[go: up one dir, main page]

JPH1031112A - Faraday rotator showing square hysteresis - Google Patents

Faraday rotator showing square hysteresis

Info

Publication number
JPH1031112A
JPH1031112A JP8186192A JP18619296A JPH1031112A JP H1031112 A JPH1031112 A JP H1031112A JP 8186192 A JP8186192 A JP 8186192A JP 18619296 A JP18619296 A JP 18619296A JP H1031112 A JPH1031112 A JP H1031112A
Authority
JP
Japan
Prior art keywords
magnetic field
faraday rotator
single crystal
faraday
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8186192A
Other languages
Japanese (ja)
Inventor
Masao Hiramatsu
聖生 平松
Kenji Ishigura
賢二 石蔵
Kazushi Shirai
一志 白井
Norio Takeda
憲夫 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP8186192A priority Critical patent/JPH1031112A/en
Publication of JPH1031112A publication Critical patent/JPH1031112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an isolator which requires no permanent magnets with high reliability by using a Faraday rotator which is produced by magnetizing a specified bismuth-substd. rare earth iron garnet single crystal film. SOLUTION: The Faraday rotator 1 is obtd. by magnetizing a bismuth-substd. rare earth iron garnet single crystal film (G film-1) expressed by chemical compsn. of Tb3-x-y Hox Biy Fe5-z-w Gaz Alw O12 , wherein x, y, z, w satisfy 0.40<=x<=0.70, 1.30<=y<=1.55, 0.7<=z+w<=1.2, and 0<=w/z<=0.3 respectively. The Faraday rotator 1 is composed of a G film-1 in 2mm×2mm size which is preliminarily magnetized in 5000 Oe magnetic field at room temp. The Faraday rotator 1, a polarizer 2 and an analyzer 3 are fixed to metal jigs 4, 5 with an epoxy adhesive, and then the metal jigs 4, 5 are fixed with an epoxy adhesive to obtain an optical isolator which requires no magnet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気ヒステリシスが非
常に大きいビスマス置換希土類鉄ガーネット単結晶膜に
関する。詳しくは、実用温度範囲全体にわたって、飽和
磁界よりも核形成磁界が大きく、外部磁界なしに、光ア
イソレータ用ファラデー回転子として好適に使用できる
ビスマス置換希土類鉄ガーネット単結晶膜である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bismuth-substituted rare earth iron garnet single crystal film having a very large magnetic hysteresis. More specifically, the present invention is a bismuth-substituted rare earth iron garnet single crystal film that has a nucleation magnetic field larger than the saturation magnetic field over the entire practical temperature range and can be suitably used as a Faraday rotator for an optical isolator without an external magnetic field.

【0002】[0002]

【従来の技術】近年、大きなファラデー効果を有するビ
スマス置換希土類鉄ガーネット単結晶膜を利用した光ア
イソレータ、光スイッチあるいは磁気光学センサ等の開
発が盛んに行われている。ファラデー効果は磁気光学効
果の一種で、ファラデー効果を示す材料、すなわち希土
類鉄ガーネット単結晶膜などのファラデー素子〔ファラ
デー回転子〕を透過した光の偏波面が回転する現象を指
す。
2. Description of the Related Art In recent years, optical isolators, optical switches, magneto-optical sensors, and the like using a bismuth-substituted rare earth iron garnet single crystal film having a large Faraday effect have been actively developed. The Faraday effect is a type of magneto-optical effect, and refers to a phenomenon in which the plane of polarization of light transmitted through a material exhibiting the Faraday effect, that is, a Faraday element (Faraday rotator) such as a rare-earth iron garnet single crystal film is rotated.

【0003】一般にファラデー回転角は、ファラデー回
転子に加えられた外部磁界の強度に対応して大きくな
る。しかし、ビスマス置換希土類鉄ガーネット単結晶膜
では、図1に示されるように、ある特定の大きさ以上の
外部磁界でファラデー回転角が飽和し、一定の値とな
る。ファラデー回転角が一定の値を取る外部磁界を飽和
磁界(Hs)と称する。そして外部磁界を逆に小さくしてい
くとファラデー回転角は次第に小さくなり、外部磁界が
0でファラデー回転角も0となる。すなわち、o(原点)
→a→b→c→b→a→oの経路を辿る。
Generally, the Faraday rotation angle increases in accordance with the intensity of an external magnetic field applied to the Faraday rotator. However, in the bismuth-substituted rare earth iron garnet single crystal film, as shown in FIG. 1, the Faraday rotation angle is saturated by an external magnetic field having a certain magnitude or more and becomes a constant value. An external magnetic field having a constant Faraday rotation angle is referred to as a saturation magnetic field (Hs). Conversely, when the external magnetic field is reduced, the Faraday rotation angle gradually decreases. When the external magnetic field is 0, the Faraday rotation angle also becomes 0. That is, o (origin)
Follow the path of → a → b → c → b → a → o.

【0004】ところが、通常、ヒステリシスを示すもの
がある。この場合、図1において、o(原点)→a→b→
c→b→b'→a→oの経路を辿る。また、或種のビスマ
ス置換希土類鉄ガーネット単結晶膜[(YBi)3(FeAl)5O12]
において、一度飽和されたファラデー回転角が、飽和磁
界と絶対値が同じ程度で逆向きの外部磁界を加えてもそ
のまま維持される(図2; 経路はo→a→b→c→b→
d→e→f→e)という現象が発見された(Journal of
Applied Physics, Vol. 55(1984), 1052-1061)。図2に
おいて、ファラデー回転角が反転する際の磁界強度を核
形成磁界(Hn)と称する。HsとHnの差が磁気ヒステリシス
の大きさとなる。
[0004] However, there is usually one showing hysteresis. In this case, in FIG. 1, o (origin) → a → b →
Follow the path of c → b → b ′ → a → o. Also, a certain bismuth-substituted rare earth iron garnet single crystal film [(YBi) 3 (FeAl) 5 O 12 ]
, The once-saturated Faraday rotation angle is maintained as it is even when an external magnetic field having the same absolute value as the saturation magnetic field and the opposite direction is applied (FIG. 2; the path is o → a → b → c → b →
d → e → f → e) was discovered (Journal of
Applied Physics, Vol. 55 (1984), 1052-1061). In FIG. 2, the magnetic field strength when the Faraday rotation angle is reversed is called a nucleation magnetic field (Hn). The difference between Hs and Hn is the magnitude of the magnetic hysteresis.

