このような装置の例としては、 MOS
ゲート、相互接続、負荷抵抗、複字結晶シリコンコンデ
ンサおよび高密度集積回路技術に見られる種々の装置が
ある。ここで用いる「装置」という用語は半導体装置の
構体まだは複合体を含むものとする。一般にこの発明は
第1図に示すもののように多結晶シリコン層を1つまた
はそれ以上要する任意の電子装置に適用することができ
る。この発明は装置表面の多結晶シリコンの単層を改善
するものであるが、その作用効果は多層構体の内部の層
にも実現することが本来ルJ待さり、る。The present invention relates to semiconductor devices and other electronic devices having one or more layers of polycrystalline silicon, such devices or structures typically containing or forming part of electronic circuitry. Examples of such devices include MOS
There are gates, interconnects, load resistors, double crystal silicon capacitors and various devices found in high density integrated circuit technology. The term "device" as used herein includes structures or composites of semiconductor devices. In general, the invention is applicable to any electronic device that requires one or more polycrystalline silicon layers, such as the one shown in FIG. Although this invention improves the single layer of polycrystalline silicon on the surface of the device, it is originally expected that its effects will be realized in the internal layers of the multilayer structure.
第1図には例えば2つのトランジスタ(図示せず)間の
相互接続装置が示されている。この接続装置は多結晶シ
リコンの第ルベルの一部である2つのゲート21を有し
、そのゲート酸化物22とフィールド酸化物23?i2
酸化シリコンである。多結晶シリコンの第2層24は両
トランジスタ間の接続体として働らく。この構体は適当
な誘電材料25で被覆されている。FIG. 1 shows, for example, an interconnection arrangement between two transistors (not shown). This connection device has two gates 21 which are part of a polycrystalline silicon layer, with a gate oxide 22 and a field oxide 23? i2
It is silicon oxide. A second layer of polycrystalline silicon 24 serves as a connection between both transistors. This structure is coated with a suitable dielectric material 25.
この発明により、多結晶シリコン層は電子装置に含まれ
るサファイア、ガラス、2酸化シリコン等の通常の任意
の基板上に無定形状態で形成されるが、このシリコン層
の好ましい被着法は低圧化学蒸着法である。この発明の
目的には「無定形(アモルファス)」という語が低圧化
学蒸着法により温度約560〜580°Cで成長させた
シリコン層を意味する。この層はラーマン法でl」11
定すると完全に無定形であるが、X線で検べると580
°Cでは全部が無定形でなく僅かに結晶質であり、透過
型電子顕微鏡で検べると完全な無定形中に平均粒径約6
0〜120人の結晶粒が混っている。このシリコン層の
確かな性質は温度一定でも反応器内の基板の位置、反応
器自体の幾例学的寸法、熱電対の正確な位置と公差等の
因子によシ若干変化することがある0
これに対し同様条件の低圧化学蒸着法でも温度600〜
620’Cで被着した層は、通常の方法で完全に結晶質
で平均粒径が300Å以上あることが判っだ○ぞの」−
1このような層を焼ならしすると部分的に結晶度のよい
所と悪い所が混在する極めて混乱状態の多結晶シリコン
を生ずる。その結晶度の悪い部分はその層の重量の25
%に達することもあり、装置の欠陥の原因となり得る極
めて歪の多いJjCf造を持つことがあるため、装置に
利用することは極めて不都合なことがある。In accordance with the present invention, a polycrystalline silicon layer is formed in an amorphous state on any conventional substrate such as sapphire, glass, silicon dioxide, etc. in electronic devices; the preferred method of depositing this silicon layer is low pressure chemical This is a vapor deposition method. For purposes of this invention, the term "amorphous" refers to a silicon layer grown by low pressure chemical vapor deposition at a temperature of about 560 DEG to 580 DEG C. This layer is calculated using the Raman method.11
When examined, it is completely amorphous, but when examined with X-rays, it is 580.
At °C, all of the particles are not amorphous but slightly crystalline, and when examined with a transmission electron microscope, they are completely amorphous with an average particle size of approximately 6.
The crystal grains of 0 to 120 people are mixed. The exact properties of this silicon layer may vary slightly even at a constant temperature depending on factors such as the position of the substrate within the reactor, the geometrical dimensions of the reactor itself, and the exact location and tolerances of the thermocouples. On the other hand, even with low-pressure chemical vapor deposition under similar conditions, the temperature is 600~
The layer deposited at 620'C was found by conventional methods to be completely crystalline with an average grain size of over 300 Å.''
1. Normalizing such a layer produces polycrystalline silicon in a highly disordered state, with some parts having good crystallinity and some parts having bad crystallinity. The area with poor crystallinity is 25% of the weight of the layer.
% and may have an extremely strained JjCf structure that can cause defects in the device, making it extremely inconvenient to use it in devices.
