JPS5888178A - Thermal pressure formation for special form ceramic material - Google Patents
Thermal pressure formation for special form ceramic materialInfo
- Publication number
- JPS5888178A JPS5888178A JP56185121A JP18512181A JPS5888178A JP S5888178 A JPS5888178 A JP S5888178A JP 56185121 A JP56185121 A JP 56185121A JP 18512181 A JP18512181 A JP 18512181A JP S5888178 A JPS5888178 A JP S5888178A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- sintered body
- ceramic material
- hot pressing
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910010293 ceramic material Inorganic materials 0.000 title claims description 8
- 230000015572 biosynthetic process Effects 0.000 title 1
- 238000000034 method Methods 0.000 claims description 32
- 239000011521 glass Substances 0.000 claims description 27
- 239000000919 ceramic Substances 0.000 claims description 18
- 238000007731 hot pressing Methods 0.000 claims description 13
- 238000005245 sintering Methods 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910002804 graphite Inorganic materials 0.000 claims description 7
- 239000010439 graphite Substances 0.000 claims description 7
- 238000000465 moulding Methods 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000005388 borosilicate glass Substances 0.000 claims description 2
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- 239000005350 fused silica glass Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims 1
- 239000000047 product Substances 0.000 description 18
- 239000000843 powder Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- 239000011148 porous material Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000012467 final product Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000006082 mold release agent Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は複雑形状で寸法精度が高く、かつ高密度な薄肉
セラミックス製品を得るための異形セラミックス材料の
熱間加圧成形法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hot pressing method for a deformed ceramic material for obtaining a thin ceramic product having a complex shape, high dimensional accuracy, and high density.
セラミックス製品は従来、複雑な製造工程を経て作られ
て来たが、近時製造工程を簡略化し、複雑な工程より生
ずる製品の特性のバラツキを減少し、あるいはその特性
の向上をはかるため種々の製造方法が開発されている。Ceramic products have traditionally been made through complex manufacturing processes, but in recent years various efforts have been made to simplify the manufacturing process, reduce variations in product properties caused by complex processes, or improve their properties. A manufacturing method has been developed.
ホットプレス法もその1つであり、加圧を伴なわない昔
通焼結法に比べ、気孔を強制的に追い出し比較的低温で
緻密化できる利点をもつものとして広く利用が進められ
ている。The hot press method is one such method, and is being widely used because it has the advantage of forcibly expelling pores and densifying the material at a relatively low temperature, compared to the traditional sintering method that does not involve pressurization.
この技術は粉体の成形と焼結の2つの作業を同時に行な
う方法であり圧縮と加熱処理を組み合わせたものである
。This technique is a method that simultaneously performs the two operations of powder compaction and sintering, and combines compression and heat treatment.
しかし、このホットプレス法によっては通常の場合、比
較的薄肉の異形成形品を製造することは困難とされてお
り、窒化珪素や炭化珪素の薄肉異形材の製造にはスリッ
プキャスティング法や射出成形法が一般に用いられてい
る。However, it is usually difficult to manufacture relatively thin-walled irregularly shaped products using this hot pressing method, and slip casting and injection molding are used to manufacture thin-walled irregularly shaped products of silicon nitride and silicon carbide. is commonly used.
しかし、このような方法によるものは、その製法の性格
上、寸法精度にはすぐれているが密度の低いものしか得
られず、近時要求される高密度化傾向には適合しない。However, due to the nature of the manufacturing method, products produced by this method have excellent dimensional accuracy but only low density, and are not compatible with the recent trend toward higher density.
一方、鋼管等、管材の加工においてバルジ加工法がある
。この方法では従来の金属では考えられない程、大きな
変形ができ、又、管の肉厚も幅広く、薄肉も可能で、型
の表面に複雑な模様を彫っておけばその通りに転写され
、鋳造品に匹敵するような製品を得ることができる。On the other hand, there is a bulge processing method in processing pipe materials such as steel pipes. With this method, it is possible to make large deformations unimaginable with conventional metals, and it is also possible to make pipes with a wide range of wall thicknesses, even thin ones.If you carve a complicated pattern on the surface of the mold, it will be transferred exactly as it is, and it will be cast. You can obtain products that are comparable to those of other products.
