[go: up one dir, main page]

JPS5865414A - Magnetooptic element - Google Patents

Magnetooptic element

Info

Publication number
JPS5865414A
JPS5865414A JP15325381A JP15325381A JPS5865414A JP S5865414 A JPS5865414 A JP S5865414A JP 15325381 A JP15325381 A JP 15325381A JP 15325381 A JP15325381 A JP 15325381A JP S5865414 A JPS5865414 A JP S5865414A
Authority
JP
Japan
Prior art keywords
garnet
substrate
grown
thickness
isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15325381A
Other languages
Japanese (ja)
Inventor
Taketoshi Hibiya
孟俊 日比谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP15325381A priority Critical patent/JPS5865414A/en
Priority to US06/360,230 priority patent/US4522473A/en
Priority to CA000399494A priority patent/CA1180210A/en
Priority to DE8282102567T priority patent/DE3279311D1/en
Priority to EP82102567A priority patent/EP0061743B1/en
Publication of JPS5865414A publication Critical patent/JPS5865414A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0036Magneto-optical materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To make >=35dB isolation possible, by using a garnet film grown on a nonmagnetic garnet substrate of which the surface consists of a face inclined from{110}or{211}an angle within 15 deg. as a Faraday rotating body. CONSTITUTION:A Gd0.2Y2.8Fe3O12 garnet thick film 2 is grown to 190mum on a Gd3Ga5O12 substrate of which the rotating axis is <111> in the{110}facets and of which the surface is inclined by 8 deg. (within 16 deg.) angle in the direction <211> intersecting orthogonally with said axis, while the rotation of the substrate is stopped for one minute at every 30min, in a flux consisting essentially of PbO-B2O3. A chip is cut out from such garnet wafer and its end face is optically polished. An isolator is assembled of such chip by using a magnet 3. With respect to 1.3mum laser light 4, >=35db isolation is obtained.

Description

【発明の詳細な説明】 本発明は、ファラデー着果1411用した光アイソレー
タあるいはサー+ル−タなどの磁気光学素子K1mする
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magneto-optical element K1m such as an optical isolator or a router using a Faraday crystal 1411.

近時、光ファイバ通信技術の進歩は目ざましい。In recent years, advances in optical fiber communication technology have been remarkable.

低損失ファイバと兼時間造l1ll!発損可臘な半導体
レーザの開発により、光7アイス遍信技循は通信量の増
加に対応し安価でしかも高品質の通信手段を提供する手
段として期待されている。しかしながら、光伝送路の途
中に投げられるスイッチ等の部品から反射される戻り光
が光源である半導体レーザに入るとV−ザ発損の安定性
を損うという大きな間層がある。
Low-loss fiber and time-making l1ll! With the development of semiconductor lasers that can emit light and withstand loss, the Hikari 7 Ice Technology Center is expected to be a means of providing a low-cost, high-quality communication means in response to the increase in communication volume. However, there is a significant problem in that if the return light reflected from components such as switches thrown in the middle of the optical transmission path enters the semiconductor laser that is the light source, it will impair the stability of the V-laser emission loss.

この間層の解決のために、光アイソレータをレーザ光源
の後段に#&げることがlI茶さnでいる。
In order to solve this problem, it is necessary to install an optical isolator after the laser light source.

l・3〜l・8μmの長波借用光アイソレータとしては
、電子通信学会技術研究報告OQE7g−133に報告
されているように、強磁性体であるイ、トリクム・d−
ガーネ、) (Y8’@I’ll 、 YIG ) O
775デー*果を用いたものが提案されている。この報
告で用いられているYIG はフラックス法で育成され
たバルク単#j!蟲である。
As reported in the Institute of Electronics and Communication Engineers Technical Research Report OQE7g-133, long-wave borrowed optical isolators with a diameter of 1.3 to 1.8 μm are made using ferromagnetic materials such as a, tricum, and d-.
Gane, ) (Y8'@I'll, YIG) O
A method using 775 days* fruit has been proposed. The YIG used in this report is bulk single #j grown by the flux method! It's a bug.

一方、YIGを光が通過する際に入射−光面の回転が生
ずる丸めには、YIGは光の入射方向と平行に磁気的に
飽和していなければならない。円筒形に加工したYIG
/(ルク単結晶を用いる場合には、飽和のための外部磁
場は極めて太き(なり20000・にも達する。この問
題点を解決する九めK、電子通信学会技術研究報告0Q
ji80−53に示されるごとく、YIGパルタ単結晶
を薄板状(研磨したものを用いることが提案されている
On the other hand, for rounding in which rotation of the incident-light plane occurs when light passes through the YIG, the YIG must be magnetically saturated in parallel to the direction of incidence of the light. YIG processed into a cylindrical shape
/(When using a single crystal, the external magnetic field for saturation is extremely thick (up to 20,000 mm.
As shown in ji80-53, it has been proposed to use a thin plate-like (polished) YIG Palta single crystal.