この多結晶シリコン層は通常の低圧化学蒸着法により通
常の装置を用いて560〜580°Cでシランのような
シリコンを含む蒸気から被着するのが好捷しい。例えば
、シリコン含有蒸気にホスフィンのような適当なドープ
剤を混合することにより通常の位置にドープ層を形成す
る。シリコン含有蒸気としてシランを用いる低圧化学蒸
着法がこの発明によシ推奨されるが、同様の結果をもた
らす公知の方法および材料を用いることもできる。This polycrystalline silicon layer is preferably deposited by conventional low pressure chemical vapor deposition techniques using conventional equipment at 560-580 DEG C. from a silicon-containing vapor such as silane. For example, a doped layer is formed in a conventional location by mixing a silicon-containing vapor with a suitable dopant such as phosphine. Although low pressure chemical vapor deposition using silane as the silicon-containing vapor is preferred by this invention, known methods and materials that yield similar results may also be used.
この層を酸素を0.5容積係含む窒素雰囲気内において
好ましくは850〜1000°Cで焼ならしをする。This layer is normalized preferably at 850 DEG to 1000 DEG C. in a nitrogen atmosphere containing 0.5 vol. of oxygen.
この微量の酸素の存在が燐をドープした層にはl侍に重
要で、これがドープしたシリコン表面に極めて薄い酸化
物層を形成して燐の逆拡散を防止する。The presence of this trace amount of oxygen is important in the phosphorous-doped layer, as it forms an extremely thin oxide layer on the doped silicon surface to prevent phosphorous back-diffusion.
この酸化物の薄層は焼ならし後シリコン層のバタン形成
等の後続工程前に多結晶シリコンの表面から除去する。This thin layer of oxide is removed from the surface of the polycrystalline silicon before subsequent steps such as battening of the silicon layer after normalization.
無定形状態において多結晶シリコン層を被着すると、焼
ならしによる結晶粒形成が著しく向上するため、この発
明によって半導体装置が著しく改善される。すなわち、
この層は多結晶状態で成長さぜた層よシ歪が少なく完全
度が高く、特に表面が平滑で隣接層との間の界面を著し
く改善するため、電気的破壊電位を低下させる。またこ
の層は微視的均一度が極めて良好なため、極めて精密な
写真製版が可能である。焼きならしによって内部結晶粒
径が著しく増大し、すなわち平均粒径が約800人にも
なるが、上記の利点が多結晶状態に転換した後もその層
に保存されるとは思われない。The present invention significantly improves semiconductor devices because the deposition of polycrystalline silicon layers in the amorphous state significantly improves grain formation upon normalization. That is,
This layer has less distortion and higher integrity than a layer grown in a polycrystalline state, and has a particularly smooth surface, which significantly improves the interface between adjacent layers, thereby lowering the electrical breakdown potential. Furthermore, since this layer has extremely good microscopic uniformity, extremely precise photoengraving is possible. Although normalization significantly increases the internal grain size, ie, the average grain size reaches about 800 grains, it is unlikely that the above advantages are preserved in the layer after conversion to the polycrystalline state.
被着後焼ならしされた多結晶シリコン被膜の表面粗さは
光学スペクトルや電子顕微鏡で特徴付けることができる
。光学法では厚さ700〜l000人の銀層を表lTi
1に蒸着し、フィジカル・レビュ(PhyS、1ieV
、 )1.9’70年第B14巻第479頁掲載のカニ
ングハム等(Cunningham Braundme
ier)の方法を用いて反射率の差を測定する。The surface roughness of polycrystalline silicon coatings that are normalized after deposition can be characterized using optical spectroscopy or electron microscopy. The optical method reveals a silver layer with a thickness of 700 to 1000 mm.
Physical review (PhyS, 1ieV
, ) 1.9 Cunningham et al. published in Vol. B14, p.
The difference in reflectance is measured using the method of Ier).
この発明によって低圧化学蒸着法により560°Cの7
ランから成長させたシリコン被膜の平均自乗粗さの平方
根すなわち粗さ実効値σは約20人未満であるが、同じ
方法により620’Cで生長させた被11弾のそれは通
常少なくとも50人である。第2図は900〜1000
”Cで焼ならしされた多結晶シリコンの粗さ実効値を被
着温度の関数として描いた図表である。この図表から低
圧化学蒸着法によると被着温度580’C以下において
のみσ値が約20Å以下、通常的15Å以下になり得る
ことが判る。According to the present invention, the temperature of 70°C at 560°C by low pressure chemical vapor deposition is
The square root mean square roughness, or effective roughness σ, of silicon coatings grown from orchids is less than about 20, whereas that of 11 shells grown by the same method at 620'C is typically at least 50. . Figure 2 is 900-1000
This is a chart depicting the effective roughness values of polycrystalline silicon normalized at C as a function of deposition temperature. This chart shows that according to the low-pressure chemical vapor deposition method, the σ value is only at a deposition temperature of 580'C or lower. It can be seen that it can be about 20 Å or less, typically 15 Å or less.