【0005】この図2のような飽和磁界を越える大きな
磁気ヒステリシスを示すものの磁気ヒステリシスカーブ
を特に角型ヒステリシスと称する。角型ヒステリシスを
示す磁気光学材料は、外部磁界が無くてもファラデー回
転子としての機能を有することを意味する。従って、角
型ヒステリシスを示すビスマス置換希土類鉄ガーネット
単結晶膜をファラデー回転子として用いると、永久磁石
不要の光アイソレータが作製できるため小型化やコスト
面で非常に大きなメリットがある。
The magnetic hysteresis curve which shows a large magnetic hysteresis exceeding the saturation magnetic field as shown in FIG. 2 is particularly called square hysteresis. A magneto-optical material exhibiting square hysteresis means having a function as a Faraday rotator even without an external magnetic field. Therefore, when a bismuth-substituted rare earth iron garnet single crystal film exhibiting square hysteresis is used as a Faraday rotator, an optical isolator that does not require a permanent magnet can be manufactured, and thus there is a great advantage in terms of miniaturization and cost.

【0006】[0006]

【発明が解決しようとする課題】光アイソレータが使用
される環境は、通常、周囲温度が−20℃〜+50℃の範囲
であり、また、光アイソレータの設置場所に外部磁界が
存在するケースも想定される。従って、実用的可能な温
度範囲−40℃〜+70℃の温度範囲で上記の角形ヒステリ
シスを維持し、しかも、ある程度の大きさの外部磁界が
存在した場合、50 Oe程度まで、好ましくは 100 Oe 程
度までの外部磁界に対しても一旦飽和させたファラデー
回転角が維持されることが必要とされる。
The environment in which the optical isolator is used is usually an ambient temperature in the range of -20 ° C. to + 50 ° C. Also, it is assumed that an external magnetic field exists at the place where the optical isolator is installed. Is done. Therefore, the above-mentioned square hysteresis is maintained in a temperature range of −40 ° C. to + 70 ° C. that can be practically used, and when an external magnetic field of a certain magnitude is present, up to about 50 Oe, preferably about 100 Oe. It is required that the Faraday rotation angle once saturated is maintained even for an external magnetic field of up to.

【0007】こうした要求に答えるべく本発明者らは鋭
意検討し、化学組成がBixTb3-x Fe5-y-zGayAlz O12
(但し、 1.0≦x≦1.5 、0.65≦y+z≦1.2 、z≦y の範
囲)なるビスマス置換希土類鉄ガーネット単結晶膜を開
発して、これを既に特許出願した(特願平08−14002
0)。以下上記のビスマス置換希土類鉄ガーネット単結
晶膜を (BiTb)3(FeGaAl)5O12と略称する。(BiTb)3(FeGa
Al)5O12 は、−40℃〜+70℃の温度範囲で角形ヒステリ
シスを維持し、また、さらにある程度の大きさの外部磁
界が存在しても一旦飽和させたファラデー回転角が維持
される、という非常に優れた特性を有するが、他方ファ
ラデー回転係数が小さく、そのためファラデー回転子と
して必要な45度の角度を達成するための膜厚が、従来の
ファラデー回転子用ビスマス置換希土類鉄ガーネット単
結晶膜よりも厚くなるという問題があった。
[0007] In order to respond to such demands, the present inventors have made intensive studies and found that the chemical composition is Bi x Tb 3-x Fe 5-yz Ga y Al z O 12
(However, a range of 1.0 ≦ x ≦ 1.5, 0.65 ≦ y + z ≦ 1.2, z ≦ y) was developed, and a bismuth-substituted rare earth iron garnet single crystal film was developed, and a patent application was filed (Japanese Patent Application No. 08-14002).
0). Hereinafter, the bismuth-substituted rare earth iron garnet single crystal film is abbreviated as (BiTb) 3 (FeGaAl) 5 O 12 . (BiTb) 3 (FeGa
Al) 5 O 12 maintains square hysteresis in a temperature range of −40 ° C. to + 70 ° C., and also maintains a once-saturated Faraday rotation angle even in the presence of an external magnetic field of a certain magnitude. The Faraday rotation coefficient is very small, but on the other hand, the film thickness to achieve the 45 degree angle required for the Faraday rotator is smaller than that of the conventional bismuth-substituted rare earth iron garnet single crystal for the Faraday rotator. There was a problem that the film became thicker than the film.

【0008】例えば、光アイソレータ用ファラデー回転
子として広く賞用されている (HoTbBi)3Fe5O12では、波
長1.55μmでの厚さが 350μmである。ところが、 (Bi
Tb)3(FeGaAl)5O12では 450μm以上となる。実際には研
磨代として少なくとも30μmを上乗せした厚さが必要で
ある。しかし液相エピタキシャル法では、 450μm以上
の厚さのビスマス置換希土類鉄ガーネット単結晶膜を育
成すると、周辺にクラックが発生するとか、結晶育成中
に基板が割れるなどの問題がある。したがって−40℃〜
+70℃の温度範囲で角形ヒステリシスを維持し、また、
さらにある程度の大きさの外部磁界が存在しても一旦飽
和させたファラデー回転角が維持され、同時に波長1.55
μmにおいてファラデー回転子としての厚さ 420μm以
下のビスマス置換希土類鉄ガーネット単結晶が望まれて
いる。
For example, (HoTbBi) 3 Fe 5 O 12 widely used as a Faraday rotator for an optical isolator has a thickness of 350 μm at a wavelength of 1.55 μm. However, (Bi
Tb) 3 (FeGaAl) 5 O 12 has a thickness of 450 μm or more. In practice, a polishing thickness of at least 30 μm is required. However, in the liquid phase epitaxial method, when a bismuth-substituted rare earth iron garnet single crystal film having a thickness of 450 μm or more is grown, there are problems such as cracks being generated around the substrate and the substrate being cracked during crystal growth. Therefore, -40 ° C ~
Maintains square hysteresis in the temperature range of + 70 ° C.
Further, even if an external magnetic field of a certain magnitude is present, the once-saturated Faraday rotation angle is maintained, and at the same time, a wavelength of 1.55
A bismuth-substituted rare earth iron garnet single crystal having a thickness of 420 μm or less as a Faraday rotator in μm is desired.