しかしながら、バルク単結晶を用いるかぎり特願昭55
−93449に示されるごとく高品質なYIGバルク単
箱晶を入手すること#i、#!めで雌しく、この丸めj
t、フイソレータの原材料コストは轟くなり、光アイソ
レータのll&t−阻げている。この解決のために上記
特許願に開示されるごとく、g1図に示すよ5な非磁性
ガーネット基板上にエピタキシャル成長させたガーネオ
ト原膜の採用が提案されでいる。これにより、原材料コ
ストを安価にすることが#J’―である。
However, as long as bulk single crystals are used,
- Obtain high quality YIG bulk single box crystal as shown in #i, #! Happy and feminine, this round j
The cost of raw materials for optical isolators has skyrocketed, hampering optical isolators. To solve this problem, as disclosed in the above-mentioned patent application, it has been proposed to employ a garnet film epitaxially grown on a non-magnetic garnet substrate, as shown in Fig. g1. As a result, the cost of raw materials can be reduced with #J'-.

ガーネオト原員を光アインンータ用07アラデー回転子
として用いる場合の問題点の一つは、基板とガーネット
戚との格子定数差によって生ずる複屈折であった。複屈
折によってアイソレージ。
One of the problems when using a garnet member as a 07 Alladay rotator for an optical inverter was birefringence caused by the difference in lattice constant between the substrate and the garnet relative. Isolation by birefringence.

ンが劣化する現象α、特願昭56−045195に−示
される如く基板と躾との格子定数の差t−0,001^
以下とすることによって解決できた。しかじなから、(
111) 成長させたガーネット厚膜の場合には、基板
と膜との格子定数の差に0.001A以下と    。
As shown in Japanese Patent Application No. 56-045195, the difference in lattice constant between the substrate and the substrate is t-0,001^.
I was able to solve the problem by doing the following. Of course, (
111) In the case of the grown garnet thick film, the difference in lattice constant between the substrate and the film is 0.001 A or less.

してヘア・イソレージ、ンは最大30dB Lか確保で
きなかった。
However, I was unable to secure a maximum hair isolation of 30 dB L.

一方、本発明者らの実験によれは、ノ(プル磁区菓子用
ガーネート宸の育成に常用されている(lxt)tja
、(jasOs*  4板上に麟4の異なった磁気元学
義子用ガーネ、ト躾を育成し誂表面のモフォロジーを観
察し九ところ、麟厚が30μm以下の場合には電調とな
、たがこれ以上の厚ざの場合にはガー享、ト腰の成員a
11で構造的a冷却が生ずQよ5になり、−表面には第
2161に示すような7アセ、ト、が生成することが購
った。4111)成長さ亡乏ガーネット4−の表mlに
このような激しい凹凸が生ずることは、特六昭56−0
97213に−示さルるごとくガーネット4戚を基台上
におむ)で−、ドンンズに対しm111wで配置する癲
−で不都合である。
On the other hand, according to the experiments of the present inventors, it was found that
(JasOs * 4 different magnetic fields were grown on 4 boards and the morphology of the surface was observed, and it was found that when the grain thickness was less than 30 μm, it was found that If the thickness is thicker than this, the members of the
At No. 11, structural a cooling occurs and Q becomes 5, and 7 ace, t, as shown in No. 2161 are generated on the surface. 4111) The occurrence of such severe unevenness on the surface ml of the grown and depleted garnet 4- is explained by Tokoku Sho 56-0.
97213 (as shown, Garnet 4 relative is placed on the base), and it is inconvenient to place M111W against Donnes.

本実験看らは(111)成jlEさせ九厚llKにおけ
る表面のファセット生成1こよるに凹凸化の様子を。
In this experiment, we observed that the facets on the surface of the (111) layer with a thickness of 9 and 1 were made uneven.

