[go: up one dir, main page]

JPS5898968A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5898968A
JPS5898968A JP56197843A JP19784381A JPS5898968A JP S5898968 A JPS5898968 A JP S5898968A JP 56197843 A JP56197843 A JP 56197843A JP 19784381 A JP19784381 A JP 19784381A JP S5898968 A JPS5898968 A JP S5898968A
Authority
JP
Japan
Prior art keywords
film
melting point
layer
molybdenum
point metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56197843A
Other languages
Japanese (ja)
Other versions
JPH0363225B2 (en
Inventor
Kohei Higuchi
行平 樋口
Hidekazu Okabayashi
岡林 秀和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56197843A priority Critical patent/JPS5898968A/en
Publication of JPS5898968A publication Critical patent/JPS5898968A/en
Publication of JPH0363225B2 publication Critical patent/JPH0363225B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain a preferable ohmic contact with Si by forming a silicide layer on the part contacted with the Si and forming a high melting point metal carbide layer thereon. CONSTITUTION:Thermally oxidized films 12, 13 are formed on a P type Si substrate 1. Arsenic ions are implanted through the film 13, and an n<+> type diffused layer 14 is formed in the substrate 11. Then, a contacting hole 15 is opened, a molybdenum film 16 is formed, and a carbided titanium film 17 and a molybdenum film 18 are thereafter formed. The film 18 is formed to decrease the wiring resistance, and may be formed of carbided titanium. The film 16 is affected by the high temperature heat treatment in the steps of manufacturing a transistor to be performed later, and accordingly becomes a molybdenum silicide film 19.

Description

【発明の詳細な説明】 本発明は半導体装置に係シ、特に金属とシリコンとの間
にオーミック接触を有する半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and more particularly to a semiconductor device having ohmic contact between metal and silicon.

最近、不純物添加多結晶シリコンのかわりに、モリブデ
ン等の高融点金属を、ゲート電極等の配線として用いる
ことによシ、抵抗會下げかつ安定な半導体装置を得よう
とする考えが注目されている。このモリブデン(MO)
の高融点金属は、比抵抗が約10μΩ・cm  となっ
ておシ、不純物添加多結晶シリコンの1mΩ・cmに比
して、約2桁も小さく、この友め配線抵抗は十分に無視
できる程小さくなる。また結晶粒径も小さく、微細加工
径に優れておシ、高密度集積回路等の配線材料として、
多結晶シリコンにとって代るべき優れ友素材であると考
えられる。
Recently, attention has been focused on the idea of using high-melting point metals such as molybdenum for interconnections such as gate electrodes instead of impurity-doped polycrystalline silicon in order to obtain stable semiconductor devices with lower resistance. . This molybdenum (MO)
The high melting point metal has a specific resistance of approximately 10 μΩ・cm, which is about two orders of magnitude smaller than that of impurity-doped polycrystalline silicon, which has a resistivity of 1 mΩ・cm, and this interconnect resistance is sufficiently negligible. becomes smaller. In addition, the crystal grain size is small and it has excellent fine processing diameter, making it suitable as a wiring material for high-density integrated circuits, etc.
It is considered to be an excellent companion material to replace polycrystalline silicon.

