JPS5893377A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS5893377A JPS5893377A JP56192593A JP19259381A JPS5893377A JP S5893377 A JPS5893377 A JP S5893377A JP 56192593 A JP56192593 A JP 56192593A JP 19259381 A JP19259381 A JP 19259381A JP S5893377 A JPS5893377 A JP S5893377A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- electron
- layer
- control electrode
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 46
- 239000012535 impurity Substances 0.000 claims description 41
- 230000005533 two-dimensional electron gas Effects 0.000 claims description 20
- 230000001678 irradiating effect Effects 0.000 claims 2
- 239000004020 conductor Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000009825 accumulation Methods 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 7
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- MDPILPRLPQYEEN-UHFFFAOYSA-N aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001803 electron scattering Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/80—FETs having rectifying junction gate electrodes
Landscapes
- Non-Volatile Memory (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
+l) 発明の技術分野
本発明は半導体装置に関する。詳しくは、本特許出願の
出願ムのなした先の特許出願(特願昭第55−8203
5号と特願昭第34−、、171026号)に係る高電
子移動度トランジスタの改良に関する。DETAILED DESCRIPTION OF THE INVENTION +l) Technical Field of the Invention The present invention relates to a semiconductor device. For details, please refer to the earlier patent application filed by this patent application (Japanese Patent Application No. 55-8203).
5 and Japanese Patent Application No. 34-171026).
(2)技術の背景
高電子移動度トランジスタとは電子親和力の相異なる2
種の半導体を接合することにより形成される一つのへテ
ロ接合面の近傍に蓄積される電子群(二次元電子ガス)
の電子濃度を制aX極によって制御して、他に設けられ
た一対の入°出力電極間に前記蓄積電子群によって形成
される導電路のインピーダンスを制御する能動的半導体
装置をいう。(2) Technical background High electron mobility transistors have different electron affinities2
A group of electrons (two-dimensional electron gas) accumulated near a single heterojunction surface formed by joining different semiconductors.
An active semiconductor device that controls the impedance of a conductive path formed by the group of accumulated electrons between a pair of other input/output electrodes by controlling the electron concentration of the electrode using a x-electrode.
高電子移動度トランジスタの大きな特徴は、上記の蓄積
電子群(二次元電子ガス)の電子移動家が、不純物散乱
による効果が電子移動度を抑制する主因となるような低
い温度例えば77セ以下のの温度において、極めて大き
くなることである0すなわち、上記の蓄積電子群(二次
元電子ガス)は、電子親和力の大きな半導体層(チャン
ネル層)中ではあるが、ヘテロ接合のどく近傍に、ごく
薄<100X程度以内の範囲に蓄積されるので、電子親
和力の小さな早場−よりなる層(電子供給層)から空間
的に分離され、その電子移動度は不純物散乱によって影
響されない。そこで、この不純物散乱による効果が電子
移動度の増大を組むこととなるような低温において、極
めて大きな電子移動陵、すなわち、77°Kにおいテ1
.5 X 10’ tym” /VB。A major feature of high electron mobility transistors is that the electron transferors of the above-mentioned accumulated electron group (two-dimensional electron gas) operate at low temperatures, e.g. In other words, the above-mentioned accumulated electron group (two-dimensional electron gas) becomes extremely large at temperatures of Since it is accumulated within a range of about <100X, it is spatially separated from the layer (electron supply layer) consisting of an early field with a small electron affinity, and its electron mobility is not affected by impurity scattering. Therefore, at low temperatures where the effect of impurity scattering combines with an increase in electron mobility, an extremely large electron transfer range exists, that is, at 77°K
.. 5 X 10'tym"/VB.
5°Kにおいて5 X 10’ car” / ’VS
程度となることが夾験的に確認されている。5 X 10'car'' / 'VS at 5°K
It has been experimentally confirmed that the
ところf、かかる蓄積電子群(二次元電子ガス)の電子
移動度は、ヘテロ接合近傍に存在するイオン化された不
純物・にもとづく不純物散乱に多かれ少なかれ影響され
る0この悪影響の原因となる不純物は電子供給層すなわ
ち電子源をなす電子親和力の小さな半導体に含有される
ものをチャンネル廣すなわち電子親和力の大きな半導体
に含有されるものとがある。従来技術の高電子移動度ト
ランジスタにおいては電子供給層はn型の不純物を含有
して電子源となされており、チャンネル層のみ不純物を
含有しないものとされていた。そこフ、電子親和力の小
さな早場一体に含有される不純物による散乱の影響を低
減して電子移動度を大きくするには蓄積電子群(二次元
電子ガス)の電子面濃度を増加すればよいことになる。However, the electron mobility of such a group of accumulated electrons (two-dimensional electron gas) is more or less influenced by impurity scattering based on ionized impurities existing near the heterojunction. The impurity that causes this adverse effect is the electron Some substances are contained in the supply layer, that is, a semiconductor with a low electron affinity that forms the electron source, and others are contained in a semiconductor that has a large channel width, that is, a semiconductor that has a large electron affinity. In conventional high electron mobility transistors, the electron supply layer contains n-type impurities to serve as an electron source, and only the channel layer does not contain impurities. Therefore, in order to increase electron mobility by reducing the influence of scattering due to impurities contained in the early field with small electron affinity, it is necessary to increase the electron surface concentration of the accumulated electron group (two-dimensional electron gas). become.