しかし、この加工は管材の延性が問題であり軟鋼、銅、
アルミニウムなどの軟質材や、超塑性合金では容易に膨
らすことが出来るが、セラミックスの場合には延性は余
り期待できず、直ちに鋼管のバルジ加工をセラミックス
に適用することは困難であった。However, this processing has a problem with the ductility of the pipe material, so mild steel, copper,
Soft materials such as aluminum and superplastic alloys can be easily swollen, but ceramics cannot be expected to have much ductility, and it has been difficult to immediately apply the bulging process of steel pipes to ceramics.
ところが、近時、高温ガスタービンを始め、ディーゼル
エンジン、MHD発電など高温で稼動する機器の開発が
活溌であり、高温構造材料としてセラミックス製品が注
目され、その複雑形状製品の製品が強く要請されている
。However, recently, the development of equipment that operates at high temperatures, such as high-temperature gas turbines, diesel engines, and MHD power generation, has been active, and ceramic products have attracted attention as high-temperature structural materials, and products with complex shapes are in strong demand. There is.
本発明は叙上のような趨勢に鑑み、セラミックス製品の
加工法として知られる前記ホットプレス法に鋼管等のバ
ルジ加工技術の導入を試み、その適確な加工条件を探究
して薄肉異形で複雑な形状を有し、かつ寸法精度にすぐ
れた高密度セラミックス製品を得る方法を提供すること
を目的とするものである。In view of the above-mentioned trends, the present invention attempts to introduce bulge processing technology for steel pipes, etc. into the hot press method, which is known as a processing method for ceramic products, and explores the appropriate processing conditions for processing thin-walled irregularly shaped and complex products. The object of the present invention is to provide a method for obtaining a high-density ceramic product having a shape and excellent dimensional accuracy.
即ち、本発明はセラミックス材料からなる予備焼結体を
所要の複雑形状に成形する方法であって、予備焼結体と
して複雑な最終形状と相似又は類似の形状をもった中空
で、少くとも80%以上の密度を有する予備焼結体を用
いること、これを黒鉛又はセラミックスなどの耐熱性の
割り型内に潤滑兼シール材としてBNを介して配置する
こと、前記予備焼結体の中空内部に成形温度において1
0’〜lo ポアズの粘度を呈するガラスを充填すルコ
と、その後所要の熱間加圧成形温度で前記ガラスを一軸
方向に加圧し、その液圧を利用して所定の熱間加圧成形
ならびに本焼結を同時に行なうことの各要件からなるホ
ットプレス法を含む熱間加圧成形法をその特徴とするも
のである。That is, the present invention is a method for forming a pre-sintered body made of a ceramic material into a required complex shape, the pre-sintered body being hollow and having a shape similar to or similar to the complex final shape, at least 80 mm. % or more in density, placing this in a heat-resistant split mold made of graphite or ceramics through BN as a lubricating and sealing material, and placing the pre-sintered body in the hollow interior of the pre-sintered body. 1 at molding temperature
The glass is filled with glass exhibiting a viscosity of 0' to lo poise, and then the glass is uniaxially pressurized at a required hot press forming temperature, and the liquid pressure is used to perform predetermined hot press forming and It is characterized by a hot pressing method including a hot pressing method, which requires performing main sintering at the same time.
以下、本発明方法の具体的な実施)゛オ様について更に
順を追って説明する。Hereinafter, the specific implementation of the method of the present invention will be explained step by step.
先ず、本発明方法は加圧成形に先立ち、その素材となる
セラミックス粉末予備焼結体を作ることから始まる。First, the method of the present invention begins by preparing a ceramic powder pre-sintered body to be used as the raw material, prior to pressure molding.