ガーネット躾成長時に基板回転を停止させてストリエー
ションを導入させる@1nduc@d @口1atio
n″法によって注意深く観察し丸、無歪研磨と燐IA#
2工、チングとの組合せによって、厚膜端面に現われる
臘成員時の固液界面の形状は論2図71および8のよう
であった。すなわち威厚が100μm stの楊金には
外面の凹凸は第2図7Iのようにそれ程激しくはなかっ
たが、100μm以上になると次第に、凹凸が111着
となり、200p、Hの厚さになると6のように凹凸の
高低差は1G、aIBにも及ぶことが解、丸。
Introducing striae by stopping substrate rotation during garnet growth @1nduc@d @mouth1atio
Carefully observed round shape by n'' method, strain-free polishing and phosphorus IA#
The shape of the solid-liquid interface that appears on the end face of the thick film due to the combination of the 2nd process and the 2nd process was as shown in Figures 71 and 8 of 2. In other words, the irregularities on the outer surface of Yangjin with a thickness of 100 μm st were not so severe as shown in Fig. 2, 7I, but as the thickness increased to 100 μm or more, the irregularities gradually increased to 111, and when the thickness became 200 μm, the irregularities on the outer surface became 6. As shown in the figure, the difference in height between the convex and concave surfaces is as much as 1G, aIB, which is a circle.

厚く成長した−のφにもこのように属純時の固液界面の
形状が痕跡が見出されることは、口Ill厚1IIKお
ける結蟲性の悪さを示している。すなわち、構造的過冷
却が生ずると凸4では第3図に示すととく博′jt義度
は=<、’e1.楊温嵐は^く、熱放散は良好であり、
過冷却に大でありIA長4には大である。一方凸部では
溶質IlI&度は低(、IIL11温度は低く、熱放散
は不良であり、過冷却度小であり成擾遮度は小である。
The fact that traces of the shape of the solid-liquid interface at the time of mass purity are found even in the thickly grown φ indicates poor moldability at a thickness of 1IIK. That is, when structural supercooling occurs, in the case of convex 4, as shown in FIG. Yang Wen storm is strong, heat dissipation is good,
It is large for supercooling and large for IA length 4. On the other hand, in the convex part, the solute IlI&degree is low (IIL11 temperature is low, heat dissipation is poor, the degree of supercooling is small, and the degree of formation interception is small.

このこと線、ガーネット構威イ、オンおよび不純物イオ
ンの分配係数が凹部と凸部では異なっていることを示し
ている。すなわち、凹部と凸部とでは格子定数が機構的
に真なってぶり、材料の光弾性定数を介して微4杓な複
1折が存在していることを意味している。本発明者の実
験によればこの微視的な複屈折の存在が、口L1展にお
けるアイソレージ、ンが最大3(ldとしかならなかっ
た原因である。
This line shows that the distribution coefficients of the garnet structure and impurity ions are different between the concave and convex portions. In other words, the lattice constants of the concave portions and the convex portions are mechanically true, and this means that slight double folding exists via the photoelastic constant of the material. According to the inventor's experiments, the existence of this microscopic birefringence is the reason why the isolation in the mouth L1 expansion was only 3 (ld) at the maximum.

本発明者は、方位の興なるJII板にガーネット庵lI
l!を育成しガーネット躾成長時の固叡界舖の形状をI
IIFL九ところ、0”(B (15@0faA im
 r (1103あるいは(211)から傾げた4板画
上Cζ育t−aれえガーネット膜においては、固液界面
0形状はこれらの面が鉄ガーネットのファセット面であ
ることから平坦であり、結晶性は良好であり微視的な複
屈折は存在せず、光アイソレータとして本ガーネ、ト康
を用いると少くとも3!*dBvアイツレ−シーンtS
t保でき、し力)も慶表面の凹凸は1lll’j成長の
場合よりも激しくなく、基台に配置する際の膜表面の研
磨も栃めて容易であること、また上記の結晶性の効果は
厚膜を用いた磁気光学素子に鬼出さn九ばかりではなく
薄層を用いた磁気光学素子においても見出されたので、
不発明をなすに至りた。すなわち、非磁性基板上にエピ
タキシャル成長させたガーネット麟の裏面内に元を入射
させて鋏ガーネ、ト躾をファラデー回転子として用いる
磁気光学素子において @”<#≦1s°0範■で口1
0)あるいは(211)から傾けた面を表面とする基板
上に育成され九ガーネッ)IIをファラデー回転子を用
い九ことを特徴とする磁気光学素子である。
The present inventor has added Garnet-an lI to the JII board of direction.
l! I cultivated the shape of the solid world when Garnet grew up.
IIFL9 Tokoro, 0”(B (15@0faA im
r (1103 or (211)) In the Cζ grown t-a garnet film tilted from (1103 or (211)), the solid-liquid interface shape is flat because these planes are facets of iron garnet, and the crystal The optical properties are good, and there is no microscopic birefringence, and when using this optical isolator as an optical isolator, it is at least 3!*dBv
Also, the unevenness on the surface is less severe than in the case of 1lll'j growth, and polishing of the film surface when placing it on the base is much easier, and the above-mentioned crystallinity The effect was found not only in magneto-optical elements using thick films, but also in magneto-optical elements using thin layers.
This led to an uninvented invention. That is, in a magneto-optical element in which a source is incident on the back surface of a garnet resin epitaxially grown on a non-magnetic substrate and the scissors are used as a Faraday rotator.
This magneto-optical element is grown on a substrate having a surface inclined from 0) or (211), and is characterized by using a Faraday rotator.