電°子面濃変の上昇により電子の散乱ポテンシャルのス
クリーニング効果が大きくなるから1ある0蓄積電子群
(二次元電子ガス)の電子面濃度を大きくするには電子
供給層のn型不純物濃度を大きくすればよく、これによ
り電子移動度も大きくなしうる。しかし、一方、電子供
給層のn型不純物濃度を大きくすると高温工程において
チャンネル層中に拡散するn型不純物の濃度も増大する
から、このチャンネル層中に存在する不純物にもとづく
不純物散乱の影響が大きくなり、結果として電子移動度
は低下する。したがって、電子供給層中の不純物濃度を
無制限に大きくすることは!きない。Since the screening effect of the electron scattering potential increases due to the increase in electron surface concentration, in order to increase the electron surface concentration of the 0-accumulated electron group (two-dimensional electron gas), the n-type impurity concentration of the electron supply layer must be increased. It is sufficient to increase the electron mobility by increasing the electron mobility. However, on the other hand, if the n-type impurity concentration in the electron supply layer is increased, the concentration of n-type impurities diffused into the channel layer during high-temperature processes also increases, so the influence of impurity scattering based on the impurities present in this channel layer becomes large. As a result, electron mobility decreases. Therefore, it is impossible to increase the impurity concentration in the electron supply layer without limit! I can't.
(8) 従来技術と問題点
従来技術における高電子移動度トランジスタにおいては
、蓄積電子群(二次元電子ガス)の電子面濃度は増大す
る効果は有するがチャンネル層中に拡散する不純物の量
は増大させないという目的をもって、n型の不純物を含
有する電子供給層と不純物を含有しないチャンネル層と
の間に電子供給層と同一の半導体よりなり不純物を含有
しない層()?ツ77層)を介在させていた。ところで
、この・9777層の厚さを大きくすればする稈、電子
供給層中の不純物がチャンネル層中に拡散する慈影蕃は
防止しうるが、一方、この厚さを大きくすればする程、
電子親和力の差に起因する?テンシャルギャップの効果
は減殺されるから、蓄積電子群(二次元電子ガス)の電
子面濃度は減少する。(8) Conventional technology and problems High electron mobility transistors using conventional technology have the effect of increasing the electron surface concentration of accumulated electron groups (two-dimensional electron gas), but the amount of impurities that diffuse into the channel layer increases. For the purpose of preventing impurities, a layer ()? made of the same semiconductor as the electron supply layer and containing no impurities is placed between the electron supply layer containing n-type impurities and the channel layer containing no impurities. 77 layers) were interposed. By the way, if the thickness of this 9777 layer is increased, it is possible to prevent the impurity in the electron supply layer from diffusing into the channel layer, but on the other hand, the larger the thickness is, the more
Is it caused by a difference in electron affinity? Since the effect of the tensile gap is attenuated, the electron surface concentration of the accumulated electron group (two-dimensional electron gas) decreases.
換言すれば、79277層の効果には、おのずと限度が
ある。そこ〒、もし、蓄積電子群(二次元電子ガス)の
電子源を電子供給層に含有されるn型不純物ではなく、
他の要素に求めることがfきれば、不純物散乱の影響を
最小にして、しかも、蓄積電子群(二次元電子ガス)の
電子面濃度を十分大きくなしうるの11電子移動度を従
来技術における高電子移動度トランジスタより更に大き
くなしうる筈である。In other words, the effect of 79277 layers naturally has a limit. However, if the electron source of the accumulated electron group (two-dimensional electron gas) is not the n-type impurity contained in the electron supply layer,
If other factors are satisfied, the effect of impurity scattering can be minimized and the electron surface concentration of the accumulated electron group (two-dimensional electron gas) can be made sufficiently large. It should be possible to make the electron mobility even larger than that of an electron mobility transistor.