【0009】[0009]

【課題を解決するための手段】上記課題を解決すべく鋭
意検討した結果、本発明を完成した。すなわち、本発明
は、液相エピタキシャル法で育成されてなり、下記式
(1) の化学組成で示されるビスマス置換希土類鉄ガーネ
ット単結晶膜を磁化処理してなる角型ヒステリシスと示
すファラデー回転子である。 Tb3-x-yHoxBiy Fe5-z-wGazAlw O12 (1) (式中、0.40≦x≦0.70、1.30≦y≦1.55、 0.7≦z+w≦
1.2、 0≦w/z≦0.3)
As a result of intensive studies to solve the above problems, the present invention has been completed. That is, the present invention is grown by a liquid phase epitaxial method,
This is a Faraday rotator having square hysteresis formed by magnetizing a bismuth-substituted rare earth iron garnet single crystal film represented by the chemical composition (1). Tb 3-xy Ho x Bi y Fe 5-zw Ga z Al w O 12 (1) ( wherein, 0.40 ≦ x ≦ 0.70,1.30 ≦ y ≦ 1.55, 0.7 ≦ z + w ≦
1.2, 0 ≦ w / z ≦ 0.3)

【0010】本発明を実施するに当たり、本発明のビス
マス置換希土類鉄ガーネット単結晶膜を飽和させ角型ヒ
ステリシスを形成させる際には、1,000 Oe以上の外部磁
界を加えることにより磁化処理することが好ましい。理
由は明確ではないが、加える磁界が大きくなるほど磁気
ヒステリシスが大きくなり、磁石不要な光アイソレータ
として好適な材料となるからである。なお、強い磁界を
加えて磁気的に飽和させ、磁気ヒステリシスを大きくす
る操作を「磁化処理」と、そして磁化処理後に外部磁界
をいったん0とし、次に磁化処理とは逆向きに外部磁界
を加える操作を「逆磁化処理」と記載する。
In practicing the present invention, when the bismuth-substituted rare earth iron garnet single crystal film of the present invention is saturated to form square hysteresis, it is preferable to perform a magnetization process by applying an external magnetic field of 1,000 Oe or more. . Although the reason is not clear, as the applied magnetic field increases, the magnetic hysteresis increases, and this is a material suitable for an optical isolator that does not require a magnet. The operation of applying a strong magnetic field to magnetically saturate and increase the magnetic hysteresis is referred to as “magnetization processing”, and the external magnetic field is temporarily set to 0 after the magnetization processing, and then the external magnetic field is applied in a direction opposite to the magnetization processing. The operation is described as “reverse magnetization processing”.

【0011】また、該角型ヒステリシスが、−40℃〜+
70℃の温度範囲で維持されてなること、さらに、少なく
とも 50 Oeまでの磁化方向と逆の磁界に対してもファラ
デー回転角の符号が変化しないものであることが好まし
い。これらは、通常のファラデー回転子の使用環境にお
いて、信頼性をもって使用可能とするものである。
Further, the square hysteresis is -40 ° C. to +
It is preferable that the sign of the Faraday rotation angle does not change even if the temperature is maintained in a temperature range of 70 ° C. and a magnetic field opposite to the magnetization direction up to at least 50 Oe. These can be reliably used in a normal use environment of the Faraday rotator.

【0012】本発明のビスマス置換希土類鉄ガーネット
単結晶膜の組成は式(1) において、ホルミウム置換量x
は 0.4以上、 0.7以下が好ましい。xが 0.4未満ではフ
ァラデー効果が低下し、必要な膜厚が厚くなるので好ま
しくない。逆にxが 0.7を越えると光アイソレータの使
用温度範囲において角型ヒシステリシスが保てなくなる
とか、逆磁化処理によって飽和させたファラデー回転角
が維持できなくなるなどの不都合が生じる。
The composition of the bismuth-substituted rare earth iron garnet single crystal film of the present invention is represented by the following formula (1).
Is preferably 0.4 or more and 0.7 or less. If x is less than 0.4, the Faraday effect decreases, and the required film thickness increases, which is not preferable. Conversely, if x exceeds 0.7, problems such as the inability to maintain square hysteresis in the operating temperature range of the optical isolator and the inability to maintain the Faraday rotation angle saturated by the reverse magnetization treatment occur.

【0013】ビスマス置換量yは 1.3以上、1.55以下が
好ましい。yが 1.3未満ではファラデー回効果が低下
し、ファラデー回転子として必要な膜厚が厚くなるので
好ましくない。また1.55を越えると、光アイソレータの
使用温度範囲において角型ヒシステリシスが保てなくな
るとか、逆磁化処理によって飽和させたファラデー回転
角が維持できなくなるなどの不都合が生じる。
The bismuth substitution amount y is preferably 1.3 or more and 1.55 or less. If y is less than 1.3, the Faraday effect is reduced, and the film thickness required for the Faraday rotator is undesirably large. On the other hand, if it exceeds 1.55, problems such as the inability to maintain the square hysteresis in the operating temperature range of the optical isolator and the inability to maintain the Faraday rotation angle saturated by the reverse magnetization treatment will occur.

【0014】ガリウムとアルミニウムの置換量(z+w) は
0.7以上、 1.2以下が好ましい。(z+w) が 0.7未満にな
ると、光アイソレータの使用温度範囲において角型ヒシ
ステリシスが保てなくなるとか、逆磁化処理によって飽
和させたファラデー回転角が維持できなくなるなどの不
都合が生じる。(z+w) が 1.2を越えるとファラデー効果
が低下し、ファラデー回転子としての厚さが厚くなるの
で好ましくない。
The substitution amount (z + w) between gallium and aluminum is
It is preferably from 0.7 to 1.2. If (z + w) is less than 0.7, problems such as the inability to maintain square hysteresis in the operating temperature range of the optical isolator and the inability to maintain the Faraday rotation angle saturated by the reverse magnetization process occur. If (z + w) exceeds 1.2, the Faraday effect decreases, and the thickness of the Faraday rotator increases, which is not preferable.