このように例えばジャーナル・オプ・エレクトロケミカ
ル・ソサイエテイ(Jour、 Electroche
m。Thus, for example, the Journal of the Electrochemical Society
m.
Soc、 ’) 1980年第127巻第686頁掲載
のカミンズ(KaminS ’)の論文の記載とは異り
、無定形または無定形結晶質状態でシリコンを被着する
ことは半導体装置の製造において忌避すべきことではな
く、反って無定形状態でシリコン層を成長させるとその
層の平滑度、無歪性および微視的均一度が極めて向上す
るため、複雑な多層半導体装置を実質的に改善すること
ができることが判った。Soc, ') Contrary to the article by Kamin S' published in Vol. 127, p. 686, 1980, depositing silicon in an amorphous or amorphous crystalline state is avoided in the manufacture of semiconductor devices. Instead, growing a silicon layer in a warped, amorphous state greatly improves the smoothness, distortion-freeness, and microscopic uniformity of that layer, thereby substantially improving complex multilayer semiconductor devices. It turns out that it is possible.
この層が焼ならしの前後を通じてその特長を維持するこ
とは、焼ならしによる結晶粒径の増大のため期待できな
いが、本願発明者はこの層が焼きならし後も約800人
の平均粒径を持つのに対して、高温で形成した層の平均
粒径が200〜400人であることを観測している。こ
の発明の層が焼ならしの前後を通じて意外にも表面平滑
度を維持するこに変っていない。Although it cannot be expected that this layer will maintain its characteristics before and after normalizing because of the increase in crystal grain size due to normalizing, the inventor of the present application has found that this layer maintains its characteristics even after normalizing. It has been observed that the average particle size of the layer formed at high temperature is 200 to 400 particles. The layer of this invention surprisingly maintains its surface smoothness both before and after normalizing.
また例えば燐による通常のドーピングもこの発明の層の
表面粗さを顕著に増大しないことも判っている。これは
普通のドーピングがシリコン被膜の結晶粒の成長を助長
することが認められている泥め意外なことである。本願
発明者は580°Cで被着して通常の燐ドーピングを行
ったシリコン層の結晶質の体積含有率は対応する未ドー
ピング層のそれより若干高いが、表面特性はどちらも同
じであることを観測した。成長後の平均粒径が未ドーピ
ング層のそれよシ実質的に太きいと考えると、通常の燐
1・−ピングをして焼ならしをした層の表面粗さのピー
ク・ピーク値。ppが50人未満ということは極めて意
外である。It has also been found that conventional doping, for example with phosphorus, does not significantly increase the surface roughness of the layers of the invention. This is surprising since conventional doping has been found to promote grain growth in silicon films. The inventors have found that although the crystalline volume content of the silicon layer deposited at 580°C and with conventional phosphorus doping is slightly higher than that of the corresponding undoped layer, the surface properties are the same for both. was observed. Considering that the average grain size after growth is substantially larger than that of the undoped layer, the peak-to-peak value of the surface roughness of the layer normalized by normal phosphorus doping. It is extremely surprising that there are less than 50 pp.
次に例によってこの発明を説明するが、この発明をこの
説明の細部によって限定しようとするものではない。各
側において部および頭は特記外すべて重量によ勺、温度
はすべて°Cで表わす。The invention will now be described by way of example without any intention to limit the invention to the details of this description. On each side, all parts and heads are by weight unless otherwise specified and all temperatures are in °C.
例 1
内径127+ff71+の石英管内の低圧化学蒸着器に
よシ(100)シリコン基板上に熱成長させた厚さ30
00人の酸化物層の」二にシリコン被膜を被着した。こ
の被膜の厚さは約0.5μであった。被着温度は反応管
内において測定した。シリコン被着は2.00 af
7分のシラン気流中において圧力350mTor温度5
60゜570°、580°、6000.620°で行っ
た。温度上昇と共に被膜周辺に向って被膜厚さが増大す
るのが観測されたため、6’OO’、62.0 ’の被
着は圧力120 mTorシラン流量5流量50c公’
7ったが、これによって半径方向の厚さ均一度が向上し
、生長速度が約100人/分に制限された。次にこのシ
リコン被膜を窒素雰囲気中において温度900°、95
0°、10000で焼ならしした。Example 1 30 mm thick thermally grown on a (100 mm) silicon substrate in a low pressure chemical vapor deposition device in a quartz tube with an internal diameter of 127 + ff71 +
A silicon coating was deposited on top of the oxide layer. The thickness of this coating was approximately 0.5μ. The deposition temperature was measured inside the reaction tube. Silicone adhesion is 2.00 af
Pressure 350 mTorr temperature 5 in silane air flow for 7 minutes
The angles were 60°, 570°, 580°, and 6000.620°. Since it was observed that the film thickness increased towards the periphery of the film as the temperature increased, the deposition of 6'OO', 62.0'
7, but this improved the radial thickness uniformity and limited the growth rate to about 100 per minute. Next, this silicon film was placed in a nitrogen atmosphere at a temperature of 900° and 95°C.