(4)発明の目的
本発明の目的はこの要請を満足するもの1あり、電子源
を電子供給層に含有されるi型不純物に依存するの1は
なく、他の要素にこれを求め、しかも、蓄積電子群(二
次元電子ガス)の電子面濃度を十分に大きくして、不純
物散乱の影蕃を増大することなく蓄積電子群(二次元電
子ガス)の電子移動度が増加されている高電子移動度ト
ランジスタを提供するこ・とにある。(4) Object of the Invention The object of the present invention is to satisfy this requirement, and does not depend on the i-type impurity contained in the electron supply layer for the electron source, but requires this from other elements. , the electron mobility of the accumulated electron group (two-dimensional electron gas) is increased without increasing the influence of impurity scattering by sufficiently increasing the electron surface concentration of the accumulated electron group (two-dimensional electron gas). An object of the present invention is to provide an electron mobility transistor.
(+5)発明の構成
本発明の構成は、(イ)電子親和力を異にする2種の早
場体よりなる二重層を有し、その界面近傍に上記2種の
早場体の電子親和力の差にもとづいて蓄積される電子群
(二次元電子ガス)を導電媒体とし、(ロ)上記の早場
体二重層のいずれかの層上に形成される制御電極をもっ
て、上記の導電媒体により入・出力電極の間に構成され
る導電路のインピーダンスを制御することを基本原理と
する高電子移動度トランジスタにおいて、(ハ)上記の
二つの半導体層がともに実質的に不純物を含有しておら
ず、に)制御電極の一部領域または全部の領域は光等の
電磁波を透過しう1、るようにな−されており、(ホ)
制御電極の下部領域においては少なくとも電子供給層に
対して低温の下において電磁波が照射されており、(へ
)そのまま低温に保たれていることにある。(+5) Structure of the Invention The structure of the present invention is as follows: (a) It has a double layer consisting of two types of fast field bodies having different electron affinities, and near the interface, the two types of fast field bodies have different electron affinities. A group of electrons (two-dimensional electron gas) accumulated based on the difference is used as a conductive medium, and (b) a control electrode formed on any of the layers of the above-mentioned fast field double layer is used to conduct input by the above-mentioned conductive medium. - In a high electron mobility transistor whose basic principle is to control the impedance of a conductive path configured between output electrodes, (c) both of the above two semiconductor layers do not substantially contain impurities. (b) Some or all areas of the control electrode are made to transmit electromagnetic waves such as light, and (b)
In the lower region of the control electrode, at least the electron supply layer is irradiated with electromagnetic waves at a low temperature, and is maintained at a low temperature.
上記の構成においては、チャンネル層のみならず電子供
給層にも不純物は含有されていないの1、不純物散乱の
影響は最小限に限定されており、一方、低温において少
なくとも電子供給層に対し光等の電磁波が照射されて電
子供給層を構成する早場体またはこれに含まれる浅い不
純物単位が励起されているの1電子供給層とチャンネル
層とのへテロ界面近傍には十分な量の電子群が蓄積され
て二次元電子ガスを構成しているので、電子移動度が従
来の高電子移動度トランジスタにおけるよりも更に高い
高電子移動度トランジスタを提供することができる。In the above structure, not only the channel layer but also the electron supply layer does not contain impurities1, and the influence of impurity scattering is limited to a minimum. When the electromagnetic waves are irradiated to excite the fast field bodies that constitute the electron supply layer or the shallow impurity units contained therein, there is a sufficient amount of electron groups near the heterointerface between the electron supply layer and the channel layer. is accumulated to constitute a two-dimensional electron gas, so it is possible to provide a high electron mobility transistor in which the electron mobility is even higher than that in conventional high electron mobility transistors.
なお、上記の構成(二おいて、電子供給層とチャンネル
層とのへテロ界面近傍に蓄積される二次元電子ガスの面
濃度は、電磁波の照射によって発生する自由電子の量に
よって決定されるから、上記の不純物散乱の発生を防止
する効果が十分期待しうる種変の厚さを有し不純物を含
有しない電子供給層に接してこれと同一の早場体よりな
りn型の不純物を含有する追加層が追加されていること
は、電子移動藏を増大するために有効1ある。このli
!施態様における、不純物を含有しない電子供給層の有
するべき厚さの下限は上記の不純物拡散を抑制しうる厚
さであるが、早場体の組み合わせが砒化ガリ為つム(G
aAa)とアルミニエウムガリ具つム砒素(ム/Ga口
)の場合、150X程&!ある。Note that in the above configuration (2), the surface concentration of the two-dimensional electron gas accumulated near the hetero interface between the electron supply layer and the channel layer is determined by the amount of free electrons generated by electromagnetic wave irradiation. , which is made of the same fast field material and contains n-type impurities, in contact with an electron supply layer that does not contain impurities and has a thickness that can be expected to be sufficiently effective in preventing the occurrence of the impurity scattering described above. The addition of additional layers is effective in increasing the electron transfer capacity.