【0015】ガリウムに対するアルミニウムの比率(w/
z) は 0.3以下が好ましい。 0.3を越えると、アルミニ
ウムのイオン半径が小さいため現在入手の容易な基板と
の格子整合が取れなくなり、製造が困難となる。
The ratio of aluminum to gallium (w /
z) is preferably 0.3 or less. If it exceeds 0.3, since the ionic radius of aluminum is small, lattice matching with a substrate which is easily available at present cannot be achieved, and production becomes difficult.

【0016】本発明のビスマス置換希土類鉄ガーネット
単結晶膜の育成に用いるガーネット基板としては、格子
定数が1.2497±0.0002nmの(111)ガーネット単結晶[(Gd
Ca)3(GaMgZr)5O12] 基板、1.2509nmの(111)ガーネット
単結晶[Nd3Ga5O12] 基板があり、格子整合の面で好まし
い。
As the garnet substrate used for growing the bismuth-substituted rare earth iron garnet single crystal film of the present invention, a (111) garnet single crystal having a lattice constant of 1.2497 ± 0.0002 nm [(Gd
There is a Ca) 3 (GaMgZr) 5 O 12 ] substrate and a (509) (111) garnet single crystal [Nd 3 Ga 5 O 12 ] substrate, which is preferable from the viewpoint of lattice matching.

【0017】[0017]

【実施例】以下、実施例、比較例を示し本発明を具体的
に説明する。 実施例1 酸化鉛(PbO, 4N) 3,559g、酸化ビスマス(Bi2O3, 4N) 3,
715g、酸化第2鉄(Fe2O3, 4N) 434g、酸化硼素(B2O3, 5
N) 171g 、酸化テルビウム(Tb2O3, 3N) 28.3g、酸化ホ
ルミウム(Ho2O3, 3N) 19.2g 、酸化ガリウム(Ga2O3, 3
N) 76.3g を容量2,000ml(ミリリットル) の白金製ルツボに加
熱溶融し、ビスマス置換希土類鉄ガーネット単結晶育成
用融液とした。
The present invention will be specifically described below with reference to examples and comparative examples. Example 1 Lead oxide (PbO, 4N) 3,559 g, bismuth oxide (Bi 2 O 3 , 4N) 3,
715 g, ferric oxide (Fe 2 O 3 , 4N) 434 g, boron oxide (B 2 O 3 , 5
N) 171 g, terbium oxide (Tb 2 O 3 , 3N) 28.3 g, holmium oxide (Ho 2 O 3 , 3N) 19.2 g, gallium oxide (Ga 2 O 3 , 3
76.3 g of N) was heated and melted in a platinum crucible having a capacity of 2,000 ml (milliliter) to obtain a bismuth-substituted rare earth iron garnet single crystal growing melt.

【0018】ここに得られた融液表面に、常法に従っ
て、厚さが 500μmで、格子定数が 1.2497 ±0.0002nm
の(111)ガーネット単結晶[(GdCa)3(GaMgZr)5O12] 基板
の片面を接触させ、エピタキシャル成長を行った。そし
て厚さ 447μmのTb0.98Ho0.59Bi1.43Fe3.95Ga1.05O12
単結晶膜(以下「G 膜−1 ]と記す)を得た。なお、組
成分析はプラズマ発光分析法によった。
According to a conventional method, the surface of the obtained melt is 500 μm thick and has a lattice constant of 1.2497 ± 0.0002 nm.
One surface of the (111) garnet single crystal [(GdCa) 3 (GaMgZr) 5 O 12 ] substrate was brought into contact with the substrate to perform epitaxial growth. And Tb 0.98 Ho 0.59 Bi 1.43 Fe 3.95 Ga 1.05 O 12 with a thickness of 447 μm
A single crystal film (hereinafter referred to as "G film-1") was obtained, and the composition was analyzed by a plasma emission analysis.

【0019】このG膜−1 を研磨して、厚さ 406μmに
調整した。ただし、基板は研磨の過程で除去した。その
後両面に波長1.55μm対応の反射防止膜を施して1.55μ
m用のファラデー回転子 (以下「ファラデー回転子−1
」と記す) を作製し、その磁気特性を調べた。
The G film-1 was polished to a thickness of 406 μm. However, the substrate was removed during the polishing process. After that, an anti-reflection coating for 1.55μm wavelength
m Faraday rotator (hereinafter referred to as “Faraday rotator −1
") And its magnetic properties were examined.

【0020】磁気測定は以下の方法を採った。まず、フ
ァラデー回転子−1 を、マグネテック社のヘルムホルツ
コイルからなる磁界発生装置の中心に配置させ、磁界を
印加しながら、1310nmの半導体レーザ光をファラデー回
転子−1 に照射した。そしてファラデー回転子を透過し
たレーザ光の偏波面の回転角を測定から、飽和磁界を
得、さらにファラデー回転子−1 の周囲温度を変化させ
ながら飽和磁界を測定した。ファラデー回転子−1 の飽
和磁界は25℃で 163 Oe 、−40℃〜+70℃の範囲では最
大 218 Oe であった。
The following method was used for the magnetic measurement. First, the Faraday rotator-1 was arranged at the center of a magnetic field generator comprising a Helmholtz coil manufactured by Magnetic Tech. The semiconductor laser light of 1310 nm was applied to the Faraday rotator-1 while applying a magnetic field. From the measurement of the rotation angle of the plane of polarization of the laser beam transmitted through the Faraday rotator, a saturation magnetic field was obtained, and the saturation magnetic field was measured while changing the ambient temperature of the Faraday rotator-1. The saturation magnetic field of the Faraday rotator-1 was 163 Oe at 25 ° C and 218 Oe at a maximum in the range of -40 ° C to + 70 ° C.

【0021】次に、このファラデー回転子−1 を、25℃
にて電磁石の中心に設置し膜面に垂直に 5,000 Oe の磁
界を加え、磁気的に飽和させた。飽和させたのち、磁界
を0にしたが、ファラデー回転子−1 は飽和させたとき
のファラデー回転角を維持していた。なお、ファラデー
回転角は45.3度であった。再び、ファラデー回転子−1
をヘルムホルツコイルに戻し、先に電磁石によって加え
た外部磁界と反対向きに磁界を加え、核形成磁界を調べ
た。すなわち、磁気的に飽和した状態がどのくらいの外
部磁界にまで耐えうるかを見た。その結果、温度範囲−
40℃〜+70℃の範囲で、87 Oe までの外部磁界に耐えう
ることがわかった。
Next, the Faraday rotator-1 was heated at 25.degree.
The magnetic field of 5,000 Oe was applied perpendicularly to the film surface, and the magnetic field was saturated. After saturation, the magnetic field was reduced to 0, but the Faraday rotator-1 maintained the Faraday rotation angle at the time of saturation. The Faraday rotation angle was 45.3 degrees. Again, the Faraday rotator-1
Was returned to the Helmholtz coil, and a magnetic field was applied in the direction opposite to the external magnetic field previously applied by the electromagnet, and the nucleation magnetic field was examined. That is, it was determined how much external magnetic field the magnetically saturated state can withstand. As a result, the temperature range
It was found that it can withstand an external magnetic field up to 87 Oe in the range of 40 ° C. to + 70 ° C.