従来の高融点金属たとえばモリブデン全ゲート電極とし
て用い九MO8型スタテイ、り・メモリ等の°半導体装
置に於ては、メモリ・セル領域を微小にする九めに、ゲ
ート電極の一部が、MO8)ランジスタのソースまたは
ドレイン等のシリコン(以下3iと記す)上の拡散層(
領域)と直接オーミック接触をするいわゆるダイレクト
コンタクトと称する領域が存在する。第1図(alに示
すような回路中のMO8)ランジスタ10がその例であ
る。このMO8)ランジスタ10の断面図は第1図(6
)のようになっており、高融点金属をゲート電機として
用いた場合、通常はソースとなる領域1を形成後、ゲー
ト電極2を形成して、その後イオン注入法によシ、ドレ
インとなる領域3に不純物注入【行う。その後、ドレイ
ン領域の活性化を行うために、1000℃程度の高温熱
処理工程が必要である。この際、ソースとなる領域1と
ゲート電極2との接触が高温熱処理に対して安定で良好
なオーンツク接触が保存される必要がある。
Conventional high-melting point metals, such as molybdenum, are used as the entire gate electrode in semiconductor devices such as MO8-type static and memory devices. ) Diffusion layer (hereinafter referred to as 3i) on silicon (hereinafter referred to as 3i) such as the source or drain of a transistor
There is a so-called direct contact region that makes direct ohmic contact with the contact region. An example is the transistor 10 in FIG. 1 (MO8 in a circuit as shown in al). A cross-sectional view of this MO8) transistor 10 is shown in FIG.
), and when a high melting point metal is used as the gate electrode, usually after forming the region 1 which will become the source, the gate electrode 2 is formed, and then the region which will become the drain is formed by ion implantation. 3. Impurity implantation. After that, a high temperature heat treatment step of about 1000° C. is required to activate the drain region. At this time, it is necessary that the contact between the region 1 serving as the source and the gate electrode 2 be stable against high-temperature heat treatment, and good open-circuit contact must be maintained.

同第11E(b)において、ソース領域はゲート電極て
いる。また、ゲート電極2下は、絶縁層26を介して、
チャンネル領域となるシリコン基板25となりている。
In the same No. 11E(b), the source region is the gate electrode. Further, below the gate electrode 2, via the insulating layer 26,
This is a silicon substrate 25 that becomes a channel region.

ところで、一般に高融点金属は、Siと600”0程度
の比較的低温の熱処理により、いわゆるシリサイド反応
と呼ばれるSトとの化合物形成反応を生じ、高融点金属
シリサイドが形成される。ま九、1000℃程度の高温
では、この反応は極めて激しく、配線として3000A
程度の膜厚の高融点金属管用いている場合、約2倍の6
000λのシリサイドが形成され著しい体積変化の之め
に、コンタクト孔部分と、絶縁膜部分とで断切れが生じ
九シ、ま九大きな応力の九めに、電極が剥れたシ、シリ
コン基板に無数の欠陥を作ったシする。その結果、接触
抵抗が極めて大きくなりftシ、回路がオープンになっ
たルするため、このようなダイレクトコンタクトをもつ
半導体装置に高融点金属を配線材料として用する上での
大きな障害となっている。
By the way, in general, when high melting point metals are heat treated with Si at a relatively low temperature of about 600"0, a compound formation reaction with S, called a silicide reaction, occurs, and high melting point metal silicide is formed. 9, 1000 At temperatures as high as ℃, this reaction is extremely violent, and the wiring requires 3000A.
When using a high melting point metal tube with a film thickness of
000λ silicide was formed and the volume changed significantly, causing a disconnection between the contact hole and the insulating film, and due to the large stress, the electrode peeled off and the silicon substrate It created countless defects. As a result, the contact resistance becomes extremely large, resulting in an open circuit, which is a major obstacle to using high-melting point metals as wiring materials in semiconductor devices with such direct contacts. .

本発明の目的は、特に1000″O根度の高温熱処理後
も安定で良好なSIとのオーミ、り接触を与える電極構
造を有する半導体装置を提供するものである。
An object of the present invention is to provide a semiconductor device having an electrode structure that provides stable and good ohmic contact with an SI even after high-temperature heat treatment, particularly at a temperature of 1000''O.

本発明によれば、Siと接触する部分に特に500λ程
2度の厚さのシリサイド層を形成し、その上に高融点金
属炭化物層を形成した2層電極構造、又は必要に応じそ
の構造上にさらに高融点金属層を形成した多層電極構造
を有する半導体装置が得られる。
According to the present invention, a two-layer electrode structure is formed in which a silicide layer with a thickness of about 500 λ is formed on the part in contact with Si, and a high melting point metal carbide layer is formed on the silicide layer, or if necessary, the structure is A semiconductor device having a multilayer electrode structure in which a high melting point metal layer is further formed is obtained.

本発明は、次のような2つの知見に基づいて、従来の問
題を解決して込る。その1つは、高融点金属の炭化物が
1000℃程度の高温熱処理によっても8iと反応せず
、極めて安定な物質であシ、シリサイド反応のバリヤと
なるということである。
The present invention solves the conventional problems based on the following two findings. One of these is that the carbide of the high-melting point metal does not react with 8i even when subjected to high-temperature heat treatment at about 1000° C., and is an extremely stable substance that acts as a barrier to the silicide reaction.