! In this embodiment, the lower limit of the thickness of the electron supply layer that does not contain impurities is the thickness that can suppress the above-mentioned impurity diffusion.
aAa) and aluminum arsenic (mu/Ga mouth), about 150X &! be.
上記の構成において電子供給層とチャンネル層とのへテ
ロ界面近傍に蓄積される電子群の量は、低温に保持され
ているか「す、少なくとも1年間程度の期間は顕著な減
少は認められないが、いずれにせよ、時間の経過ととも
に指数函数的に減少することは避は難い。そこ1、高電
子移動度トランジスタを低温容器に保つだけでなく、こ
れに間欠的に光等の電磁波を照射する手段、例えば、制
御電極に対接して配設された早場体発光素子とこれを所
望の時間毎に動作させるべき回路とを設けておくことは
、産業上の利用性を向上する見地から極めて有意義であ
る。第1の構成における高電子移動度トランジスタの寿
命が比較的短いことに比し、この構成における高電子移
動度トランジスタの寿命は非常に長いから1あるO
この第2の構成にあっても、nllの不純物を含有する
追加層を設けることは有効!ある。In the above structure, the amount of electrons accumulated in the vicinity of the hetero interface between the electron supply layer and the channel layer is maintained at a low temperature. In any case, it is inevitable that it will decrease exponentially over time.Therefore, 1. In addition to keeping the high electron mobility transistor in a low-temperature container, it is also intermittently irradiated with electromagnetic waves such as light. Providing a means, for example, a fast field light emitting element disposed opposite to the control electrode and a circuit to operate it at desired times, is extremely effective from the viewpoint of improving industrial applicability. This is significant because the lifetime of the high electron mobility transistor in this configuration is very long compared to the relatively short lifetime of the high electron mobility transistor in the first configuration. However, it is effective to provide an additional layer containing nll impurities.
畠電子移動度トランジスタを構成する2種の半導体の具
備するべき条件は、(イ)両者の格子定数が同一または
近似していること、(ロ)電子親和力の差が大きいこと
、(ハ)ノ々ンP−ヤツデが太き%zこと!あり、非常
に多数の組み合わせが存在するが、本発明はそのいずれ
の組み合わせに対しても適用可能マある0
又、高電子移動度トランジスタはチャンネル層が電子供
給層の上層として構成される場合と下層として構成され
る場合とがあるが、本発明はそのいずれに対しても適用
しうる〇一般に電子親和力の大きな物質はノマンrギャ
ップが小さく基礎吸収端波長は長いから、電子供給層が
下層の場合は、電子供給層に照射される電−一はチャン
ネル層中1一部吸収され減衰したものfあるが、特にチ
ャンネル層が上層とされる場合、チャンネル層の厚さは
極めて薄< 1000 X程度であるから、実質的に十
分使用に耐えるからフある0
照射に使用する電磁波の波長は電子供給層を構成する半
導体の基礎吸収端波長より短いことが望ましいが、上記
のとおり半導体中に不可避的に含まれる不純物の浅い不
純物準位も励起するから、上記の基礎吸収端波長より短
い波長fあることは必須の要件fはない0
光等の電磁波の照射量の制御によりピンチオフ電圧の制
御が可能なことは言うまでもない0(6)実施例
以下、図面を参照しつつ、本出願に含まれる発明の二つ
の実施−例に係る高電子移動度トランジスタ:二ついて
説明し、本発明の構成と特有の効果とを更に明らかにす
る0
半導体の組み合わせは、−例として、砒化ガリエウム(
Gaムθ)とアルミニエウムガリ晶つム砒素、1.′。Hatake:The two types of semiconductors that make up the electron mobility transistor must have (a) the same or similar lattice constants, (b) a large difference in electron affinity, and (c) TannP- Yatsude is thick %z! Although there are a large number of combinations, the present invention can be applied to any of the combinations.Also, high electron mobility transistors can be used in cases where the channel layer is configured as an upper layer of the electron supply layer. In some cases, the electron supply layer is formed as a lower layer, but the present invention can be applied to either of them. In general, materials with high electron affinity have a small Noman r gap and a long basic absorption edge wavelength, so the electron supply layer is a lower layer. In this case, the electrons irradiated to the electron supply layer are partially absorbed and attenuated in the channel layer, but especially when the channel layer is the upper layer, the thickness of the channel layer is extremely thin < 1000 It is desirable that the wavelength of the electromagnetic waves used for irradiation be shorter than the basic absorption edge wavelength of the semiconductor constituting the electron supply layer, but as mentioned above, there are Since the shallow impurity level of impurities contained in the It goes without saying that 0 (6) Embodiments are possible.Hereinafter, with reference to the drawings, two high electron mobility transistors according to embodiments of the invention included in this application will be explained, and the structure of the present invention and the structure of the present invention will be explained. Combinations of semiconductors, such as gallium arsenide (
Ga um θ) and aluminum gallium arsenic, 1. '.