【0022】次に、ファラデー回転子−1 を用いて実際
に1.55μm用の光アイソレータを作製した。図3にこの
光アイソレータの構成を示した。図3において符号1は
あらかじめ室温で 5,000 Oe の強さの磁界で磁化処理を
行った 2mm×2mm の大きさのG膜−1 からなるファラデ
ー回転子であり、符号2はコーニング社の1.55μm用ガ
ラス製偏光素子、ポーラコア(商品名)からなる偏光子
であり、符号3は同じくコーニング社の1.55μm用ガラ
ス製偏光素子、ポーラコア(商品名)からなる検光子で
あり、符号4はファラデー回転子、偏光子、検光子を固
定するための金属ジグである。符号5は検光子を固定す
るための金属ジグである。ファラデー回転子、偏光子、
検光子をそれぞれエポキシ系接着剤で金属ジグ(4,5) に
固定し、次いで金属ジグ(4,5) を同じくエポキシ系接着
剤で固定して磁石不要の光アイソレータとした。
Next, an optical isolator for 1.55 μm was actually manufactured using the Faraday rotator-1. FIG. 3 shows the configuration of this optical isolator. In FIG. 3, reference numeral 1 denotes a Faraday rotator composed of a G film-1 having a size of 2 mm × 2 mm and magnetized in advance with a magnetic field of 5,000 Oe at room temperature, and reference numeral 2 denotes a Corning 1.55 μm. A polarizer made of a glass polarizing element and a polar core (trade name), reference numeral 3 is an analyzer made of a Corning 1.55 μm glass polarizer and a polar core (trade name), and reference numeral 4 is a Faraday rotator. , Polarizer, and metal jig for fixing the analyzer. Reference numeral 5 denotes a metal jig for fixing the analyzer. Faraday rotator, polarizer,
Each analyzer was fixed to a metal jig (4,5) with an epoxy-based adhesive, and then the metal jigs (4,5) were similarly fixed with an epoxy-based adhesive to obtain an optical isolator without a magnet.

【0023】ついで、この光アイソレータに外部磁界を
全く加えない状態で、−40℃から70℃まで加熱冷却しな
がらアイソレーションを測定した。その結果、−10℃か
ら40℃の温度範囲で26dB以上、−40℃から70℃の温度範
囲で21dB以上のアイソレーションを得た。アイソレーシ
ョンが温度範囲で異なるのはファラデー回転角の温度依
存性によるものである。さらに磁化処理した際の磁界と
逆方向に 50 Oe の磁界をこの光アイソレータに加えな
がら、−40℃から70℃まで加熱冷却しながらアイソレー
ションを測定した。その結果、−10℃から40℃の温度範
囲で27dB以上、−40℃から70℃の温度範囲で20dB以上の
アイソレーションを得た。
Next, the isolation was measured while heating and cooling from −40 ° C. to 70 ° C. without applying any external magnetic field to the optical isolator. As a result, isolation of 26 dB or more was obtained in the temperature range of -10 ° C to 40 ° C, and 21 dB or more in the temperature range of -40 ° C to 70 ° C. The reason that the isolation differs in the temperature range is due to the temperature dependence of the Faraday rotation angle. Further, while applying a magnetic field of 50 Oe in a direction opposite to the magnetic field at the time of the magnetization treatment to the optical isolator, the isolation was measured while heating and cooling from −40 ° C. to 70 ° C. As a result, an isolation of 27 dB or more was obtained in a temperature range of -10 ° C to 40 ° C, and an isolation of 20 dB or more was obtained in a temperature range of -40 ° C to 70 ° C.

【0024】実施例2 酸化鉛(PbO, 4N) 3,559g、酸化ビスマス(Bi2O3, 4N) 3,
715g、酸化第2鉄(Fe2O3, 4N) 434g、酸化硼素(B2O3, 5
N) 171g 、酸化テルビウム(Tb2O3, 3N) 32.00g、酸化ホ
ルミウム(Ho2O3, 3N) 15.2g 、酸化ガリウム(Ga2O3, 3
N) 61.9g 、酸化アルミニウム(Al2O3, 3N) 4.21g を容
量 2,000mlの白金製ルツボに加熱溶融し、ビスマス置換
希土類鉄ガーネット単結晶育成用融液とした。得られた
融液を用いる他は実施例1 に準じて、厚さ 438μmのTb
1.08Ho0.44Bi 1.48Fe4.09Ga0.77Al0.14O12 単結晶膜(以
下「G膜−2 ]と記す)を得た。
Example 2 3,559 g of lead oxide (PbO, 4N), bismuth oxide (BiTwoOThree, 4N) 3,
715 g, ferric oxide (FeTwoOThree, 4N) 434g, boron oxide (BTwoOThree, Five
N) 171 g, terbium oxide (TbTwoOThree, 3N) 32.00 g,
Lumium (HoTwoOThree, 3N) 15.2 g, gallium oxide (GaTwoOThree, 3
N) 61.9 g, aluminum oxide (AlTwoOThree, 3N) 4.21g
Heat and melt in a 2,000 ml platinum crucible and replace with bismuth
A melt for growing a rare earth iron garnet single crystal was used. Got
A 438 μm-thick Tb according to Example 1 except that a melt was used.
1.08Ho0.44Bi 1.48Fe4.09Ga0.77Al0.14O12Single crystal film (hereinafter
Below, referred to as "G film-2").