Normalized at 0° and 10,000.
この被膜を成長後と焼ならし後の両方についてラーマン
法、弾性光散乱法、吸光法、紫外線反射率法、X線回折
法、導電度法、走査型電子顕微鏡法および透過型電子顕
微鏡法により試験した。This film was analyzed both after growth and after normalization by Raman method, elastic light scattering method, absorption method, ultraviolet reflectance method, X-ray diffraction method, conductivity method, scanning electron microscopy, and transmission electron microscopy. Tested.
通常のラーマン法を用いて、560°〜580°で生長
したシリコン被膜は完全に無定形であるが、6000〜
6200で成長したものは急に結晶度が上昇しているこ
とが判った。まだX線回折と透過型電子顕微鏡により、
560’で被着した被膜は完全に無定形であるが、5
80°で被着したものは無定形の母材中に微細結晶が混
在し、6000および620°で被着したものは完全に
結晶質であることを確認した。何れの場合にも焼ならし
したものは完全に結晶質であった〇
焼きならし温度による各被膜の差はどの方法を用いても
顕著に見えなかったが、ラーマン法の線幅と吸光法によ
ると、低温度(560〜580 ’C)で形成された被
膜の方が全部単結晶シリコンに著しく近く、高温度で被
着したものは部分的に結晶度がよかったり悪かったりす
ることが判った。この結晶度の悪い部分はその被膜の体
積の約25%に達した。また透過型電子顕微鏡およびX
線解析によって低温度で形成l−だ被膜の結晶粒径は焼
ならし中に実質的に増大するが、高温度で成長したもの
は極めて僅かしか増大しないことが判った。弾性光散乱
法はラーマン散乱法の結果に一致した。Using the normal Raman method, the silicon film grown at 560° to 580° is completely amorphous, but at 6000° to
It was found that the crystallinity of the crystals grown at 6200 ℃ suddenly increased. However, by X-ray diffraction and transmission electron microscopy,
The coating deposited at 560' is completely amorphous;
It was confirmed that those deposited at 80° had fine crystals mixed in the amorphous base material, and those deposited at 6000° and 620° were completely crystalline. In all cases, the normalized material was completely crystalline.Differences between each coating due to the normalizing temperature were not noticeable no matter which method was used, but the line width of the Raman method and the absorption method It was found that the films deposited at low temperatures (560-580'C) were all significantly closer to single-crystal silicon, while those deposited at higher temperatures had better or worse crystallinity in some parts. Ta. This portion of poor crystallinity amounted to about 25% of the volume of the coating. Also, transmission electron microscope and
It was found by line analysis that the grain size of L-layer films formed at low temperatures increases substantially during normalization, while those grown at high temperatures increase only very slightly. The elastic light scattering method agreed with the results of the Raman scattering method.
焼ならし前のシリコン被膜の表面粗さを電子顕微鏡と前
記力ニングノ・ム等の論文記載の技法を用いた光学スペ
クトル法により検査した。表面プラズマの励起によって
反射の損失が増大するが、これは干渉測定法により得ら
れたσ値により直接較正することができる。560’、
620°で被着した被膜の場合、厚さ1000人の銀
層からのλ−3500人の反射率Rはそれぞれ0.83
6と0.444であった。これは620°において多結
晶状態で生長した被膜の反射率の低下を明示している。The surface roughness of the silicon coating before normalizing was examined by electron microscopy and optical spectroscopy using the technique described in the paper by Rinningnom et al. Excitation of the surface plasma increases reflection losses, which can be directly calibrated by the interferometrically obtained σ values. 560',
For a coating deposited at 620°, the λ-3500 reflectance R from a 1000 thick silver layer is 0.83, respectively.
6 and 0.444. This clearly demonstrates the decrease in reflectance of the film grown in the polycrystalline state at 620°.
カニング・・ム等の較正を用いると、これらの測定値は
560°被膜の実効粗さσ〈15人および620°被膜
のσ−51に相関する。Using the calibration of Canning et al., these measurements correlate to the effective roughness σ <15 for the 560° coating and σ −51 for the 620° coating.
透過型電子顕微鏡観測は5700と620°で生長した
被膜に厚さ10〜20人の白金層を45°方向から蒸着
したものについて行った。表面粗さのピーク・ピーク値
σppを計算したところ、570°被膜のとき50人未
満、620’被膜のとき約200〜300人であった。Transmission electron microscopy was performed on films grown at 5700° and 620°, with a platinum layer of 10 to 20 thick deposited from the 45° direction. When the peak-to-peak value σpp of the surface roughness was calculated, it was less than 50 for the 570° coating and approximately 200 to 300 for the 620' coating.