以下に不発明を実JlII例を用いて詳細にm@する。The invention will be explained in detail below using a practical example.

実施1i11 1110)面内Q(111)を回転軸とし鎖(111>
と直交する(211)方向に8°O角度だげSat傾は
格子電数が12.1832人の601111gkad、
 Ga@01g基碩上に、格子定款がlλ311140
ム格子定敏が113840ムOGd、1 Y>@ F 
11@ O12カー ネ、 ) fWho−BsO8を
主成分とする融筺より融剤法にようて、ガーネット展O
成長途中で30分お会に基1m転を1分間停止させなが
ら、 190μm O厚さに成員させ九、膜成長後、端
面をコーイダル・シ曽力により無歪研磨し、tso’c
ovン酸・硫酸め温合溶液でS分間工、チンダして成長
時の基板回転停止による” 1ndueed−■1at
i@a″ から層成長時O11液昇両の形状を観察した
ところ、第4図に示すように部子のうねりはあるもOの
041)′膳と比べ殆ど平坦であり、(111) Il
lと比べ結晶性は良好でありえ。
Implementation 1i11 1110) The in-plane Q(111) is the rotation axis and the chain (111>
The Sat inclination is 8°O in the (211) direction orthogonal to , and the lattice electric number is 12.601111gkad of 1832 people,
On the Ga@01g base, the lattice articles of incorporation are lλ311140
Mu lattice density is 113840 mu OGd, 1 Y>@F
11@O12 carne, ) Using a flux method from a fusion tube containing fWho-BsO8 as the main component, garnet expansion O
During the growth, the film was grown to a thickness of 190 μm by stopping the 1 m rotation for 1 minute after 30 minutes of growth.
Processed for S minutes with a warm solution of ovonic acid and sulfuric acid, and by cindering and stopping the rotation of the substrate during growth.
When we observed the shape of the O11 liquid during layer growth from i@a'', as shown in Figure 4, although there was some waviness in the part, it was almost flat compared to the 041)' layer of O, and (111) Il
The crystallinity may be better than that of 1.

このガーネ、トウ、^よりi4■XL41110チップ
を切り出し光学研磨され先端画し、嬉11iK示すよう
な光アイソレータ′を鳳んだところ、液長L3声waO
レーザー光において37dlIOアイツレ−v、yを確
保することかでlII丸、ま九、このチップの表面は(
111)朧の場合はと凹凸が激しくな(、基体に配置す
る場合の表両研磨も容重であう丸。
I cut out an i4XL41110 chip from this glass, tow, optically polished the tip, and attached an optical isolator that shows 11iK.
By ensuring 37dlIO Eitzley v, y in the laser beam, the surface of this chip is (
111) In the case of oboro, there are severe irregularities (and the polishing of both surfaces when placed on the base is also heavy and round).

夷麿#l嵩 4110)面内の(111)を回転軸とし威(111>
と直交する(211)方向K 1”の角度だけ表−を傾
ケ格子定数$ 113832 AO50wa% Ljd
s(1m@0゜基板上に、格子定数がI!3838Xの
a(1,、*Ys−s’・。
The axis of rotation is (111) in the plane of Yimaro #l 4110) and the axis of rotation is (111>
Tilt the table by an angle in the (211) direction K 1" perpendicular to the lattice constant $ 113832 AO50wa% Ljd
s(1m@0° on the substrate, a(1,, *Ys-s'.) with a lattice constant of I!3838X.

0゜ガーネット厚膜を130μ鴎の厚さに液相エピタキ
シャル成長させた。実施例1と同11に@indm@@
d 5triaii*m” 法により膜成長−01液昇
FMの形状を観察し丸ところ、第5図に示すように固液
外函は纏めて平坦でありt1蟲性は口111)1[K比
べ楯めて良好でありた。このクエへより切り出したチッ
プを元フイソレータのファラデー1g1転子として用い
たところフィンレージ。
A 0° garnet thick film was grown by liquid phase epitaxial growth to a thickness of 130 μm. Example 1 and 11 @indm@@
The shape of the film grown-01 liquid-ascent FM was observed by the d5triaii*m'' method, and as shown in Fig. When the chip cut out from this cube was used as a Faraday 1g1 trochanter of a former fisolator, finage was obtained.

ンとして40dB f確保でlIIた。I was able to secure 40dB f as a main power source.