【0025】G膜−2 を研磨して、厚さ 408μmに調整
した。ただし、基板は研磨の過程で除去した。その後両
面に波長1.55μm対応の反射防止膜を施して1.55μm用
のファラデー回転子 (以下「ファラデー回転子−2 」と
記す) を作製し、その磁気特性を調べた。
The G film-2 was polished to a thickness of 408 μm. However, the substrate was removed during the polishing process. Thereafter, an antireflection film corresponding to a wavelength of 1.55 μm was applied to both sides to produce a Faraday rotator for 1.55 μm (hereinafter referred to as “Faraday rotator-2”), and its magnetic properties were examined.

【0026】次に、ファラデー回転子−2 を、室温にて
電磁石の中心に設置し膜面に垂直に、3,000 Oeの磁界を
加え、磁気的に飽和させた。飽和させたのち、磁界を0
にしたが、ファラデー回転子−2 は飽和させたときのフ
ァラデー回転角を維持していた。なおファラデー回転角
は44.7度であった。再び、ファラデー回転子−2 をヘル
ムホルツコイルに戻し、先に電磁石によって加えた外部
磁界と反対向きに磁界を加え、核形成磁界を調べた。す
なわち磁気的に飽和した状態がどのくらいの外部磁界に
まで耐えうるかを見た。その結果、温度範囲−40℃〜+
70℃の範囲で、65 Oe までの外部磁界に耐えうることが
わかった。
Next, the Faraday rotator-2 was placed at the center of the electromagnet at room temperature, and a magnetic field of 3,000 Oe was applied vertically to the film surface to magnetically saturate the film. After saturation, the magnetic field
However, the Faraday rotator-2 maintained the Faraday rotation angle when saturated. The Faraday rotation angle was 44.7 degrees. Again, the Faraday rotator-2 was returned to the Helmholtz coil, and a magnetic field was applied in a direction opposite to the external magnetic field previously applied by the electromagnet to check the nucleation magnetic field. That is, it was determined how much external magnetic field the magnetically saturated state can withstand. As a result, the temperature range -40 ° C to +
It was found that it could withstand an external magnetic field of up to 65 Oe in the range of 70 ° C.

【0027】実施例3 実施例1で得られたG膜−1 を研磨して 260μmとし、
さらに両面に波長1.31μm用対応の反射防止膜を施し1.
31μm用のファラデー回転子(以下「ファラデー回転子
−3」と記す)を作製した。次に、ファラデー回転子−
3 を、室温にて電磁石の中心に設置し膜面に垂直に、5,
000 Oeの磁界を加え、磁気的に飽和させた。
Example 3 The G film-1 obtained in Example 1 was polished to 260 μm.
In addition, anti-reflection coatings for wavelengths of 1.31 μm are applied to both sides, and 1.
A Faraday rotator for 31 μm (hereinafter referred to as “Faraday rotator-3”) was produced. Next, the Faraday rotator
3 is placed at the center of the electromagnet at room temperature and perpendicular to the membrane surface.
A magnetic field of 000 Oe was applied to magnetically saturate.

【0028】飽和させたのち、磁界を0にしたが、ファ
ラデー回転子−3 は飽和させたときのファラデー回転角
を維持していた。なおファラデー回転角は波長1.31μm
において44.1度であった。このファラデー回転子−3 を
ヘルムホルツコイルに設置し、先に電磁石によって加え
た外部磁界と反対向きに磁界を加え、核形成磁界を調べ
た。すなわち磁気的に飽和した状態がどのくらいの外部
磁界にまで耐えうるかを見た。その結果、温度範囲−40
℃〜+70℃の範囲で、126 Oeまでの外部磁界に耐えうる
ことがわかった。
After saturation, the magnetic field was reduced to 0, but the Faraday rotator-3 maintained the Faraday rotation angle at the time of saturation. The Faraday rotation angle is 1.31 μm
Was 44.1 degrees. This Faraday rotator-3 was installed in a Helmholtz coil, and a magnetic field was applied in a direction opposite to the external magnetic field previously applied by an electromagnet, and the nucleation magnetic field was examined. That is, it was determined how much external magnetic field the magnetically saturated state can withstand. As a result, the temperature range -40
It was found that the film could withstand an external magnetic field of up to 126 Oe in the range of ° C to + 70 ° C.

【0029】比較例1 酸化鉛(PbO, 4N) 3,559g、酸化ビスマス(Bi2O3, 4N) 3,
715g、酸化第2鉄(Fe2O3, 4N) 434g、酸化硼素(B2O3,5
N) 171g、酸化テルビウム(Tb2O3, 3N) 22.70g、酸化ホ
ルミウム(Ho2O3,3N) 25.7g、酸化ガリウム(Ga2O3,3N) 7
6.3gを容量 2,000mlの白金製ルツボに加熱溶融し、ビス
マス置換希土類鉄ガーネット単結晶育成用融液とした。
得られた融液を用いる他は実施例1に準じて、厚さ 444
μmのTb0.84Ho0.76Bi 1.40Fe4.17Ga0.83O12 単結晶膜
(以下「G膜−C1」と記す) を得た。このG膜−C1を実
施例1に準じて、厚さ 411μmの1.55μm用ファラデー
回転子 (以下「ファラデー回転子−C1」と記す) を得、
その磁気特性を調べた。その結果、飽和磁界は25℃で 3
76 Oe 、−40℃〜+70℃の温度範囲では最大 413 Oeで
あった。
Comparative Example 1 Lead oxide (PbO, 4N) 3,559 g, bismuth oxide (BiTwoOThree, 4N) 3,
715 g, ferric oxide (FeTwoOThree, 4N) 434g, boron oxide (BTwoOThree,Five
N) 171 g, terbium oxide (TbTwoOThree, 3N) 22.70 g, oxide oxide
Lumium (HoTwoOThree, 3N) 25.7 g, gallium oxide (GaTwoOThree, 3N) 7
Heat and melt 6.3 g in a platinum crucible with a capacity of 2,000 ml.
A melt for growing a mass-substituted rare earth iron garnet single crystal was prepared.
Except for using the obtained melt, the thickness was 444 according to Example 1.
μm Tb0.84Ho0.76Bi 1.40Fe4.17Ga0.83O12Single crystal film
(Hereinafter referred to as "G film-C1"). This G film-C1
Faraday for 1.55 μm with a thickness of 411 μm according to Example 1.
Rotor (hereinafter referred to as “Faraday rotator-C1”),
The magnetic properties were examined. As a result, the saturation field is 3 at 25 ° C.
76 Oe, maximum 413 Oe in the temperature range of -40 ℃ to + 70 ℃
there were.