また他の1つは、オーンツク接触部分の抵抗を小さくす
るためには、シリサイド層がSiと高融点金属炭化物層
の間にある方が望ましいが、このシリサイド層が厚す場
合には、高温熱処理後のストレスのために基板に欠隔を
つくったシ、あるいは剥れが生じたりするために100
kから1000λ程度の厚さが特に望ましいということ
である。
Another reason is that in order to reduce the resistance of the on-sk contact area, it is desirable to have a silicide layer between the Si and the high melting point metal carbide layer, but if this silicide layer is thick, high-temperature heat treatment is required. 100% because the substrate may have gaps or peeling due to later stress.
A thickness of about 1000λ from k is particularly desirable.

以下図面によシ本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.

第2図(a)〜(C)は本発明の実施例の製造工程を示
す断面図である。まず、第2図(alにおいて、P型の
Si基板11上に3001の熱酸化膜12を形成し、次
に拡散層領域となるべき部分t一部分的に開孔し、その
上に400k程度の熱酸化膜13を形成する。その後こ
の400λ酸化膜13を通してイオン注入法でヒ素イオ
ン(As”)t100keマ。
FIGS. 2(a) to 2(C) are cross-sectional views showing the manufacturing process of an embodiment of the present invention. First, a thermal oxide film 12 of 3001 is formed on a P-type Si substrate 11 in FIG. A thermal oxide film 13 is formed. Then, arsenic ions (As") are injected into the 400λ oxide film 13 by ion implantation.

5X10  cm  で、81基板11中に注入し、1
000℃20分の窒素中での熱処理により、イオンを活
性化し、n+拡散層14に形成する。
5X10 cm, implanted into 81 substrate 11, 1
By heat treatment in nitrogen at 000° C. for 20 minutes, the ions are activated and formed into the n+ diffusion layer 14.

その後、第2図(b)[示すように、コンタクト孔15
を開孔し、スパッタ法にょシ、第1のそリプfyl[t
6t−約300λ形成し、その後アルゴンとメタンの混
合ガス中での反応性スバ、り法にょシ、炭化チタン(T
iC)膜17t−約1oooλ形成し、さらにモリブデ
ン膜18t−1500λ形成スル。
After that, as shown in FIG. 2(b), the contact hole 15
A hole is opened, sputtering is performed, and the first rib fyl[t
Titanium carbide (T
iC) A film 17t-about 100λ was formed, and a molybdenum film 18t-1500λ was formed.

この第3層目のモリブデンjl18は、配線抵Kt−下
げるために形成したもので、ここにTiCJl[1−2
500A程度形成してもよい、このようにして形成され
たn+拡散r#114上の電極は、Mo (1500λ
)/TiC(1000λ)/MO(300λ)とす*”
CイルJi!1層1(7)300A厚のN はその後の
トランジス′り製造過程によシ1000”O程度の高温
熱処理を受は最終的[tiMO(1500λ)/TiC
(1000λ)/Mo5iz(600λ)となる、これ
が第2図(C)であり、n 拡散層14と接触する部分
はモリブデン、シリサイド(Mo8iz)膜19となる
。第3図は第2図(b)のような断面を持つ素子を窒素
雰囲気中で2゜分の熱処理を施した場合の固有接触抵抗
の熱処理温度依存性を示す特性図である。特性曲線21
が本発明の本実施例に基づいた場合であシ、特性曲線2
2はモリブデンのみの電極の場合でちる。モリブデンの
みの電極の場合は、700℃以上の熱処理では接触抵抗
が極めて大きく増加しているのに対し、本実施例の場合
は僅かしか接触抵抗の増加はみられず、すぐれたオーさ
ツク特性を示すことがわかる。
This third layer of molybdenum jl18 was formed to lower the wiring resistance Kt-, and here TiCJl[1-2
The electrode on the n+ diffusion r#114 formed in this way, which may be formed at about 500A, is Mo (1500λ
)/TiC(1000λ)/MO(300λ)*”
Cil Ji! One layer 1 (7) of 300A thick N is subjected to a high temperature heat treatment of about 1000"O during the subsequent transistor manufacturing process.
(1000λ)/Mo5iz(600λ), as shown in FIG. FIG. 3 is a characteristic diagram showing the dependence of the specific contact resistance on the heat treatment temperature when a device having a cross section as shown in FIG. 2(b) is heat treated for 2° in a nitrogen atmosphere. Characteristic curve 21
is based on this embodiment of the invention, characteristic curve 2
2 is for the case of an electrode made only of molybdenum. In the case of an electrode made only of molybdenum, the contact resistance increases significantly when heat treated at 700°C or higher, whereas in the case of this example, only a slight increase in contact resistance was observed, and the electrode had excellent anti-oxidation properties. It can be seen that this shows that