(A/GaAs)との組み合わせとする。(A/GaAs).
第1図は、本発明の一爽施例に係る高電子移動度トラン
ジスタの完成状態における断面図を示す。FIG. 1 shows a cross-sectional view of a high electron mobility transistor in a completed state according to a fresh example of the present invention.
図において、1はクローム(Or)等を含有する砒化ガ
リュウム(GaAs)よりなる基板〒あり、2は基板l
上に格子整合の上形酸された実質的に不純物を含有しな
い砒化ガリエウム(GaAs)層よりなるチャンネル層
マあり、およそzoooスの厚さを有する。3はチャン
ネル層2上に格子整合の上形酸された実質的に不純物を
含有しないアルミニ瓢ウムガリュウム砒素(A/GaA
s)層よりなる電子供給層1あり、およそ500 Hの
厚さを有する0以上の半導体r@2.3はモレキュラー
ビームエピタキシャル成長゛法を使用してつづけて形成
する。4は入・出力電極(ソース・ドレイン電極)形成
領域上に選択的に形成された金・ゲルマニエウム/金(
−auGe/Au)層よりなる入・出力電極(ソース・
ドレイン電極)−7’あり、450℃程度において熱処
理して電子供給層3を貫通してチャンネル層2の上部ま
で合金化して合金層5を形成しこれを介して入・出力電
極(ソース・ドレイン電極)4とチャンネル層2とを抵
抗性に接続しである。6は制御電極(ゲート電極)′T
!あり、本実施例にあっては100X程度の厚さを有す
るアルi二−ウ桑(ムl)膜である。この程度の厚さに
おいては光等の電磁波を透過するから光照射用の開口は
不必要である。In the figure, 1 is a substrate made of gallium arsenide (GaAs) containing chromium (Or), etc., and 2 is a substrate l.
Overlying the channel layer is a lattice-matched, superoxide, substantially impurity-free gallium arsenide (GaAs) layer having a thickness of approximately 0.05 mm. 3 is a lattice-matched top-oxide layer on the channel layer 2, which is substantially impurity-free aluminum, gallium arsenide (A/GaA
An electron supply layer 1 consisting of a layer s) and a semiconductor r@2.3 of 0 or more having a thickness of approximately 500 H is subsequently formed using a molecular beam epitaxial growth method. 4 is gold/germanium/gold (gold) selectively formed on the input/output electrode (source/drain electrode) formation region
- Input/output electrodes (source/output electrodes) made of auGe/Au) layers
Drain electrode) -7' is heat-treated at about 450°C to penetrate through the electron supply layer 3 and alloy to the upper part of the channel layer 2 to form an alloy layer 5. The electrode) 4 and the channel layer 2 are connected resistively. 6 is a control electrode (gate electrode) 'T
! In this example, it is an aluminum film having a thickness of about 100X. With such a thickness, electromagnetic waves such as light are transmitted, so an opening for light irradiation is unnecessary.
以上の製造工程完了後の状態においては、チャンネル層
2と電子供給層3との界面近傍に電子群は蓄積していな
いが、光等の電磁波を照射すると、図において入・出力
電極(ソース・ドレイン電極)の下部領域を除き、上記
のヘテp界面近傍に電子群7が蓄積してノーマリオン型
の高電子移動度トランジスタとして機能することになる
。In the state after the completion of the above manufacturing process, no electron group is accumulated near the interface between the channel layer 2 and the electron supply layer 3, but when irradiated with electromagnetic waves such as light, the input/output electrodes (source and The electron group 7 is accumulated in the vicinity of the above-mentioned hetep interface, except for the lower region of the drain electrode), so that the transistor functions as a normally-on type high electron mobility transistor.
ここ〒、電磁波照射後の状態における蓄積電子*(二次
元電子ガス)の電子面濃度とその電子移動度とを770
にと5°にとにおいて測定せるところ、次表に示すとお
りであった。Here, the electron surface concentration of accumulated electrons* (two-dimensional electron gas) and its electron mobility in the state after electromagnetic wave irradiation are 770
The results measured at angles 1 and 5 degrees were as shown in the following table.