【0030】次に、ファラデー回転子−C1 を室温にて
電磁石の中心に設置し、膜面に垂直に 5,000 Oe の磁界
を加え磁気的に飽和させた。飽和させたのち、磁界を0
にしたが、ファラデー回転子−C1は飽和させたときのフ
ァラデー回転角を維持していた。なおファラデー回転角
は43.8度であった。再び、ファラデー回転子−C1 をヘ
ルムホルツコイルに戻し、先に電磁石によって加えた外
部磁界と反対向きに磁界を加え、核形成磁界を調べた。
すなわち磁気的に飽和した状態がどのくらいの外部磁界
にまで耐えうるかを見た。その結果、−40℃〜+70℃の
範囲で、15 Oe までの外部磁界に耐えうることがわかっ
た。
Next, the Faraday rotator-C1 was placed at the center of the electromagnet at room temperature, and a magnetic field of 5,000 Oe was applied vertically to the film surface to magnetically saturate the film. After saturation, the magnetic field
However, the Faraday rotator-C1 maintained the Faraday rotation angle when saturated. The Faraday rotation angle was 43.8 degrees. Again, the Faraday rotator-C1 was returned to the Helmholtz coil, and a magnetic field was applied in a direction opposite to the external magnetic field previously applied by the electromagnet to check the nucleation magnetic field.
That is, it was determined how much external magnetic field the magnetically saturated state can withstand. As a result, it was found that in the range of −40 ° C. to + 70 ° C., an external magnetic field of up to 15 Oe could be tolerated.

【0031】比較例2 実施例1で得たファラデー回転子−1 を電磁石の中心に
設置し、500 Oeの磁界を加え、25℃にて磁気的に飽和さ
せた。飽和させたのち、磁界を0にしたが、ファラデー
回転子−1 は飽和させたときのファラデー回転角を維持
していた。再び、ファラデー回転子−1 をヘルムホルツ
コイルに戻し、先に電磁石によって加えた外部磁界と反
対向きに磁界を加え、核形成磁界を調べた。すなわち磁
気的に飽和した状態がどのくらいの外部磁界にまで耐え
うるかを見た。その結果、温度範囲−40℃〜+70℃の範
囲で、27 Oe までの外部磁界に耐えうることがわかっ
た。
Comparative Example 2 The Faraday rotator-1 obtained in Example 1 was placed at the center of an electromagnet, a magnetic field of 500 Oe was applied, and the magnetic field was saturated at 25 ° C. After saturation, the magnetic field was reduced to 0, but the Faraday rotator-1 maintained the Faraday rotation angle at the time of saturation. Again, the Faraday rotator-1 was returned to the Helmholtz coil, and a magnetic field was applied in a direction opposite to the external magnetic field previously applied by the electromagnet to check the nucleation magnetic field. That is, it was determined how much external magnetic field the magnetically saturated state can withstand. As a result, it was found that it could withstand an external magnetic field of up to 27 Oe in a temperature range of −40 ° C. to + 70 ° C.

【0032】[0032]

【発明の効果】本発明のビスマス置換希土類鉄ガーネッ
ト単結晶膜を磁化処理してなる角型ヒステリシスを示す
ファラデー回転子は、該角型ヒステリシスが、−40℃〜
+70℃の温度範囲で維持され、さらに、少なくとも 50
Oeまでの磁化方向と逆の磁界に対してもファラデー回転
角の符号が変化しないものであることから、磁石なしの
アイソレータが信頼性をもって作成できるものである。
According to the present invention, the Faraday rotator having a square hysteresis obtained by magnetizing the bismuth-substituted rare earth iron garnet single crystal film has a square hysteresis of -40 ° C.
Maintained at a temperature range of + 70 ° C and at least 50
Since the sign of the Faraday rotation angle does not change even with a magnetic field opposite to the magnetization direction up to Oe, an isolator without a magnet can be reliably formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】磁気ヒステリシスを示さないビスマス置換希土
類鉄ガーネット単結晶の磁気特性の一例を示す模式図で
ある。
FIG. 1 is a schematic diagram illustrating an example of magnetic properties of a bismuth-substituted rare earth iron garnet single crystal that does not exhibit magnetic hysteresis.

【図2】磁気ヒステリシスを示すビスマス置換希土類鉄
ガーネット単結晶の磁気特性の一例を示す模式図であ
る。磁気ヒステリシスが非常に大きいため、角型ヒステ
リシスをなすビスマス置換希土類鉄ガーネット単結晶の
磁気特性の一例を示す模式図である。
FIG. 2 is a schematic diagram showing an example of magnetic properties of a bismuth-substituted rare earth iron garnet single crystal exhibiting magnetic hysteresis. It is a schematic diagram which shows an example of the magnetic characteristic of the bismuth substitution rare earth iron garnet single crystal which forms a square hysteresis because magnetic hysteresis is very large.

【図3】本発明からなる光アイソレータの構造を示す模
式図である。
FIG. 3 is a schematic diagram showing a structure of an optical isolator according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・本発明からなすビスマス置換希土類鉄ガーネッ
ト単結晶膜 2・・・ガラス製偏光素子(商品名;ポーラコア)から
なる偏光子 3・・・ガラス製偏光素子(商品名;ポーラコア)から
なる検光子 4・・・金属ジグ 5・・・金属ジグ
DESCRIPTION OF SYMBOLS 1 ... Bismuth substituted rare earth iron garnet single crystal film made of the present invention 2 ... Polarizer composed of a glass polarizing element (trade name; polar core) 3 ... Polarized element formed of glass polarizer (trade name: polar core) Analyzer 4 ・ ・ ・ Metal jig 5 ・ ・ ・ Metal jig