σppは実効粗さσの数倍であるから、これらの値と光
学的測定で計算された粗さ値の相関はよい。Since σpp is several times the effective roughness σ, the correlation between these values and the roughness value calculated by optical measurement is good.
表面の被膜が読みに影響するか否かを決めるたべ材料表
面を走査型電子顕微鏡で観測したところ、透過量電子顕
微鏡と場合と同じ水平方向寸法が得ら几た。どの透過型
と走査型との電子顕微鏡観測から、意外にも焼ならしに
よる表面粗さの増大はどの被膜にも生じないことが判っ
た。When the surface of the material was observed using a scanning electron microscope to determine whether the surface coating affected the readings, the same horizontal dimensions as with the transmission electron microscope were obtained. Observations using both transmission and scanning electron microscopes revealed that, surprisingly, no increase in surface roughness due to normalization occurred in any of the coatings.
被膜の導電度は50mVの試験電圧で行った。測定は各
温度につき各別の2つの被膜から試料をとって成長後と
焼ならし後に行った。560°、5700および580
0で生長させて焼ならしした被膜の導電度は’、J X
10 ’ −1,9X 10−”’ (Ωam ’)
’であった。6000と620°で被着して焼ならし
した被膜の一方の群からの試料はそれより低温度で生長
させた被膜よシ導電度の幅が狭かったが他方の群の導電
度の幅は極めて太きかった。従って被着温度600’と
6200では材料特性の再現性よく被膜を作ることが極
めて困it(と思われる。この結果は上述の他の試験に
よって支持された。The conductivity of the coating was determined at a test voltage of 50 mV. Measurements were taken from two separate coatings at each temperature, one after growth and one after normalization. 560°, 5700 and 580
The conductivity of the film grown and normalized at 0 is ', J
10' -1,9X 10-"'(Ωam')
'Met. Samples from one group of coatings deposited and normalized at 6000° and 620° had a narrower range of conductivity than coatings grown at lower temperatures, while the range of conductivity for the other group was narrower than that of coatings grown at lower temperatures. It was extremely thick. Therefore, it appears to be extremely difficult to form a film with good reproducibility of material properties at deposition temperatures of 600' and 6200. This result was supported by the other tests mentioned above.
例 ・ 例1と同様にして同じ5種類の温度で被膜を被着した。example · Coatings were applied as in Example 1 at the same five temperatures.
この被膜はシラン蒸着ガスに窒素で希釈した]%ホスフ
ィンを用いてPH3/ 5IH4流量比8XIOでホス
フィンを添加することにより普通通り燐をドープした。The coating was conventionally doped with phosphorus by adding phosphine to the silane deposition gas using ]% phosphine diluted with nitrogen at a PH3/5IH4 flow rate ratio of 8XIO.
ホスフィンの成長速度と半径方向の均一度に対する無影
響を補償するため、被着圧力を500 m TOrに上
げ、S IH4流量を300cm’/分に上げた。この
被膜ならしし、例1と同様の特性測定を行った。To compensate for no effect on phosphine growth rate and radial uniformity, the deposition pressure was increased to 500 m TOr and the SIH4 flow rate was increased to 300 cm'/min. This film was conditioned and the characteristics were measured in the same manner as in Example 1.
通常のラーマン法を用いて、例1の未ドープ被膜に比し
てド−プ済被膜は結晶質の体積−含有率が若干高く、無
定形から結晶質への遷移領域が低いことが判った。58
0°で被着したドープ済被膜は無定形と結晶質との混合
物であったが、600°被着のものは全部結晶質であっ
た。これについてはX線回折と透過型電子顕微観測でも
同じ結果が得られた0
580°またはそれ以下で成長した通常の燐ドープ済被
膜の平均粒径は、未ドープ被膜の60〜120人に対し
て約2.00〜1000人であった。また例1の未ドー
プ被膜とは対照的に、被着温度に関係なくすべての被膜
の結晶粒径が焼ならしによって著しく増大した。Using the conventional Raman method, it was found that the doped coating had a slightly higher crystalline volume-content and a lower amorphous-to-crystalline transition region compared to the undoped coating of Example 1. . 58
The doped coatings deposited at 0° were a mixture of amorphous and crystalline, while those deposited at 600° were entirely crystalline. The same result was obtained by X-ray diffraction and transmission electron microscopy. There were approximately 2,000 to 1,000 people. Also, in contrast to the undoped coating of Example 1, the grain size of all coatings increased significantly upon normalization, regardless of the deposition temperature.