V上のように、本発明によれば、特に1000℃8度の
高温熱処理後も極めて特性の安定した良好なSiと金属
との間のオーiyり接触を有する半導体装置を作ること
ができる。
As described above, according to the present invention, it is possible to produce a semiconductor device having excellent contact between Si and metal with extremely stable characteristics even after high-temperature heat treatment at 1000°C and 8°C.

本発明の実施例では、n+拡散層上のMoSix層は、
熱処理によシ形成したが、これはあらかじめスバ、り法
等で直接Mo5iZを形成してもよい。
In an embodiment of the invention, the MoSix layer on the n+ diffusion layer is
Although Mo5iZ was formed by heat treatment, Mo5iZ may be directly formed in advance by a sputtering method or the like.

また、本発明の実施例においては、高融点金属シリサイ
ドとしてMo5iii、高融点金属炭化物としてTiC
2、高融点金属としてMOl−用い九が、本発明はこれ
に限定されるものではなく、シリサイドや炭化物全形成
する高融点金属又は高融点金属層の高融点金属がタング
ステン(5)、タンタル(Ta)等の高融点金属である
場合にも有効である。
In the embodiments of the present invention, Mo5iii is used as the high melting point metal silicide, and TiC is used as the high melting point metal carbide.
2. MOI is used as the high melting point metal, but the present invention is not limited thereto. It is also effective when using high melting point metals such as Ta).

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)はダイレクトコンタクトラ有するメモリ・
セル中の回路図、第1図(b)fl第1図(a)のダイ
レクトコンタクトラ有するNO8)ランジスタの断面図
、第2図(a)乃至第2図(C)は本発明の実施例のオ
ーミック接触t−説明するための断面図、第3図は第2
図の構成の素子から求めた固有接触抵抗の熱処理温度依
存性を示す特性図である。 尚図中、 1・・・・・・ソースとなる領域、2・・・・・・ゲー
ト電極、3・・・・・・ドレインとなる領域、10・・
・・・・NO8)ランジスタ、11・・・・・・P型S
i基板、12.13・・・・・・熱酸化膜“、14・・
・・・・n+拡散層、16.18・・・・・・モリブデ
ン膜%17・・・・・・炭化チタン膜、19・・・・・
・モリブデン・シリサイド膜、21・・・・・・炭化チ
タン等を設けた場合の特性曲線、22・・・・・・電極
をモリブデンのみで形成した場合の特性曲線、23・・
・・・・絶縁膜、24・・・・・・電極、26・・・・
・・絶縁層、25・・・・・シリコン基板。 第 l 図(α) 24 !!−2図((1) 竿2図<b) 8 ″ 茅2図(C)
Figure 1(a) shows a memory with a direct contact layer.
A circuit diagram in a cell, FIG. 1(b), a cross-sectional view of a NO8) transistor with a direct contact layer in FIG. 1(a), and FIGS. 2(a) to 2(C) are examples of the present invention. Ohmic contact t-A cross-sectional view for explaining the
FIG. 3 is a characteristic diagram showing the heat treatment temperature dependence of the specific contact resistance obtained from the element having the configuration shown in the figure. In the figure, 1...A region that becomes a source, 2...A region that becomes a gate electrode, 3...A region that becomes a drain, 10...
...NO8) transistor, 11...P type S
i-substrate, 12.13... thermal oxide film", 14...
......n+ diffusion layer, 16.18...Molybdenum film %17...Titanium carbide film, 19...
・Molybdenum silicide film, 21...Characteristic curve when titanium carbide etc. is provided, 22...Characteristic curve when the electrode is formed only of molybdenum, 23...
... Insulating film, 24 ... Electrode, 26 ...
...Insulating layer, 25...Silicon substrate. Figure l (α) 24! ! -2 figure ((1) Rod 2 figure <b) 8 ″ Kaya 2 figure (C)