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武田 憲夫 東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社東京研究所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Norio Takeda 6-1-1 Shinjuku, Katsushika-ku, Tokyo Mitsubishi Gas Chemical Co., Ltd. Tokyo Research Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 液相エピタキシャル法で育成されてな
り、下記式(1) の化学組成で示されるビスマス置換希土
類鉄ガーネット単結晶膜を磁化処理してなる角型ヒステ
リシスを示すファラデー回転子。 Tb3-x-yHoxBiy Fe5-z-wGazAlw O12 (1) (式中、0.40≦x≦0.70、1.30≦y≦1.55、 0.7≦z+w≦
1.2、 0≦w/z≦0.3)
1. A Faraday rotator grown by a liquid phase epitaxial method and having a square hysteresis obtained by magnetizing a bismuth-substituted rare earth iron garnet single crystal film represented by the chemical composition represented by the following formula (1). Tb 3-xy Ho x Bi y Fe 5-zw Ga z Al w O 12 (1) ( wherein, 0.40 ≦ x ≦ 0.70,1.30 ≦ y ≦ 1.55, 0.7 ≦ z + w ≦
1.2, 0 ≦ w / z ≦ 0.3)
【請求項2】 該磁化処理が、該ビスマス置換希土類鉄
ガーネット単結晶膜の膜面に垂直に 1,000 Oe 以上の磁
界を加えた後、外部磁界を除去することによるものであ
る請求項1記載の角型ヒステリシスを示すファラデー回
転子。
2. The method according to claim 1, wherein the magnetization is performed by applying a magnetic field of 1,000 Oe or more perpendicularly to the surface of the bismuth-substituted rare earth iron garnet single crystal film and then removing the external magnetic field. Faraday rotator showing square hysteresis.
【請求項3】 該角型ヒステリシスが、−40℃〜+70℃
の温度範囲維持されてなるものである請求項1記載の角
型ヒステリシスを示すファラデー回転子。
3. The method according to claim 1, wherein said square hysteresis is from -40 ° C. to + 70 ° C.
The Faraday rotator exhibiting square hysteresis according to claim 1, wherein the temperature range is maintained.
【請求項4】 少なくとも 50 Oeまでの磁化方向と逆の
磁界に対してもファラデー回転角の符号が変化しないも
のである請求項1記載の角型ヒステリシスを示すファラ
デー回転子。
4. The Faraday rotator exhibiting square hysteresis according to claim 1, wherein the sign of the Faraday rotation angle does not change even in a magnetic field opposite to the magnetization direction up to at least 50 Oe.
JP8186192A 1996-07-16 1996-07-16 Faraday rotator showing square hysteresis Pending JPH1031112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8186192A JPH1031112A (en) 1996-07-16 1996-07-16 Faraday rotator showing square hysteresis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8186192A JPH1031112A (en) 1996-07-16 1996-07-16 Faraday rotator showing square hysteresis

Publications (1)

Publication Number Publication Date
JPH1031112A true JPH1031112A (en) 1998-02-03

Family

ID=16184003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8186192A Pending JPH1031112A (en) 1996-07-16 1996-07-16 Faraday rotator showing square hysteresis

Country Status (1)

Country Link
JP (1) JPH1031112A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6775052B2 (en) 2001-12-25 2004-08-10 Tdk Corporation Hard magnetic garnet material, faraday rotator, optical device, optical communication system, method of manufacturing faraday rotator and method of manufacturing bismuth-substituted rare earth iron garnet single crystal
CN1308739C (en) * 2002-01-24 2007-04-04 Tdk株式会社 Farady rotator and optical device comprising same, and antireflection film and optical device comprising same
JP2008275499A (en) * 2007-05-01 2008-11-13 Toshiba Corp Optical voltage sensor
JP2009085593A (en) * 2007-09-27 2009-04-23 Toshiba Corp Photoelectric field sensor
JP2013170120A (en) * 2012-02-17 2013-09-02 Granopt Ltd Method for manufacturing faraday rotator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6775052B2 (en) 2001-12-25 2004-08-10 Tdk Corporation Hard magnetic garnet material, faraday rotator, optical device, optical communication system, method of manufacturing faraday rotator and method of manufacturing bismuth-substituted rare earth iron garnet single crystal
US7242516B2 (en) 2001-12-25 2007-07-10 Tdk Corporation Hard magnetic garnet material, faraday rotator, optical device, optical communication system, method of manufacturing faraday rotator and method of manufacturing bismuth-substituted rare earth iron garnet single crystal
CN1308739C (en) * 2002-01-24 2007-04-04 Tdk株式会社 Farady rotator and optical device comprising same, and antireflection film and optical device comprising same
JP2008275499A (en) * 2007-05-01 2008-11-13 Toshiba Corp Optical voltage sensor
JP2009085593A (en) * 2007-09-27 2009-04-23 Toshiba Corp Photoelectric field sensor
JP2013170120A (en) * 2012-02-17 2013-09-02 Granopt Ltd Method for manufacturing faraday rotator

Similar Documents

Publication Publication Date Title
Levy et al. Integrated optical isolators with sputter-deposited thin-film magnets
US4981341A (en) Apparatus comprising a magneto-optic isolator utilizing a garnet layer
JP3520889B2 (en) Faraday rotator showing square hysteresis
JP3198053B2 (en) Products made of magneto-optical material with low magnetic moment
CA1316085C (en) Magneto-optic garnet
JP2000249997A (en) Faraday rotation angle variable device
JP3458865B2 (en) Low saturation magnetic field bismuth-substituted rare earth iron garnet single crystal and its use
JPH1031112A (en) Faraday rotator showing square hysteresis
US6673146B2 (en) Method of manufacturing a magnet-free faraday rotator
JPH07206593A (en) Faraday rotator for light isolator
US6542299B2 (en) Material for bismuth substituted garnet thick film and a manufacturing method thereof
US5146361A (en) Apparatus comprising a magneto-optic isolator utilizing a garnet layer
JP4070479B2 (en) Magnetization method
US6031654A (en) Low magnet-saturation bismuth-substituted rare-earth iron garnet single crystal film
US6770223B1 (en) Article comprising a faraday rotator that does not require a bias magnet
Fratello et al. Growth and characterization of magnetooptic garnet films with planar uniaxial anisotropy
Fratello et al. Compositional design of Faraday rotator materials
JPH02131216A (en) Magneto-optical element material
EP0408250B1 (en) Apparatus comprising a magneto-optic isolator utilizing a garnet layer
EP0338859A2 (en) Faraday rotator
JPH07104224A (en) Nonreciprocity optical device
JP3917859B2 (en) Faraday rotator
JPH04304418A (en) Faraday rotator
JP2001142039A (en) Hard magnetic garnet thick film material and method for manufacturing the same
JP2010072263A (en) Faraday rotator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040602