焼ならし後の被膜を装置の応用における重要な条件であ
る歪と格子変形についてラーマン散乱の試験をして、ド
ープ済被膜は例1の低温成長のものよシ若干歪が多いが
、600°被着の場合はドーピングによって例1で観測
された結晶性の悪さが若干よくなることが判った。The normalized coating was subjected to Raman scattering tests for strain and lattice deformation, which are important conditions in the application of the device. In the case of deposition, it was found that the poor crystallinity observed in Example 1 was slightly improved by doping.
このラーマン散乱試験の結果は弾性光散乱試験りこよっ
ても成長後と焼ならし後について確認された。)・−ブ
済被膜の最良の構造は5700以下の被着温度で得られ
るが、580’〜620°の温度でも若干品質は劣るが
用途によっては充分適当な被膜が得らPしること、寸だ
620°を超えると被膜品質が許容できなくなることが
判った。The results of this Raman scattering test were also confirmed by the elastic light scattering test after growth and after normalization. )・-The best structure of the coated coating can be obtained at a deposition temperature of 5700°C or less, but even at temperatures of 580' to 620°, a film of slightly inferior quality but suitable enough for some uses may be obtained; It has been found that when the angle exceeds 620°, the coating quality becomes unacceptable.
表面粗さ測定では、 580’以下の被着温度では例]
の未ドープ被膜と同様に約15人とσ値しか得らハ、な
いことが判った。しかし例1の被膜と異なり、6200
成長の通常の焼ドープ被膜でもその表面粗さは30λ未
満で、用途によっては許容可能であった。For surface roughness measurement, for example at a deposition temperature of 580' or less]
It was found that the σ value was only about 15, similar to that of the undoped film. However, unlike the coating of Example 1, the 6200
The surface roughness of the normally grown doped coating was less than 30λ, which was acceptable depending on the application.
これは透過型電子顕微鏡観測の結果ともよく一致した。This was in good agreement with the results of transmission electron microscopy.
特に驚異的なことは、粒径が未ドープ被膜よシ著しく太
きいと考えられていたドープ済被膜に50人未満のσp
p値が観測されたことである。What is particularly surprising is that the doped coating, which was thought to have significantly larger grain sizes than the undoped coating, had a σp of less than 50.
The p value was observed.
例1と同様にして被膜の導電度を測定した。遷移被着温
度は5800で、これ以下で成長した被膜は無定形で低
導電度すなわち1×1O−2(Ω−cm) ’であるが
、y’i 800以上で成長した被膜は結晶質で1×1
03(Ω−cm)’の高導電度を有する。焼ならしした
被膜はすべてこの高導電度を持ち、この値は厚さ0.5
μの被膜の平均面抵抗20Ω/口に相当する。The conductivity of the coating was measured in the same manner as in Example 1. The transition deposition temperature is 5800, and films grown below this temperature are amorphous and have low conductivity, i.e., 1 x 1 O-2 (Ω-cm)', whereas films grown above y'i 800 are crystalline. 1×1
It has a high conductivity of 0.3 (Ω-cm)'. All normalized coatings have this high conductivity, and this value is 0.5
This corresponds to the average sheet resistance of the μ coating of 20Ω/mouth.
第1図は複数個の多結晶シリコン層を含む相互接続装置
の断面図、第2図は焼ならし後の多結晶シリコン層の被
着温度に対する実効表面粗さの変化を示す図表である。
21.24・・・多結晶シリコン層、22.23・・・
2酸化シリコン層、25・・・誘電被覆。
特許出願人 アールシーニー コーポレーショ
ン代理人 清水 哲ほか2名
クマイヤ
スイス国ツエ・バー8908ヘデイ
ンゲン・ビラツスシュトラーセFIG. 1 is a cross-sectional view of an interconnect device including a plurality of polycrystalline silicon layers, and FIG. 2 is a diagram illustrating the change in effective surface roughness versus deposition temperature of the polycrystalline silicon layer after normalization. 21.24... Polycrystalline silicon layer, 22.23...
Silicon dioxide layer, 25...dielectric coating. Patent Applicant: R-Sini Corporation Agent: Tetsu Shimizu and 2 others Kumayer, Switzerland, Zwe Bar 8908 Hedeingen Viratusstrasse
Claims (3)
その層の自乗平均粗さの平方根が約20人を超えないこ
とを特徴とする半導体装置。(1) comprising one or more polycrystalline silicon layers;
A semiconductor device characterized in that the root mean square roughness of the layer does not exceed about 20.
、焼きならしによって多結晶状態に変換されたものであ
ることを特徴とする特許請求の範囲第1項記載の半導体
装置。(2) The semiconductor device according to claim 1, wherein the polycrystalline silicon layer is formed in an amorphous state and is converted into a polycrystalline state by normalizing.