Claims (1)

【特許請求の範囲】[Claims] 金属とシリコンとの間にオーミック接触を有する半導体
装置に於て、前記シリコンとオーギ、り接触をすべ1!
部分に高融点金属シリサイド層を有し、さらにその高融
点金属シリサイド層上に高融点金属炭化物層を有するこ
とを特徴とする半導体装置。
In a semiconductor device that has ohmic contact between metal and silicon, there is no need to make ohmic contact with the silicon!
1. A semiconductor device comprising a high melting point metal silicide layer in a portion thereof and further comprising a high melting point metal carbide layer on the high melting point metal silicide layer.
JP56197843A 1981-12-09 1981-12-09 Semiconductor device Granted JPS5898968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56197843A JPS5898968A (en) 1981-12-09 1981-12-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56197843A JPS5898968A (en) 1981-12-09 1981-12-09 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5898968A true JPS5898968A (en) 1983-06-13
JPH0363225B2 JPH0363225B2 (en) 1991-09-30

Family

ID=16381257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56197843A Granted JPS5898968A (en) 1981-12-09 1981-12-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5898968A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5125007A (en) * 1988-11-25 1992-06-23 Mitsubishi Denki Kabushiki Kaisha Thin-film soi-mosfet with a body region
US5414301A (en) * 1985-03-15 1995-05-09 National Semiconductor Corporation High temperature interconnect system for an integrated circuit
US5436505A (en) * 1993-02-09 1995-07-25 Kabushiki Kaisha Kobe Seiko Sho Heat-resisting ohmic contact on semiconductor diamond layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414301A (en) * 1985-03-15 1995-05-09 National Semiconductor Corporation High temperature interconnect system for an integrated circuit
US5125007A (en) * 1988-11-25 1992-06-23 Mitsubishi Denki Kabushiki Kaisha Thin-film soi-mosfet with a body region
US5436505A (en) * 1993-02-09 1995-07-25 Kabushiki Kaisha Kobe Seiko Sho Heat-resisting ohmic contact on semiconductor diamond layer

Also Published As

Publication number Publication date
JPH0363225B2 (en) 1991-09-30

Similar Documents

Publication Publication Date Title
US4533935A (en) Semiconductor device and a method for manufacturing the same
US5466638A (en) Method of manufacturing a metal interconnect with high resistance to electromigration
JPS61142739A (en) Manufacture of semiconductor device
JPH02290019A (en) Manufacture of electrode wiring structure body and semiconductor integrated circuit device
US5286678A (en) Single step salicidation process
JP2841386B2 (en) Semiconductor device and manufacturing method thereof
KR950009283B1 (en) Manufacturing Method of Semiconductor Device
JPS5898968A (en) Semiconductor device
US5877085A (en) Method of manufacturing semiconductor device
JPH0363224B2 (en)
JPS60193333A (en) Manufacture of semiconductor device
JP2000514602A (en) Method for producing a semiconductor component having a low contact resistance to a highly doped region
JPS59208773A (en) Manufacture of semiconductor device
JPH0795539B2 (en) Integrated circuit and manufacturing method thereof
JPH02241032A (en) Wiring formation method
JPS59112641A (en) Semiconductor device and its manufacturing method
JPH03292729A (en) Manufacture of sputtering target and semiconductor device
JPS61225838A (en) Forming method for electrode wirings
JPS61248472A (en) Mos semiconductor device
JPS6236852A (en) Semiconductor device
JPH01255220A (en) Manufacture of semiconductor device
JPH0510820B2 (en)
JPS61141129A (en) Manufacture of semiconductor device
JPH0154867B2 (en)
JPS60123026A (en) Manufacture of semiconductor device