実施例3 (101#内の(101)を1@軸として威(111)
と直交する(10・〉方向に息sG角度だけ表JIt傾
は格子定数がI La88@ 1 o Gd3(jms
Ou基鷹上に、格子定数が12.3832ムo aa、
、 y、、、 p、、o、。
Example 3 (111) with (101) in 101# as 1@ axis
The table JIt inclination is perpendicular to (10・〉 direction by the breath sG angle, and the lattice constant is I La88
On the Ou base, the lattice constant is 12.3832 mu o aa,
,y,,,p,,o,.

ガーネット厚膜を140μmの厚さに液相エピタキシャ
ル成長させ友、このクエへから切り出しえチップを光ア
イソレータのファラデー−転子として用い丸ところアイ
ソレージ、yとして15dBを確保で會た。
A thick garnet film was grown by liquid phase epitaxial growth to a thickness of 140 μm, and a chip cut out from this cube was used as a Faraday trochanter of an optical isolator, ensuring round isolation and y of 15 dB.

実施例4 010)面内0 (211) t−回転軸として該<j
ll)と直交する(111>方向に2°〇九度だけ表面
を傾は格子定数がHL3834λOGd畠Ga、O□基
板上に。
Example 4 010) In-plane 0 (211) t-rotation axis <j
The surface is tilted by 2°〇9 degrees in the (111> direction perpendicular to ll) with a lattice constant of HL3834λOGd on a Ga, O□ substrate.

格子定款が11183藝ムの’lTh1Y&IF@$0
11ガーネ、)厚膜を11・声−の厚さに液相エピタキ
シャル′威長させたうこOウニ^から切り出したチップ
を光アイソレータO7,ラブ−回転子として用い九とこ
ろアイソレージ、ンとして394ilt−確保でき丸。
'lTh1Y&IF@$0 with lattice articles of incorporation 11183 art
A chip cut out from Uko O Uni^, which had a thick film grown to a thickness of 11 mm, was used as an optical isolator O7 and a rotator, and was used as an optical isolator O7. Can be secured.

実施例5 (110311内0(In6)を−転軸として鍍くl・
O〉と直交する(I A @)方向に4°0jIl直だ
息す褒−を傾け11子’lL*#ttssssXO04
G匂On@ji+[上K。
Example 5 (Plating 0 (In6) in 110311 as - rotation axis)
Tilt the breathing reward 4°0jIl in the direction perpendicular to O〉 (I A @) 11 children'lL*#ttssssXO04
G o On @ ji + [Upper K.

揚子憲歇#l&3131ム0 ?b、、 Y、、 F 
@@ O,、ガーネート厚朧を160μ−〇厚−&に液
相エピタキシャル成長i1せえ、このクエAThら切り
出したチップを光アイソレータのファラデー回転子とし
て用い友ところアイソレージ、ンとして38dBを確保
できた。
Yangzi Kenshu #l&3131mu0? b,, Y,, F
@@O,、Garnate thickness was grown to 160μ-〇thick by liquid phase epitaxial growth, and the chip cut out from this Que ATh was used as a Faraday rotator of an optical isolator, and it was possible to secure an isolation of 38 dB. .

実施例6 (1000両内の(311)方向1c13の角度だけ表
面を傾は格子定数が12.1831λ0GdlGa@O
st基板上に、格子定111fi12.’4826ムO
Gd、、Y、、F*、0.。
Example 6 (If the surface is tilted by an angle in the (311) direction 1c13 within 1000 lines, the lattice constant is 12.1831λ0GdlGa@O
On the st substrate, the lattice constant 111fi12. '4826muO
Gd,,Y,,F*,0. .

ガーネット厚虜を140声鵬の厚さに液相エピタキシャ
ル成長させ丸、このウニ^から切り出したチ、プを光フ
ィンレータのファラデー1g1転子と用いたところアイ
ソレーションとして36dBを確保できた。
Garnet was grown by liquid-phase epitaxial growth to a thickness of 140 mm, and a tip cut from this sea urchin was used as a Faraday 1 g 1 trochanter of an optical fin layer, and an isolation of 36 dB was achieved.

(110) @内の(313)方向(3°の角度だけ表
面を傾げ格子定数が12.3835ムの0d10幻0□
基板上に、格子定数が12389SAのG61Yl−1
’@l011ガーネツ)膜をLs声−の厚−1Kll相
エピタ中クヤル成長させた。このクエハから切り出し九
チップt−tアイソレータOファラデー回転子として用
いたところアイソレーションとして38dBを確保でI
t大。
(110) @ (313) direction (0d10 illusion 0□ with surface tilted by 3° angle and lattice constant of 12.3835 mm)
On the substrate, G61Yl-1 with a lattice constant of 12389SA
The film was grown in a 1Kll phase epitaxial layer with a thickness of 1Kll. When I cut out a 9-chip t-t isolator from this wafer and used it as a Faraday rotator, I was able to secure 38 dB of isolation.
T large.