5°K LOXlつ11 1,200,
000この測定結果は、下表に示す従来技術における値
に比し大幅な改善を示す。5°K LOX11 1,200,
000 This measurement result shows a significant improvement over the prior art values shown in the table below.
従来技術の一例における電子面濃度と電子移動度770
K 13 X 10” 160,0
005’K &4 X 10” 5
4へ000第2図は本発明の他の実施例に係る高電子移
動度トランジスタの完成状態における断面図を示す。Electronic surface concentration and electron mobility in an example of conventional technology 770
K 13 x 10” 160,0
005'K &4 X 10" 5
4000 FIG. 2 shows a cross-sectional view of a completed high electron mobility transistor according to another embodiment of the present invention.
第1図と異なるところは、電子供給層3の厚さが多少薄
<150ム1あることと、電子供給層3上にn型のアル
ξ二集つムガリニウム砒素(ム/GaAs )よりなり
厚さ3150 A程度の追加層8があることのみである
。The difference from FIG. 1 is that the thickness of the electron supply layer 3 is somewhat thinner than 150 μm1, and that the electron supply layer 3 is made of n-type aluminum arsenide (mu/GaAs). The only difference is that there is an additional layer 8 of about 3150 A.
この場合は、光等の電磁波の照射を受ける前から蓄積電
子群は存在するが、党勢の電磁波の照射によりその値が
下表に示すように向上する。In this case, the accumulated electron group exists before being irradiated with electromagnetic waves such as light, but its value increases as shown in the table below by irradiation with electromagnetic waves from the party.
770K 電子面濃度 CIL−” &!i
X 10111S、0 X 10”電子移動度 cm2
/Vwc 160,0QO−’ 181LOO050
K 電子面濃度 cm−” 3.4810”
5.7 X 10”電子移動度 −/Vam s4G
、ooo 1.0I5a00G更に、興味あることは
、光等の電磁波の照射量を増加すると、第3図に示すと
おり、電子面濃度は、当然予想されたとおり、増大する
が、電子移動度と電子面濃度とは必らずしも比例せず、
電子面濃度と電子移動度との関係は第4図に示すとおり
極大値を有すること1ある。図において、曲線ムは77
°Kにおける測定結果を、曲線Bは5鰭における測定結
果を、それぞれ示す。770K Electronic surface concentration CIL-” &!i
X 10111S, 0 X 10”electron mobility cm2
/Vwc 160,0QO-' 181LOO050
K Electronic surface concentration cm-” 3.4810”
5.7 X 10” electron mobility −/Vam s4G
, ooo 1.0I5a00G Furthermore, what is interesting is that when the irradiation amount of electromagnetic waves such as light is increased, as shown in Figure 3, the electron surface concentration increases as expected, but the electron mobility and electron It is not necessarily proportional to the surface concentration,
The relationship between the electron surface concentration and the electron mobility has a maximum value as shown in FIG. In the figure, the curve m is 77
Curve B shows the measurement results at 5 fins.
上記のとおり、電子面濃度は時間に対し指数函数的に減
少するので、この第4図に示す特性を考慮に入れて光等
電磁波の照射量を決定すればよい。As mentioned above, since the electronic surface concentration decreases exponentially with time, the amount of irradiation of electromagnetic waves such as light may be determined by taking into account the characteristics shown in FIG.
(7)発明の詳細
な説明せるとおり、本発明によれば、電子源を電子供給
層に含有されるnjl不純物に依存するのではなく他の
要素にこれを求め、しかも、蓄積電子群(二次元電子ガ
氷)の電子面濃度を十分大11::
きくして、不純物散乱の影蕃を増大することなく・蓄積
電子群(二次元電子ガス)の電子移動度が増加されてい
る高電子移動度トランジスタを提供することができる0(7) As described in detail, according to the present invention, the electron source does not depend on the njl impurity contained in the electron supply layer, but relies on other elements, and moreover, By increasing the electron surface concentration of the dimensional electron gas (2D electron gas) to a sufficiently high level, the electron mobility of the accumulated electron group (two-dimensional electron gas) is increased without increasing the influence of impurity scattering. degree transistor can provide 0
第1図は本発明の一実施例に係る高電子移動度トランジ
スタの断面図であり、第2図は本発明の他の実施例に係
る高電子移動度トランジスタの断面図1ある。第3図は
本発明に係る高電子移動度トランジスタの電子供給層に
光等の電磁波を照射した場合の電子面濃度対照射量の関
係を示すグラフであり、第4図は第3図に対応する状態
における電子移動度対電子面濃度の関係を示すグラフで
ある0
1・・・中絶縁性の早場体(砒化ガリ為つム)基板、2
・・・チャンネル層(1型砒化ガリ晶つム層)、3・・
・電子供給層(1型アル建二工ウムガリ凰ウム砒票層)
、4・・・入・出力電極(ソース・ドレイン電極)、5
・・・入・出力電極の合金化領域、6・・・制御電極(
ゲート電極)、γ・・・蓄積電子群(二次元電子ガス)
、8・・・追加層(n型アルギニ番つムガリ為つA砒素
層)、A・・・77%において測定した電子移動度対電
子面濃度を示す曲線、B・・・58Xにおいて測定した
電子移動度対電子面濃度を示す曲線。
第3図
照對量
篤4図
面濃度〔献FIG. 1 is a sectional view of a high electron mobility transistor according to one embodiment of the present invention, and FIG. 2 is a sectional view 1 of a high electron mobility transistor according to another embodiment of the present invention. FIG. 3 is a graph showing the relationship between the electron surface concentration and the irradiation amount when the electron supply layer of the high electron mobility transistor according to the present invention is irradiated with electromagnetic waves such as light, and FIG. 4 corresponds to FIG. This is a graph showing the relationship between electron mobility and electron surface concentration in the state of
...Channel layer (type 1 arsenide gallium crystal layer), 3...