ここで、本発明の材料として使用されるセラミックスは
、窒化珪素、炭化珪素、炭化硼素などを主成分とし、Y
2O3粉末、AI!zOa粉末、MgO粉などを適宜、
必要に応じ少量添加せしめた材料であり、これらを圧縮
成形、射出成形等の成形手段により予備成形した後、ガ
ス雰囲気焼結法、ホットプレス焼結法等の焼結法により
予備焼結することによって前記予備焼結体とする。Here, the ceramics used as the material of the present invention have silicon nitride, silicon carbide, boron carbide, etc. as main components, and Y
2O3 powder, AI! zOa powder, MgO powder, etc. as appropriate.
These are materials that are added in small quantities as necessary, and are preformed by compression molding, injection molding, or other molding methods, and then preliminarily sintered by a sintering method such as gas atmosphere sintering or hot press sintering. The pre-sintered body is obtained as follows.
この場合、予備焼結体の相対密度が比較的高い場合には
焼結体中の気孔は、その殆んどが表面に開口していない
閉孔となっているから、そのまま処理しても緻密化は可
能であるか、相対密度が低い場合には表面に連通した開
孔が多いためガラスの侵入が起るので、閉塞することが
必要である。In this case, if the relative density of the pre-sintered body is relatively high, most of the pores in the sintered body are closed pores that do not open on the surface, so even if processed as is, the pores in the sintered body will become dense. However, if the relative density is low, there are many open pores connected to the surface, which may cause glass to enter, so it is necessary to close them.
通常、好ましい予備焼結体の密度としては80%以上で
ある。80%以下では前記現象が起り実用に難がある。Usually, the preferable density of the pre-sintered body is 80% or more. If it is less than 80%, the above phenomenon occurs and it is difficult to put it into practical use.
しかし、後述するBN粉末によっである程度シール作用
が行われるので可成り広範囲な利用が可能である。なお
゛、この予備焼結体は、焼結に先立ち、必要に応じ機械
加工を行なうことかできる。However, since the sealing action is performed to some extent by the BN powder described later, it can be used in a fairly wide range of applications. Note that this pre-sintered body can be machined if necessary prior to sintering.
この予備焼結体は本発明においては、薄肉成形を主旨と
するところから複雑な形状の最終形状に照らし、これと
相似又は類似の臀騙成され、中空の予備焼結体として成
形用割り型内に装着されるが、この装着に先立ってその
全面に対しBN粉末が噴霧又は塗布される。BN粉末は
通常、離型剤として型内面等に付着されるが、本発明に
おいては単に離型剤に止まらず、更に予備焼結体と型と
の間の反応防止、潤滑としての作用を有し、特に重要な
作用として焼結体と後述す4ガラスとの間のシール作用
を有する。このようにBN粉末にシール作用を持たせた
ことは本発明の1つの特徴であり、従来のBN粉末では
考えられなかったことである。In the present invention, this pre-sintered body is formed into a hollow pre-sintered body that is formed into a similar or similar shape in light of the complex final shape, and is used as a hollow pre-sintered body in a split mold for molding. However, prior to this installation, BN powder is sprayed or applied over the entire surface. BN powder is usually attached to the inner surface of the mold as a mold release agent, but in the present invention, it is not only used as a mold release agent, but also acts as a lubricant and prevents reaction between the pre-sintered body and the mold. However, as a particularly important function, it has a sealing function between the sintered body and the four glasses described below. Providing the BN powder with a sealing action in this way is one of the features of the present invention, and is something that could not have been considered with conventional BN powders.
割り型は通常、一般的なホットプレスと同様、黒鉛又は
セラミックスなど耐熱性的物質で作られ、その内側には
鋼管のバルジ加工に見られるように複雑な形状、模様が
形成されている。なお、割り型内面にBN粉末を噴霧又
は塗布せしめても勿論差支えない。The split mold is usually made of a heat-resistant material such as graphite or ceramics, similar to a general hot press, and has a complex shape or pattern formed inside it, similar to that seen in bulging steel pipes. Note that, of course, BN powder may be sprayed or coated on the inner surface of the split mold.