実施f4− (11@ ) jig内0 <212>方向に1 G’
″O角度だけ表面を傾は格子定数が1tsasoioG
a、am、08.基板上に、格子定数が1九5etoi
の’1aeayssi’*wo*mガーネ、シ膜を4!
μmの厚さKll@エビタヤシャル成長させたこのクエ
^から切り出し九チップを光アイソレージのファラデー
回転子として用いたところアイソレージ、ンとして37
dB &確保でき丸。
Implementation f4- (11@) 0 in jig 1 G' in <212> direction
If the surface is tilted by an angle of O, the lattice constant is 1tsasoioG
a, am, 08. On the substrate, the lattice constant is 195etoi
'1aeaayssi' *wo*m Gané, Shi membrane 4!
When nine chips cut out from this cube grown to a thickness of μm were used as a Faraday rotator for optical isolation, the isolation was 37 mm.
dB & can be secured.

′実施例9 (2113IN内0 (11G)方向に1°00角度だ
け表mtmげ格子定数が11m84・A o G4 g
 G a B 011基板上に、格子定数が11311
3!ム0(346@ Yp @ F*g O□。
'Example 9 (2113IN inside 0 (11G) direction by 1°00 angle mtm lattice constant is 11m84・A o G4 g
On the G a B 011 substrate, the lattice constant is 11311
3! Mu0 (346 @ Yp @ F*g O□.

ガーネット朧を1110pm 6厚さに液相エピタキシ
ャル成長させ九、こOウニ^から切り出したチップtj
t、アイソレータのファラデー−転子として用い九とこ
ろアイソレージ、yとして41)48 ttll保て会
友。
Garnet oboro was grown by liquid phase epitaxial growth to a thickness of 1110 pm. 9. Chips cut from sea urchin^
t, faraday of the isolator - used as a trochanter for nine-point isolation, y as 41) 48 ttll comrade.

実施例1・ ([l)両^0(all)方向に15@D角度だけ表面
を傾は格子定数が113831NOGdaGasOss
基板上に、格子定数が113838ムのGd&l Yt
4F@l outガーネッ)膜を110.amの厚さに
液相エピタキシャル成長させ丸。このクエへから切り出
し九チ。
Example 1 - ([l) When the surface is tilted by an angle of 15@D in both ^0 (all) directions, the lattice constant is 113831NOGdaGasOss
On the substrate, Gd&l Yt with a lattice constant of 113838 μm
4F@l out Garnet) membrane at 110. A circle is grown by liquid phase epitaxial growth to a thickness of am. Nine parts start from this quest.

プを元アイソレータのファラデー回転子として用いたと
ころアイソレージ、ンとして35dBを確保できた。
When we used the rotator as a Faraday rotator of the original isolator, we were able to secure an isolation level of 35 dB.

実fillll (2111面内の<jot)方向に6°の角度だけ表面
を傾げ格子定義が1zagssXのOd、0匂01ヨ基
板上に、格子定数がtz3ssgXの’I’b>myt
−sr・、0.。
Real fillll The surface is tilted by an angle of 6° in the (<jot in the 2111 plane) direction, and the lattice definition is Od, 0 od 01 yo substrate with a lattice definition of 1zagssX, 'I'b>myt with a lattice constant of tz3ssgX
-sr・,0. .

ガーネット膜を140.amの厚さに液相エピタキシャ
ル成長させ丸。このフェノ1から切り出したチップを党
アイソレータのファラデー回転子として用いたところア
イソレージ、ンとして371Bを確保できた。
Garnet film 140. A circle is grown by liquid phase epitaxial growth to a thickness of am. When I used a chip cut from this Feno 1 as a Faraday rotator for a party isolator, I was able to secure 371B as an isolation element.

実施例12 (211)面内の(312)方向に1@f)角度だけl
I爾を傾は格子定確か12.38341OG8 B G
a @ OH基板上に、格子定数がtz−3sozXの
a(Io−tY、a ’@l01lI−ネ、ト朧をLs
声−の厚さに液相エピタキシャル成長させた。cのクエ
へから切り出したチップを薄履導漉路−党アイソレータ
07アツデー回転子七して層い九とζろアインV−シ、
/として364Bを確保で合え。
Example 12 1@f) angle l in the (312) direction in the (211) plane
The slope of I is sure to be lattice constant12.38341OG8 B G
a (Io-tY, a'@l01lI-ne, t oboro is Ls) with a lattice constant of tz-3soz
It was grown by liquid phase epitaxial growth to a thickness of about 100 ml. The chip cut out from the quest of c is thinly traced, isolator 07 isolator 7 is layered,
Please secure 364B as /.