・Electron supply layer (Type 1 Alkenniku Umgari 凰UM砒片 layer)
, 4... Input/output electrode (source/drain electrode), 5
... Alloying region of input and output electrodes, 6... Control electrode (
gate electrode), γ... accumulated electron group (two-dimensional electron gas)
, 8... Additional layer (n-type arginine layer), A... Curve showing electron mobility versus electron surface concentration measured at 77%, B... Electron measured at 58X Curve showing mobility versus electronic surface concentration. Figure 3 Illumination volume Attachment 4 Drawing density
Claims (4)
和力の値を異にする他の半導体よりなる層とを有し、該
二つの半導体の電子親和力の差にもとづき該二つの半導
体層の界面近傍に蓄積される電子群(二次元電子ガス)
を導電媒体とし、骸導電媒体をもって構成される導電路
のインピーダンスを、前記二つの半導体層のいづれかの
上に設けられた制御電極をもって制御し、前記導電路は
前記制御電極を挾んで設けられた一対の入・出力電極と
接続されてなる能動的半導体装置において、前記二つの
半導体層は実質的に不純物を含有しておらず、前記制御
電極の少なくとも一部の領域は電磁波を透過して該制御
電極下部領域には電磁波の照射が可能であり、前記二つ
の半導体層のうち少なくとも電子親和力の小さい半導体
層には低温において光照射がなされた後、前記二つの半
導体層はそのまま低温に保持されていることを特徴とす
る半導体装置。(1) A layer made of semiconductor 1 and a layer made of another semiconductor having different electron affinities from each other, and the two semiconductors are separated based on the difference in electron affinity between the two semiconductors. Group of electrons accumulated near the interface of layers (two-dimensional electron gas)
is used as a conductive medium, and the impedance of a conductive path constituted by a skeleton conductive medium is controlled by a control electrode provided on either of the two semiconductor layers, and the conductive path is provided sandwiching the control electrode. In an active semiconductor device connected to a pair of input/output electrodes, the two semiconductor layers do not substantially contain impurities, and at least a portion of the control electrode transmits electromagnetic waves. It is possible to irradiate the lower region of the control electrode with electromagnetic waves, and after irradiating at least one of the two semiconductor layers with light at a low temperature, the two semiconductor layers are maintained at a low temperature. A semiconductor device characterized by:
体のうち電子親和力の小さな半導体よりなる層に接して
、該電子親和力の小さな半導体よりなる層を構成する半
導体と同一の半導体よりなりn型の不純物を含有してい
る層が附加されている、特許請求の範囲第1項記載の半
導体装置。(2) Of the two substantially impurity-free semiconductors, a layer made of a semiconductor with a low electron affinity is in contact with a semiconductor made of the same semiconductor as the layer made of a semiconductor with a low electron affinity. 2. The semiconductor device according to claim 1, further comprising a layer containing type impurities.
和力の値を異にする他の半導体よりなる層とを有し、該
二つの半導体の電子親和力の差にもとづき該二つの半導
体層の界面近傍に蓄積される電子群(二次元電子ガス)
を導電媒体とし、該導電媒体をもって構成される導電路
のインピーダンスを、前記二つの半導体層のいずれかの
上に設けられた制御電極をもって制御し、前記導電路は
前記制御電極を挾ん1設けられた一対の入・出力電極と
接続されてなる能動的中導体装置において、前記二つの
半導体層は実質的に不純物を含有しておらず、前記制御
電極の少なくとも一部の領域は譚磁波な透過することが
1き、該制御電極下部領域の前記二つ、の半導体層のう
ち少なくとも電子親和力の小さい半導体層に向って電磁
波を照射する手段を有し、前記能動的半導体装置は低温
容器に収納されて低温に保持されてなることを特徴とす
る半導体装置。(3) It has a layer made of the semiconductor No. 1 and a layer made of another semiconductor having a different electron affinity value from the semiconductor No. 1, and the two semiconductors are separated based on the difference in electron affinity of the two semiconductors. Group of electrons accumulated near the interface of layers (two-dimensional electron gas)
is used as a conductive medium, the impedance of a conductive path constituted by the conductive medium is controlled by a control electrode provided on either of the two semiconductor layers, and the conductive path is provided with one conductive path sandwiching the control electrode. In the active medium conductor device, the two semiconductor layers are substantially free of impurities, and at least a partial region of the control electrode is connected to a pair of input/output electrodes. The active semiconductor device has a means for irradiating electromagnetic waves toward at least one of the two semiconductor layers in the lower region of the control electrode that has a smaller electron affinity, and the active semiconductor device is placed in a low temperature container. A semiconductor device characterized by being housed and maintained at a low temperature.
体のうち電子親和力の小さな半導体よりなる層に接して
、該電子親和力の小さな半導体よりなる層を構成する半
導体と同一の半導体よりなりn型の不純物を含有してい
る層が附加されている、特許請求の範囲第3項記載の半
導体装置。(4) Of the two substantially impurity-free semiconductors, a layer made of a semiconductor with a low electron affinity is in contact with a semiconductor made of the same semiconductor as the layer made of a semiconductor with a low electron affinity. 4. The semiconductor device according to claim 3, further comprising a layer containing type impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56192593A JPS5893377A (en) | 1981-11-30 | 1981-11-30 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56192593A JPS5893377A (en) | 1981-11-30 | 1981-11-30 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5893377A true JPS5893377A (en) | 1983-06-03 |
JPH0445976B2 JPH0445976B2 (en) | 1992-07-28 |
Family
ID=16293849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56192593A Granted JPS5893377A (en) | 1981-11-30 | 1981-11-30 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5893377A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6251268A (en) * | 1985-08-30 | 1987-03-05 | Hitachi Ltd | semiconductor equipment |
JPS62293780A (en) * | 1986-06-13 | 1987-12-21 | Nec Corp | Semiconductor device |
JPS63177573A (en) * | 1987-01-19 | 1988-07-21 | Hitachi Ltd | Superconducting transistor |
US10109713B2 (en) | 2003-09-09 | 2018-10-23 | The Regents Of The University Of California | Fabrication of single or multiple gate field plates |
-
1981
- 1981-11-30 JP JP56192593A patent/JPS5893377A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6251268A (en) * | 1985-08-30 | 1987-03-05 | Hitachi Ltd | semiconductor equipment |
JPS62293780A (en) * | 1986-06-13 | 1987-12-21 | Nec Corp | Semiconductor device |
JPS63177573A (en) * | 1987-01-19 | 1988-07-21 | Hitachi Ltd | Superconducting transistor |
US10109713B2 (en) | 2003-09-09 | 2018-10-23 | The Regents Of The University Of California | Fabrication of single or multiple gate field plates |
Also Published As
Publication number | Publication date |
---|---|
JPH0445976B2 (en) | 1992-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4593301A (en) | High electron mobility semiconductor device employing selectively doped heterojunction and dual, undoped spacer layers | |
JPH0224025B2 (en) | ||
JPS5893377A (en) | Semiconductor device | |
US5227644A (en) | Heterojunction field effect transistor with improve carrier density and mobility | |
JPS5893380A (en) | Semiconductor device | |
JPS60258971A (en) | Semiconductor device and its manufacturing method | |
JPH0326535B2 (en) | ||
JP3373386B2 (en) | Semiconductor device and manufacturing method thereof | |
US5773853A (en) | Compound semiconductor device | |
JPS593977A (en) | Semiconductor device | |
KR910006698B1 (en) | Semiconductor device | |
JPS6027172A (en) | field effect transistor device | |
JP2508173B2 (en) | Method for manufacturing semiconductor device | |
JP2961946B2 (en) | Electron wave interference device | |
JPS58220469A (en) | Semiconductor device | |
JPH03211839A (en) | Compound semiconductor device and its manufacturing method | |
JPH0468775B2 (en) | ||
JPH0126191B2 (en) | ||
JPS60160664A (en) | Manufacturing method of semiconductor device | |
JPS5893378A (en) | Manufacture of semiconductor device | |
JPS62266873A (en) | semiconductor equipment | |
JPH02150038A (en) | Modulation-doping field effect transistor | |
JPS63177573A (en) | Superconducting transistor | |
JPS6235676A (en) | field effect transistor | |
JP2003324110A (en) | Delta-doped transistor structure |