このようにして割り型内面に予備焼結体を配置した後、
前記予備焼結体の中空部には圧力媒体をなすガラスが充
填される。After placing the preliminary sintered body on the inner surface of the split mold in this way,
The hollow portion of the pre-sintered body is filled with glass serving as a pressure medium.
このガラス材料としては溶融シリカ、96%シリカ・ガ
ラス(バイコールガラス)、硼珪酸ガラス(パイレック
スガラス)等が使用可能であり、特にバイコールガラス
は有用で適宜、ホットプレス温度によって選択されるが
、該ホットプレス温度番こおいて10〜10 ポアズの
粘度をもっことが有効なホットプレス成形上、肝要であ
る。10’以下の粘度では粘度が低く、加工時、押し欅
と予備焼結体の隙間からガラスが洩れ易く、一方1o1
2を超えると粘度が高過ぎ融液の挙動に乏しく圧力媒体
として不適となり、加工に適さなくなる。従ってガラス
は前記粘性をもつものを選ばなければならない。なお、
前記押し棒と予備焼結体との間の隙間から洩れるガラス
を阻止するため、該間隙にはシール材が設けられるか、
前記BNはかがる場合のシール作用をも兼ねる。かくし
て、予備焼結体を型内に装着し、圧媒ガラスをその中空
四部に充填した後は、ホットプレス作用に従って熱間加
圧成形を行うべく、前記中空凹部内にその先端を挿入し
たプレス機の押し棒によりガラスに所要のホットプレス
温度下で一軸方向の圧力を加える。As this glass material, fused silica, 96% silica glass (Vycor glass), borosilicate glass (Pyrex glass), etc. can be used. Vycor glass is particularly useful and can be selected depending on the hot pressing temperature. It is important for effective hot press molding to have a viscosity of 10 to 10 poise at the hot press temperature. If the viscosity is less than 10', the viscosity is low and the glass tends to leak from the gap between the press and the preliminary sintered body during processing.
If it exceeds 2, the viscosity is too high and the behavior of the melt is poor, making it unsuitable as a pressure medium and unsuitable for processing. Therefore, the glass must have the above-mentioned viscosity. In addition,
In order to prevent glass from leaking from the gap between the push rod and the pre-sintered body, a sealing material is provided in the gap, or
The BN also serves as a seal when crimping. After the preliminary sintered body is placed in the mold and the four hollow parts thereof are filled with pressure medium glass, a press is inserted with its tip into the hollow recess to perform hot pressing according to the hot press action. Uniaxial pressure is applied to the glass at the required hot press temperature by the push rod of the machine.
圧力は一般的には800に1917cm2前後であり旧
P処理に対して著しく低圧力である。The pressure is generally around 800 to 1917 cm2, which is significantly lower than the old P process.
温度は、被処理予備焼結体の材料により多少異なるが、
1500°C以上、好ましくは1600〜1900°C
程度で、20分〜1時間、加圧成形が行われる。このと
き、前記充填されたガラスは前述′のように溶解し、1
04〜lOL!ポアズ の範囲の粘性を呈し、予備焼結
体に液圧を付加して予備焼結体外面を型内の複雑な形状
、模様に沿って成形する。同時に予備焼結体セラミック
スは高密度化が進行し、成形ならびに本焼結が完了する
。The temperature varies somewhat depending on the material of the pre-sintered body to be treated, but
1500°C or higher, preferably 1600-1900°C
Pressure molding is performed for about 20 minutes to 1 hour. At this time, the filled glass is melted as described above, and 1
04~lOL! It exhibits a viscosity in the Poise range, and by applying hydraulic pressure to the pre-sintered body, the outer surface of the pre-sintered body is shaped into a complex shape or pattern within the mold. At the same time, the density of the pre-sintered ceramic progresses, and the forming and main sintering are completed.