実施例13 (11111i内0(111)方−Kl@の角度だけ表
−を傾は楊子定款5tLsasoiの01118Oml
’ll基板上に、格子定数が11111110ムOTb
 >2 N>@ T/ s @ 01@ガーネ、ト履1
表1/ll11Ojlさに液相エピタキシャル成長させ
丸、このウニ^から切り出しえチップを用い丸導液1I
J1の光集積闘賂を作威し九ところ名素子Kmけるスイ
、チOアイソレーク、yとしてisamt**”e会i
Example 13 (0(111) direction in 11111i - tilt the table by the angle of Kl@) is 01118Oml of Yangzi Articles of Incorporation 5tLsasoi
On the 'll substrate, the lattice constant is 11111110 μmOTb
>2 N>@T/s @01@Gane, Tori 1
Table 1/ll11Ojl was made into a circle by liquid phase epitaxial growth, and a chip cut out from this sea urchin was used to create a round liquid conduction 1I.
Sui, Chio Isolake, and Y isamt **”e meeting who made J1's light accumulation bribe and nine places named Elements Km.
.

なお、光アイソレータOアインレーク、y#1(116
%あるいは(!11)かも基板表面を傾ける−の方−に
唸よらず、主として傾き角度により丸。
In addition, optical isolator O Ain Lake, y#1 (116
% or (!11), it does not depend on the direction of tilting the substrate surface, but mainly depends on the tilt angle.

し大がりて傾げ為方向線いずれの方位でもよかうた。It can be used in any direction as it expands and tilts.

以上、本逢嘴を用いることにより少くとも$841を満
足できる磁気光学素子が得られる。
As described above, by using this beak, a magneto-optical element that can satisfy the cost of at least $841 can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

111図はガーネット厚膜を用いたファラデー回転子を
示す、1は非磁性ガーネット基板、2はガー厚膜ト厚躾
、3は磁石、4は入射光の偏光面の一転内、5は出射光
の1光面の1転at示す。 第2図は構造的過冷却によって7アセ、トを生成し& 
111m)厚mollIrit示j、61は7アセ、ト
、71は約100μmO厚さに成長した膜の固液界面の
形状、8は約150μmの厚さに成長し九@0固液界函
の形状を示す。 第S図a構造的過冷却が生じた場合の固液界面の状況を
示す。9および10はそれぞれ固相の凸Sおよび1LA
l!である。11杜液相中の流線を示す。 114図は(1107より8°の角度だけ傾いた厚覇O
端画纏察結果、62はファセ、)、72は約130 /
11111の岸さに成長した時点での固液界面の形状。 @S 1lri (110) ! Q 101jNlり
+f傾イft、l1motaris−書#系、@3は7
1セ、卜、13Bは約10声烏aS−aに成長した時点
でO固液外画O形状。 菊 1 図 第2図 1 第3図 第4図 第5図 手続補正書(!III) 57.11.22 昭和  年  月  日 特許庁長官 殿 1、事件の表示   昭和56年 特 許 願第153
!83号2、発明の名称  磁気光学素子 3、補正をする者 事件との関係       出 願 人東京都港区芝五
丁目33番1号 (423)   日本電気株式会社 代表者 関本忠弘 4、代理人 &補正の対象 明馴書の発明の詳細な説明の− &補正の内容 明細書第9頁第15行目Kr<111>Jとあるのをr
<101>Jと補正する。
Figure 111 shows a Faraday rotator using a garnet thick film. 1 is a non-magnetic garnet substrate, 2 is a garnet thick film, 3 is a magnet, 4 is one rotation of the polarization plane of the incident light, and 5 is the output light. 1 inversion of 1 optical plane at is shown. Figure 2 shows that 7 ace, t are produced by structural supercooling and
111 m) Thickness mollIrit j, 61 is 7 ace, t, 71 is the shape of the solid-liquid interface of the film grown to a thickness of about 100 μm, 8 is the shape of the solid-liquid interface of the film grown to a thickness of about 150 μm, and 9@0 solid-liquid interface. shows. Figure S a shows the situation at the solid-liquid interface when structural supercooling occurs. 9 and 10 are the convex S and 1LA of the solid phase, respectively.
l! It is. 11 shows streamlines in the liquid phase. Figure 114 is (Atsuha O tilted by an angle of 8 degrees from 1107)
As a result of the summary of the edge drawings, 62 is Fase, ), 72 is approximately 130 /
The shape of the solid-liquid interface at the time of growth on the shore of 11111. @S 1lri (110)! Q 101jNl + f inclination ft, l1motaris-book # system, @3 is 7
1st, 卜, 13B have an O solid-liquid extra-picture O shape when they grow to about 10 voices aS-a. Chrysanthemum 1 Figure 2 Figure 1 Figure 3 Figure 4 Figure 5 Procedural amendment (!III) November 22, 1939 Director General of the Japan Patent Office 1, Showa 56 Patent Application No. 153
! 83 No. 2, Title of the invention: Magneto-optical element 3, Relationship to the amended person's case Applicant: 5-33-1 Shiba, Minato-ku, Tokyo (423) NEC Corporation Representative: Tadahiro Sekimoto 4, Agent &amp; In the detailed description of the invention in the written statement subject to amendment - & on page 9, line 15 of the specification of contents of amendment
Correct as <101>J.