を焼きならしする段階と、この上に適当材料の1つ丑た
はそれ以上の層を追加形成する段階とを含み、上記シリ
コンの層が無定形状態で被着され、焼きならしによって
多結晶状態に変換され、約20人を超えない自乗平均粗
さの平方根を持つことを特徴とする半導体装置の製造法
。(3) depositing a layer of silicon on the substrate, normalizing the layer, and forming one or more additional layers of a suitable material thereon; A method of manufacturing a semiconductor device, characterized in that the layer of silicon is deposited in an amorphous state and is converted to a polycrystalline state by normalizing and has a root mean square roughness of not more than about 20.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US44137182A | 1982-11-12 | 1982-11-12 | |
US441371 | 2003-05-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59100561A true JPS59100561A (en) | 1984-06-09 |
JPH0652715B2 JPH0652715B2 (en) | 1994-07-06 |
Family
ID=23752618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58213176A Expired - Fee Related JPH0652715B2 (en) | 1982-11-12 | 1983-11-11 | Semiconductor device manufacturing method |
Country Status (6)
Country | Link |
---|---|
JP (1) | JPH0652715B2 (en) |
DE (1) | DE3340584A1 (en) |
FR (1) | FR2536210B1 (en) |
GB (1) | GB2130009B (en) |
IT (1) | IT1171797B (en) |
SE (1) | SE500463C2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01149420A (en) * | 1987-12-07 | 1989-06-12 | Hitachi Ltd | Thin film forming method and semiconductor device manufacturing method |
JP2009049428A (en) * | 1996-05-31 | 2009-03-05 | Xerox Corp | Buffered substrate foe semiconductor element |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4504521A (en) * | 1984-03-22 | 1985-03-12 | Rca Corporation | LPCVD Deposition of tantalum silicide |
GB8504725D0 (en) * | 1985-02-23 | 1985-03-27 | Standard Telephones Cables Ltd | Integrated circuits |
US4789883A (en) * | 1985-12-17 | 1988-12-06 | Advanced Micro Devices, Inc. | Integrated circuit structure having gate electrode and underlying oxide and method of making same |
DE3670403D1 (en) * | 1986-07-18 | 1990-05-17 | Nippon Denso Co | METHOD FOR PRODUCING A NON-VOLATILE SEMICONDUCTOR STORAGE ARRANGEMENT WITH POSSIBILITY TO INSERT AND ERASE. |
GB2204066A (en) * | 1987-04-06 | 1988-11-02 | Philips Electronic Associated | A method for manufacturing a semiconductor device having a layered structure |
FR2627012B1 (en) * | 1988-02-10 | 1990-06-01 | France Etat | METHOD FOR DEPOSITING A POLYCRYSTALLINE LAYER WITH LARGE GRAIN, LAYER OBTAINED AND TRANSISTOR PROVIDED WITH SUCH A LAYER |
EP0429885B1 (en) * | 1989-12-01 | 1997-06-04 | Texas Instruments Incorporated | Method of in-situ doping of deposited silicon |
US5366917A (en) * | 1990-03-20 | 1994-11-22 | Nec Corporation | Method for fabricating polycrystalline silicon having micro roughness on the surface |
JP2508948B2 (en) * | 1991-06-21 | 1996-06-19 | 日本電気株式会社 | Method for manufacturing semiconductor device |
GB2290908B (en) * | 1991-09-07 | 1996-05-01 | Samsung Electronics Co Ltd | Semiconductor memory device |
KR960026821A (en) * | 1994-12-20 | 1996-07-22 | 김주용 | Capacitor Manufacturing Method |
JP4003888B2 (en) * | 1995-06-06 | 2007-11-07 | 旭化成エレクトロニクス株式会社 | Semiconductor device and manufacturing method thereof |
US6970644B2 (en) | 2000-12-21 | 2005-11-29 | Mattson Technology, Inc. | Heating configuration for use in thermal processing chambers |
US7015422B2 (en) | 2000-12-21 | 2006-03-21 | Mattson Technology, Inc. | System and process for heating semiconductor wafers by optimizing absorption of electromagnetic energy |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5023584A (en) * | 1973-06-29 | 1975-03-13 | ||
JPS5249782A (en) * | 1975-10-20 | 1977-04-21 | Fujitsu Ltd | Process for production of semiconductor device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2536174C3 (en) * | 1975-08-13 | 1983-11-03 | Siemens AG, 1000 Berlin und 8000 München | Process for producing polycrystalline silicon layers for semiconductor components |
US4179528A (en) * | 1977-05-18 | 1979-12-18 | Eastman Kodak Company | Method of making silicon device with uniformly thick polysilicon |
FR2394173A1 (en) * | 1977-06-06 | 1979-01-05 | Thomson Csf | METHOD OF MANUFACTURING ELECTRONIC DEVICES WHICH INCLUDE A THIN LAYER OF AMORPHIC SILICON AND AN ELECTRONIC DEVICE OBTAINED BY SUCH A PROCESS |
JPS5423386A (en) * | 1977-07-22 | 1979-02-21 | Hitachi Ltd | Manufacture of semiconductor device |