しかして、上記の如くホットプレスによる熱間加圧成形
が終了し、処理を終ったセラミックス焼結体をその後、
型より取り出し中空部に付着したガラスを除去すること
により最終製品となる。After the hot pressing process is completed as described above, the processed ceramic sintered body is then
The final product is obtained by removing the glass from the mold and removing the glass attached to the hollow part.
この最終製品は、その外面に、型内面に施された知雑な
形状、模様を有しており理論密度において殆んど100
%の高緻密化焼結体として作ることができる。This final product has an intricate shape and pattern on its outer surface and on the inner surface of the mold, and has a theoretical density of almost 100%.
% of highly densified sintered bodies.
添付図面は前記加圧成形の態様を示すもので、第1図は
被処理予備焼結体形状の1例を添示している。第2図は
前記予備焼結体に対しホットプレスを行っている状態で
、図中(1)は黒鉛からなるスリーブ、(2)は同じく
黒鉛製などの内面に模様(2′)を有する二つ割り型、
(3)は該型(2)内に装入された第1図図示の予備焼
結体、(4)は予備焼結体の中空凹部に充填されたガラ
ス、(5)は該ガラス(4)に対し一軸方向に圧力を、
加えるホットプレス機などの黒鉛製押し棒であり、前記
型(2)、予備焼結体(3)の上面には押し欅(5)を
案内するための同じく黒鉛製押し棒ガイド(6)が配設
されており、予備焼結体(3)の全面には図において示
すようにBN被覆(7)が施されている。The attached drawings show aspects of the pressure forming, and FIG. 1 shows an example of the shape of the preliminary sintered body to be processed. Figure 2 shows the preliminary sintered body being hot-pressed. In the figure, (1) is a sleeve made of graphite, and (2) is a sleeve made of graphite, which is divided into two parts with a pattern (2') on the inner surface. type,
(3) is the pre-sintered body shown in Figure 1 charged into the mold (2), (4) is the glass filled in the hollow recess of the pre-sintered body, and (5) is the glass (4 ) in one axial direction,
This is a push rod made of graphite used in a hot press machine, etc., and a push rod guide (6) also made of graphite is placed on the upper surface of the mold (2) and the preliminary sintered body (3) to guide the pusher (5). The entire surface of the preliminary sintered body (3) is coated with a BN coating (7) as shown in the figure.
勿論、上記型(2)、予備焼結体(3)の形状は種々の
変形が可能であり、意図する製品の形状によって規定さ
れる。Of course, the shapes of the mold (2) and the preliminary sintered body (3) can be modified in various ways, and are determined by the shape of the intended product.
以下、前記図示した型を使用して製品を成形した実施例
を掲げる。Examples in which products were molded using the illustrated mold are listed below.
(実施例)
5%MgOを含む95%Si3N4の混合体を5000
atm でラバープレスして予備成形体を作り、これ
を機械加工した後、1600’CX100分で予備焼結
した。この予備焼結体の密度は83%であった。又、そ
の形状は第1図の如き形状であった。次に、この予備焼
結体端面を切削加工し、形状を整えた後、該予備焼結体
全面にBNを噴霧して全面コーティングし、第2図図示
の如くセットして、1750°CX 80 m+ n
X Boo ”/(m2の条件で該予備焼結体をホット
プレスした。得られた焼結体表面には、型内面の模様が
その通りに転写されていた。又、密度もホットプレス前
後で、2.669/cm3から8.199/cm2に高
密度されており、これは理論密度で、当初の88%が1
00%に改善されていた。(Example) A mixture of 95% Si3N4 containing 5% MgO was
A preform was produced by rubber pressing in ATM, machined, and presintered at 1600'CX for 100 minutes. The density of this pre-sintered body was 83%. Moreover, its shape was as shown in FIG. Next, after cutting the end face of this pre-sintered body and adjusting the shape, BN was sprayed on the entire surface of the pre-sintered body to coat the entire surface, and the pre-sintered body was set as shown in Fig. 2 and heated at 1750° CX 80. m+n
The pre-sintered body was hot-pressed under the conditions of X Boo''/(m2).The pattern on the inner surface of the mold was transferred to the surface of the obtained sintered body as it was.The density was also different before and after hot-pressing. , the density has been increased from 2.669/cm3 to 8.199/cm2, which is the theoretical density, and 88% of the original density is 1.
It was improved to 00%.
以上の如く本発明方法によれは、従来、内錐とされ、そ
の製造が要望されていた高密度の薄肉異形セラミックス
製品の製造が可能となり効率的に該製品を得ることが出
来ると共に、密度向上にょる強度の向上が期待され、セ
ラミックスの耐熱性能と相俟って現在数々その開発が急
務として望まれる高温強度機械部品の製造に頗る顕著な
効果を発揮する。As described above, according to the method of the present invention, it is possible to manufacture high-density thin-walled irregularly shaped ceramic products, which have conventionally been desired to be manufactured using an inner cone. It is expected to improve the strength of ceramics, and together with the heat resistance performance of ceramics, it will have a remarkable effect on the production of high-temperature strength mechanical parts, which are currently in urgent need of development.
しかも本発明方法は薄肉異形の製品を得る好適な条件下
で前記製品を製造するもので、その製造工程は他のセラ
ミックス製品の製造と大差なく、しかもこれによってセ
ラミックス焼結体外面に複雑な形状、模様を形成するこ
とができ極めて実効性に富む方法として実用化が期待さ
れる。Moreover, the method of the present invention produces thin-walled, irregularly shaped products under suitable conditions, and the manufacturing process is not much different from the production of other ceramic products. This method is expected to be put to practical use as a highly effective method that can form patterns.
第1図は本発明方法において使用する予備焼結体の形状
の1例を示す断面図、第2図は同予備焼結体を型内にセ
ットし加圧成形する状態を示す断面説明図である。
(2)・・・割り型、 (3)・・・予備焼結
体、(4)・・・ガラス、(5)・・・押し棒。Fig. 1 is a cross-sectional view showing an example of the shape of the pre-sintered body used in the method of the present invention, and Fig. 2 is an explanatory cross-sectional view showing the state in which the pre-sintered body is set in a mold and press-formed. be. (2)...split mold, (3)...preliminary sintered body, (4)...glass, (5)...push rod.
Claims (1)
焼結体を所要の複雑な異形最終形状に成形する方法にお
いて、前記予備焼結体として複雑な最終形状と相似又は
類似の形状をもった中空で、少くとも80%の密度を有
する予備焼結体を用い、その全面にB’Nをコーティン
グした後、これを黒鉛又はセラミックス製の割り形内部
に装着し、熱間加圧成形温度において104〜1OL2
ポアズの粘度を呈するガラスを前記予備焼結体の中空部
に充填し、所要の熱間加圧成形温度で前記ガラスを一軸
方向に加圧し、その液圧を利用して熱間加圧成形を行う
と共に本焼結することを特徴とする異形セラミックス材
料の熱間加圧成形法 2、セラミックス材料が窒化珪素、炭化珪素、炭化硼素
の何れかを主成分とする材料である特許請求の範囲第1
項記載の異形セラミックス材料の熱間加圧成形法 8、充填用ガラスか溶融シリカガラス、96%シリカ・
ガラス、硼珪酸ガラスから選ばれたガラスである特許請
求の範囲第1項又は第2項記載−の異形セラミックス材
料の熱間加圧成形法 4、ガラスの熱間加圧成形温度における粘度が10’〜
10 ポアズである特許請求の範囲第1項、 第2項又
は第3項記載の異形セラミックス材料の熱間加圧成形法[Scope of Claims] 1. In a method of forming a pre-sintered body made of a ceramic material into a required complicated final shape by hot pressing, the pre-sintered body is similar to or similar to the complicated final shape. A hollow pre-sintered body with a density of at least 80% is used, its entire surface is coated with B'N, and then this is placed inside a split mold made of graphite or ceramics and hot-sintered. 104-1OL2 at pressure molding temperature
Glass exhibiting Poise's viscosity is filled into the hollow part of the pre-sintered body, the glass is uniaxially pressurized at a required hot press forming temperature, and hot press forming is performed using the liquid pressure. 2. A method for hot pressing of a deformed ceramic material, characterized by carrying out main sintering at the same time as sintering. 1
Hot pressing method for deformed ceramic materials described in Section 8, Filling glass or fused silica glass, 96% silica.
Method 4 of hot pressing of a deformed ceramic material according to claim 1 or 2, which is a glass selected from glass and borosilicate glass, wherein the viscosity at the hot pressing temperature of the glass is 10 '〜
10. Hot press forming method of deformed ceramic material according to claim 1, 2 or 3, which is poise.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56185121A JPS5888178A (en) | 1981-11-17 | 1981-11-17 | Thermal pressure formation for special form ceramic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56185121A JPS5888178A (en) | 1981-11-17 | 1981-11-17 | Thermal pressure formation for special form ceramic material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5888178A true JPS5888178A (en) | 1983-05-26 |
Family
ID=16165229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56185121A Pending JPS5888178A (en) | 1981-11-17 | 1981-11-17 | Thermal pressure formation for special form ceramic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5888178A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003055826A1 (en) * | 2001-12-26 | 2003-07-10 | Sumitomo Electric Industries, Ltd. | Method for producing ceramic optical parts |
-
1981
- 1981-11-17 JP JP56185121A patent/JPS5888178A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003055826A1 (en) * | 2001-12-26 | 2003-07-10 | Sumitomo Electric Industries, Ltd. | Method for producing ceramic optical parts |
US8110140B2 (en) | 2001-12-26 | 2012-02-07 | Sumimoto Electric Industries, Ltd. | Method of manufacturing ceramic optical components |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4112143A (en) | Method of manufacturing an object of silicon nitride | |
US4499048A (en) | Method of consolidating a metallic body | |
CA1158847A (en) | Process for the manufacture of substantially pore- free shaped polycrystalline articles by isostatic hot-pressing | |
JPS59152272A (en) | Manufacture of powder by isostatic press | |
GB2062685A (en) | Hot pressing powder | |
JPS597323B2 (en) | Method of manufacturing articles from powder | |
JP2634213B2 (en) | Method for producing powder molded article by isostatic press | |
CN112789128A (en) | Method for producing a component of complex shape by pressure sintering starting from a preform | |
GB1564851A (en) | Method of manufacturing an object of silicon nitride | |
US5077002A (en) | Process for shaping any desired component using a powder as the starting material | |
JPS5888178A (en) | Thermal pressure formation for special form ceramic material | |
JPH02240201A (en) | Forming die for compact body and manufacture of compact body | |
KR960012868B1 (en) | Method of manufacturing an object of a powdered material by isostatic pressing | |
KR102623463B1 (en) | Part manufacturing method using Near-Net Shape powder metallurgy and parts manufactured by this manufacturing method | |
JPS6114114B2 (en) | ||
US5989483A (en) | Method for manufacturing powder metallurgical tooling | |
JPS58125658A (en) | Manufacturing method of ceramic sintered body | |
US5092023A (en) | Process for the production of parts having a cavity by pressing | |
GB2208490A (en) | A method of manufacturing components from metallic or non-metallic powder | |
JPS58189302A (en) | Molding of powder | |
JPH0559162B2 (en) | ||
JPS6119704A (en) | Preparation of sintered machine parts | |
EP0237198A2 (en) | Method for producing ceramic bodies by hot pressing | |
JPS59116178A (en) | Manufacture of high density ceramic sintered body | |
JPH0323272A (en) | Manufacturing method of powder compact |