Claims (1)

【特許請求の範囲】[Claims] 非磁性ガーネット基板上にエピタキシャル成長させ九ガ
ーネ、ト構の戯面内に党を入射させて咳ガーネyト1[
を7アラデー1i3I@子として用いる磁気光学素子に
おいて、Oo〈−≦15@0聰圃で(110)あるいは
(211)から傾は丸面を#I11とする基板上Kil
成されたガーネット膜を7フラデー1転子として用いた
ことを特徴とする磁気光学素子。
Garnet was epitaxially grown on a non-magnetic garnet substrate and incident on the surface of the garnet structure.
In a magneto-optical element using 7ARADAY1i3I@child, the inclination from (110) or (211) in Oo〈-≦15@0 field is on a substrate with a round surface as #I11.
1. A magneto-optical element characterized in that a garnet film produced by the above method is used as a 7F 1 trochanter.
JP15325381A 1981-03-27 1981-09-28 Magnetooptic element Pending JPS5865414A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15325381A JPS5865414A (en) 1981-09-28 1981-09-28 Magnetooptic element
US06/360,230 US4522473A (en) 1981-03-27 1982-03-22 Faraday rotator for an optical device
CA000399494A CA1180210A (en) 1981-03-27 1982-03-26 Faraday rotator for an optical device
DE8282102567T DE3279311D1 (en) 1981-03-27 1982-03-26 Faraday rotator for an optical device
EP82102567A EP0061743B1 (en) 1981-03-27 1982-03-26 Faraday rotator for an optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15325381A JPS5865414A (en) 1981-09-28 1981-09-28 Magnetooptic element

Publications (1)

Publication Number Publication Date
JPS5865414A true JPS5865414A (en) 1983-04-19

Family

ID=15558408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15325381A Pending JPS5865414A (en) 1981-03-27 1981-09-28 Magnetooptic element

Country Status (1)

Country Link
JP (1) JPS5865414A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463316A (en) * 1992-06-03 1995-10-31 Mitsubishi Gas Chemical Co., Ltd. Magnetooptic sensor head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463316A (en) * 1992-06-03 1995-10-31 Mitsubishi Gas Chemical Co., Ltd. Magnetooptic sensor head

Similar Documents

Publication Publication Date Title
US8254745B2 (en) Optical device, optical integrated device, and method of manufacturing the same
JPS5865414A (en) Magnetooptic element
US5479290A (en) Faraday&#39;s rotator and optical isolator
JPS61264301A (en) Turning gear for plane of polarization of linearly polarizedlight and manufacture thereof
US5146361A (en) Apparatus comprising a magneto-optic isolator utilizing a garnet layer
JPS61292613A (en) Faraday rotor and its production
JPS63107900A (en) Material for magneto-optical element
JP2001108952A (en) Garnet crystal for faraday rotator and optical isolator having the same
JPH0415199B2 (en)
EP0408250B1 (en) Apparatus comprising a magneto-optic isolator utilizing a garnet layer
EP0338859B1 (en) Faraday rotator
JP2982836B2 (en) Manufacturing method of waveguide type isolator
JPS5880618A (en) Epitaxial growing method for thick film of garnet
JPH0642026B2 (en) Magneto-optical element material
JPH111394A (en) Unsaturated bismuth substituted rare-earth iron garnet monocrystal film
JPH1031112A (en) Faraday rotator showing square hysteresis
JP2000249983A (en) Production of optical non-reciprocal device
JPS58169106A (en) Optical isolator
JPH0277719A (en) Magneto-optical garnet for temperature compensation
JPS62194222A (en) Magnetooptic element material
JPH01291212A (en) Laser module with optical isolator
JPH02232606A (en) Production of thin film waveguide type optical isolator
JPS6083005A (en) Optical waveguide and its manufacturing method
JPS61205698A (en) Magnetooptical material
CN110687696A (en) Packaging method of integrated optical isolator and integrated optical isolator