JPS5617083A (en) * | 1979-07-20 | 1981-02-18 | Hitachi Ltd | Semiconductor device and its manufacture |
US4358326A (en) * | 1980-11-03 | 1982-11-09 | International Business Machines Corporation | Epitaxially extended polycrystalline structures utilizing a predeposit of amorphous silicon with subsequent annealing |
US4441249A (en) * | 1982-05-26 | 1984-04-10 | Bell Telephone Laboratories, Incorporated | Semiconductor integrated circuit capacitor |
-
1983
- 1983-11-03 GB GB08329381A patent/GB2130009B/en not_active Expired
- 1983-11-04 SE SE8306070A patent/SE500463C2/en not_active IP Right Cessation
- 1983-11-10 DE DE19833340584 patent/DE3340584A1/en active Granted
- 1983-11-10 FR FR8317929A patent/FR2536210B1/en not_active Expired
- 1983-11-11 JP JP58213176A patent/JPH0652715B2/en not_active Expired - Fee Related
- 1983-11-11 IT IT23690/83A patent/IT1171797B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5023584A (en) * | 1973-06-29 | 1975-03-13 | ||
JPS5249782A (en) * | 1975-10-20 | 1977-04-21 | Fujitsu Ltd | Process for production of semiconductor device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01149420A (en) * | 1987-12-07 | 1989-06-12 | Hitachi Ltd | Thin film forming method and semiconductor device manufacturing method |
JP2009049428A (en) * | 1996-05-31 | 2009-03-05 | Xerox Corp | Buffered substrate foe semiconductor element |
Also Published As
Publication number | Publication date |
---|---|
GB2130009B (en) | 1986-04-03 |
JPH0652715B2 (en) | 1994-07-06 |
FR2536210A1 (en) | 1984-05-18 |
IT8323690A0 (en) | 1983-11-11 |
SE8306070D0 (en) | 1983-11-04 |
SE8306070L (en) | 1984-05-13 |
FR2536210B1 (en) | 1986-03-28 |
IT1171797B (en) | 1987-06-10 |
GB2130009A (en) | 1984-05-23 |
DE3340584C2 (en) | 1993-02-11 |
DE3340584A1 (en) | 1984-05-17 |
SE500463C2 (en) | 1994-06-27 |
GB8329381D0 (en) | 1983-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59100561A (en) | Semiconductor device and method of producing same | |
JP3632256B2 (en) | Manufacturing method of semiconductor device having silicon nitride film | |
Copel et al. | Formation of a stratified lanthanum silicate dielectric by reaction with Si (001) | |
Harbeke et al. | Growth and physical properties of LPCVD polycrystalline silicon films | |
DE69027206T2 (en) | METHOD FOR FORMING EPITAXIAL LAYERS | |
Lee et al. | Microwave-induced low-temperature crystallization of amorphous silicon thin films | |
JPH08139033A (en) | Epitaxial wafer and its manufacture | |
Nakamura et al. | Stress and density effects on infrared absorption spectra of silicate glass films | |
Kamins et al. | Structure of LPCVD tungsten films for IC applications | |
McKenzie et al. | Optical properties of a-Si and a-Si: H prepared by DC magnetron techniques | |
JPS6367721A (en) | Manufacture of amorphous carbon semiconductor film | |
Koleshko et al. | Mechanical stresses in low pressure chemically vapour deposited silicon films | |
Španková et al. | Structural properties of Y2O3 thin films grown on Si (1 0 0) and Si (1 1 1) substrates | |
US6403160B1 (en) | Ferroelectric thin film, production method thereof and coating liquid for making thin film | |
Daliev et al. | On the properties of the Si-SiO2 transition layer in multilayer silicon structures | |
Caragianis et al. | Low temperature passivation of Si 1− x Ge x alloys by dry high pressure oxidation | |
Jayatissa et al. | Microcrystalline structure of poly-Si films prepared by cathode-type rf glow discharge | |
Ramaswamy et al. | Large deviation from Matthiessen's rule in chemical vapour deposited copper films and its correlation with nanostructure | |
Mimila-Arroyo et al. | Characterization of growth and properties of spray-deposited SnO2 films | |
US6100192A (en) | Method of forming high integrity tungsten silicide thin films | |
Németh-Sallay et al. | Investigation of the surface preparation of GaAs substrates for MBE and VPE with whole sample optical reflection | |
Chen et al. | Epitaxial growth and thermal stability of thin Pd2Si films on (001),(011) and (111) Si | |
Splittgerber et al. | The doping of polycrystalline silicon during deposition and with diffusion | |
Moret et al. | MOCVD growth and characterization of PbTiO3 thin films on Pt/Ti/SiO2/Si substrates | |
Chandra et al. | Mixed high dielectric constant layers for MOS devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |