JPS5858524A - Optical switch - Google Patents
Optical switchInfo
- Publication number
- JPS5858524A JPS5858524A JP15611681A JP15611681A JPS5858524A JP S5858524 A JPS5858524 A JP S5858524A JP 15611681 A JP15611681 A JP 15611681A JP 15611681 A JP15611681 A JP 15611681A JP S5858524 A JPS5858524 A JP S5858524A
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- branch
- light
- electrode
- optical switch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 34
- 238000010438 heat treatment Methods 0.000 claims abstract description 34
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 230000005540 biological transmission Effects 0.000 claims abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 230000001902 propagating effect Effects 0.000 abstract description 4
- 229910045601 alloy Inorganic materials 0.000 abstract description 2
- 239000000956 alloy Substances 0.000 abstract description 2
- 229910003327 LiNbO3 Inorganic materials 0.000 abstract 1
- 229910018487 Ni—Cr Inorganic materials 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 239000002178 crystalline material Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0147—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on thermo-optic effects
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、結晶材料の温度により屈折率が変化する性質
を利用した光スィッチに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical switch that utilizes the property of a crystal material that its refractive index changes depending on the temperature.
党ファイバ通信、光メモリ装置及び光プリンタ等の光情
報処理の分野においては、光の方向を制御し、光の通過
をオン・オフするデバイスが不可欠である。この種のデ
バイスとして使用さ゛れる光スィッチには、従来、結晶
材料の音響光学効果を利用したもの又は電気光学効果を
利用したものがある。第3図は、電気光学効果を利用し
て光の方向を制御する光スィッチの模式的斜視図、第4
図は第3図のIV−IV線に上る断面図である。LiN
b0.fIの誘電体結晶材料からなる基板60表面にT
i拡散法等によって基板6よりも屈折率を高めたY字型
の導波路7が形成されている。導波路7は光入射側の導
波路7a及びこれから光進行方向に対し平面視で左右に
分岐した出射側の導波路7b、7cを有する。そして、
導波路70分岐点近傍の基板6表面にはSlへ等の絶縁
層9が形成され、この絶縁層9上には制御電極8m、
8b、 8e及び8dが層形成されている。制御電極8
bは導波路7a及び7bの直上域KToってこれと整合
する形状に成形され。In the field of optical information processing such as optical fiber communications, optical memory devices, and optical printers, devices that control the direction of light and turn on and off the passage of light are essential. Conventional optical switches used as devices of this type include those that utilize the acousto-optic effect of crystalline materials or those that utilize the electro-optic effect. Figure 3 is a schematic perspective view of an optical switch that controls the direction of light using the electro-optic effect;
The figure is a sectional view taken along the line IV--IV in FIG. 3. LiN
b0. T on the surface of the substrate 60 made of dielectric crystal material of fI
A Y-shaped waveguide 7 whose refractive index is higher than that of the substrate 6 is formed by i-diffusion method or the like. The waveguide 7 has a waveguide 7a on the light input side and waveguides 7b and 7c on the output side branched from the waveguide 7a to the left and right in plan view with respect to the light traveling direction. and,
An insulating layer 9 such as Sl is formed on the surface of the substrate 6 near the branch point of the waveguide 70, and on this insulating layer 9, a control electrode 8m,
8b, 8e and 8d are formed in layers. Control electrode 8
b is a region directly above the waveguides 7a and 7b KTo, which is formed into a shape that matches this.
また制御電極8Cは導波路71及び7cO直上域にあっ
てこれと整合する形状に成形されている。一方、制御電
極8aは制御電極8bと同様の形状を有し導波路7の直
上域を外した位置に並設され、また制御電極8Cと同様
の形状を有する制御電極8dも同様に並設されている。Further, the control electrode 8C is located directly above the waveguides 71 and 7cO, and is shaped to match the waveguides 71 and 7cO. On the other hand, the control electrode 8a has the same shape as the control electrode 8b and is arranged in parallel at a position outside the area immediately above the waveguide 7, and the control electrode 8d, which has the same shape as the control electrode 8C, is also arranged in parallel. ing.
而して、制御電極8b、8dと制御電極818Cとの間
に直流電圧全印加すると、導波路7&並びに導波路7b
及び7cKは誘電体結晶のC軸方向に電界(第4図中矢
印にて示す)が形成され。Thus, when a full DC voltage is applied between the control electrodes 8b, 8d and the control electrode 818C, the waveguide 7&and the waveguide 7b
and 7cK, an electric field (indicated by an arrow in FIG. 4) is formed in the C-axis direction of the dielectric crystal.
導波路7b及び7Cの屈折率に差が生じ、導波路7a側
から入射した光波は導波路7b又#iseの一方に偏在
して伝搬し、屈折率が高い方の導波路から主として出射
することになる。従って。A difference occurs in the refractive index of the waveguides 7b and 7C, and the light wave incident from the waveguide 7a side propagates unevenly in one of the waveguides 7b or #ise, and is mainly emitted from the waveguide with a higher refractive index. become. Therefore.
各制御電極への電圧印加方向を制御することにより、光
波の出射方向音制御することができる。By controlling the direction of voltage application to each control electrode, the emission direction of the light wave can be controlled.
然るに、上述の如き光スィッチにおいては。However, in the optical switch as described above.
制御電極の形状を導波路のノζターンに合わせる必要が
あるため、その形成には高度の技術が必要である。また
、導波路を単一モード化した場合、5sw+程度の幅の
導波路が要求されるため。Since the shape of the control electrode needs to match the no-ζ turn of the waveguide, advanced technology is required to form it. In addition, if the waveguide is made into a single mode, a waveguide with a width of about 5 SW+ is required.
制御電極の形成が容易ではなく、更に、制御電極には数
lO■の直流電圧が印加されるが、制御電極同士の間隔
が極めて小さくなるため耐圧上間・題となる。更にまた
、光スィッチの駆動用電源として直流電源を必要とする
ため装置構成に制約がある。It is not easy to form the control electrodes, and furthermore, although a DC voltage of several 1O2 is applied to the control electrodes, the distance between the control electrodes becomes extremely small, which poses problems in terms of withstand voltage. Furthermore, since a DC power source is required as a power source for driving the optical switch, there are restrictions on the device configuration.
一方、音響光学効果を利用した光スィッチにおいてFi
、PbMoO4,Tea、等の結晶材料を使用し。On the other hand, in an optical switch using the acousto-optic effect, Fi
, PbMoO4, Tea, etc. are used.
また電気信号を超音波に変換するトランスデユーサを使
用するため極めて高価である。更に、光スィッチの駆動
のために、高周波の大電力を必要とするから、その使用
態様に制約を受けるという難点がある。Furthermore, it is extremely expensive because it uses a transducer that converts electrical signals into ultrasonic waves. Furthermore, since a large amount of high-frequency power is required to drive the optical switch, there is a problem in that the manner in which it can be used is restricted.
本発明は以上の点に鑑みなされたものであって、製造が
容易であり、駆動用電源に制約を受けず低電力で動作可
能な光スィッチを提供することを目的とする。本発明は
、結晶材料の電気光学効果又は音響光学効果金利用する
という従来の光スィッチの概念とは別に、結晶材料Ω屈
−1折1!1度−依存惟!利用するという新規な発想に
基いてなされたものである。従って1本発明の光スィッ
チは、従来の電気光学効果を利用したもののように光波
の偏波面が特定の方向に偏向している必要はなく、この
ため白色光でも動作可能である。本発明和係る光スィッ
チは、基板表面に形成され温度によシ屈折率が変化する
光伝送媒体からなる主導波路及び分岐点にて前記主導波
路から分岐した分岐導波路と、前記主導波路における前
記分岐点から光進行方向の反対方向に延在する適長部分
及び前記分岐導波路における前記分岐点から光進行方向
に延在する適長部分に亘9形成された加熱電極とを有す
ることを%徴とするものである。この場合に、前記主導
波路及び前記分岐導波路が形成された基板上KSK)、
又はALρ1等からなる絶縁層を形成し。The present invention has been made in view of the above points, and an object of the present invention is to provide an optical switch that is easy to manufacture and can be operated with low power without being restricted by the driving power source. Apart from the conventional optical switch concept of utilizing the electro-optic effect or the acousto-optic effect of crystalline materials, the present invention provides an Ω refraction-1 refraction 1!1 degree-dependent force of the crystal material. This was created based on the novel idea of using Therefore, the optical switch of the present invention does not require that the plane of polarization of the light wave be polarized in a specific direction unlike conventional switches that utilize the electro-optic effect, and therefore can operate even with white light. The optical switch according to the present invention includes a main waveguide formed on the surface of a substrate and made of an optical transmission medium whose refractive index changes depending on temperature, a branch waveguide branched from the main waveguide at a branch point, and a branch waveguide in the main waveguide. A heating electrode formed over the appropriate length portion extending from the branch point in the direction opposite to the light traveling direction and the appropriate length portion extending from the branch point in the light traveling direction in the branch waveguide. It is a sign. In this case, on the substrate on which the main waveguide and the branch waveguide are formed,
Alternatively, an insulating layer made of ALρ1 or the like is formed.
この絶縁層上に前記加熱電極を形成する仁とにより、導
波路を伝搬する光波の金属(加熱電極)中への損失を低
減することができる。By forming the heating electrode on this insulating layer, loss of light waves propagating through the waveguide into the metal (heating electrode) can be reduced.
LINbOma LtTaO,、T@amm石英等の結
晶材料は。LINbOma LtTaO, T@amm Crystal materials such as quartz.
その屈折率が温度依存性を有し、高温になる稈屑折率が
高いという性質を有する。そして、光は屈折率が異なる
物質の境界を通過する際に。Its refractive index has temperature dependence, and it has the property that the refractive index of culm waste at high temperatures is high. When light passes through the boundaries of materials with different refractive indexes.
屈折角(境界に垂直の方向と光線とのなす角)が−屈折
率の大きい物質中で小さくなるように屈折現象を起す。A refraction phenomenon occurs so that the angle of refraction (the angle between the direction perpendicular to the boundary and the light beam) becomes smaller in a material with a high refractive index.
従って、光波の進行方向に対し導波路が2路に分岐して
いる場合に、一方の導波路が他方の導波路より高温であ
るときは、光波はより高温の、即ち屈折率が高い導波路
側に偏向し、主として高温側導波路を伝搬して出射する
。本発明はこのような知見に基いてなされたものである
。即ち、主導波路とこれから分岐した分岐導波路とにお
いて、その分岐点近傍における光入射側の主導波路及び
分岐導波路の適長部分に抵抗発熱体で電極を形成し、こ
の電極に通電して電極直下域の導波路を加熱すると。Therefore, when a waveguide is branched into two paths in the direction of propagation of a light wave, and one waveguide has a higher temperature than the other waveguide, the light wave passes through a waveguide with a higher temperature, that is, a higher refractive index. It is deflected to the side, propagates mainly through the high-temperature side waveguide, and is emitted. The present invention has been made based on this knowledge. That is, in the main waveguide and the branch waveguide branched from the main waveguide, an electrode is formed with a resistive heating element at an appropriate length part of the main waveguide and the branch waveguide on the light incident side near the branch point, and current is applied to the electrode. When the waveguide directly below is heated.
主導波路を伝搬してきた光波はこの分岐点から高温の分
岐導波路に向けて偏向し、光波は主として分岐導波路か
ら出射する。そして、電極に通電せず導波路の温度が均
一である場合は、光波は分岐導波路に偏向せず、主導波
路から出射するから、電極通電のオン・オフと対応して
光波の進行方向が変換される光スィッチが構成される。The light wave propagating through the main waveguide is deflected from this branch point toward the high-temperature branch waveguide, and the light wave is mainly emitted from the branch waveguide. If the electrodes are not energized and the temperature of the waveguide is uniform, the light wave will not be deflected to the branch waveguide and will be emitted from the main waveguide, so the traveling direction of the light wave will change depending on whether the electrode is energized or not. A converted optical switch is constructed.
以下、本発明の具体的実施の態様につき、添付の図面を
参照して具体的に説明する。第19は本発明の1実施例
を示す模式的斜視図、第2図はその平面図である。基板
lは銹電体結晶材料0LIN′bOs結晶1−2軸方向
が厚み方向になるように切出したものであり、この基板
10表面KTlを拡散させて主導波路2及び分肢導波w
I3を形成しである。主導波路2は直線状に形成してあ
り、七の略中央よりも出射側の部分は、略中央の分岐点
から直線状に分岐する分岐導波路3が近接されている。Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings. 19 is a schematic perspective view showing one embodiment of the present invention, and FIG. 2 is a plan view thereof. The substrate 1 is made of an 0LIN'bOs crystal material cut out so that the 1-2 axis direction is the thickness direction, and the surface KTl of this substrate 10 is diffused to form the main waveguide 2 and the branch waveguides w.
This forms I3. The main waveguide 2 is formed in a straight line, and a branch waveguide 3 that branches in a straight line from a branch point at the approximate center is adjacent to a portion on the output side from the approximate center of the waveguide.
従って、主導波路2に対し。Therefore, for main waveguide 2.
X軸方向に入射した光波はそのまま直進して主導波路2
から出射するか、又は分岐点から分岐導波路3を伝搬し
て出射するようKなっている。The light wave incident in the X-axis direction continues straight to the main waveguide 2.
K is configured such that the light is emitted from the branch point or propagated through the branch waveguide 3 from the branch point.
主導波路20幅Wは数μ鴎乃至数lθμ錫であり、出射
側の主導波路2と分岐導波路3とがなす角度は光スィッ
チの両出射点の間隔と分岐導波路3の長さとによシ定ま
るが1例えば2〜3°程度に設定すればよい。このTi
拡散させた主導波路2及び分岐導波路3は、基板lのT
1拡散させてiない部分よりも屈折率が高く、特に、電
界方向が2軸方向である異常光に対しては屈折率が約o
、otsだけ高い。そして、主導波路2及び分岐導波路
3は温度が100 ℃上昇すると屈折率がo、oos乃
至0.006だけ上昇する。また、 Tiの拡散深さは
約2.4μ襲であって、厚み方向に鶏及びTMiの2つ
のモードの光波を伝搬させるのに十分な厚みを有してい
るが、主導波路2及び分岐導波路3は単一モードの光波
を伝搬可能に形成しても本発明の所期の目的を達成可能
であることは勿論である。The width W of the main waveguide 20 is from several microns to several lθμ, and the angle formed by the main waveguide 2 on the output side and the branch waveguide 3 depends on the distance between the two output points of the optical switch and the length of the branch waveguide 3. Although the angle is determined, it may be set to, for example, about 2 to 3 degrees. This Ti
The diffused main waveguide 2 and branch waveguide 3 are
1 The refractive index is higher than that of the part that is not diffused, and especially for extraordinary light where the electric field direction is biaxial, the refractive index is about o.
, only ots are higher. When the temperature of the main waveguide 2 and branch waveguide 3 increases by 100° C., the refractive index increases by o, oos to 0.006. In addition, the diffusion depth of Ti is approximately 2.4 μm, which is sufficient to propagate two modes of light waves, TMi and TMi, in the thickness direction. It goes without saying that the intended purpose of the present invention can also be achieved even if the wave path 3 is formed to be able to propagate a single mode light wave.
而して、基板1の表面上の主導波路2と分岐導波路3と
の分岐点を中心とする適宜の領域には、 810.等か
らなる絶縁層5を層厚が0.2μ禦程度になるように膜
形成しである。そして、絶縁層5上にはNi−Cr系合
金からなる加熱電極4を層形成しである。加熱電極4は
主導波路2における分岐点より光進行方向(図中矢印に
て示す)後方の適長部分及び分岐導波路3における分岐
点より光進行方向前方の適長部分の直上域に形成しであ
る。加熱電極40幅は主導波路2等の幅Wと同一に設定
してもよく、また図示の如く分岐導波路3側に偏在させ
て狭幅に設定してもよい。加熱電極4の両端部は主導波
路2及び分岐導波路3の直上域から外れた位置に導出さ
れ、電源Vに接続されている。この電源■は。Thus, 810.810. The insulating layer 5 made of the following is formed to have a layer thickness of approximately 0.2 μm. A heating electrode 4 made of a Ni--Cr alloy is formed on the insulating layer 5. The heating electrode 4 is formed at a suitable length portion behind the branch point in the main waveguide 2 in the light traveling direction (indicated by an arrow in the figure) and in an area directly above the suitable length portion in front of the branch point in the light traveling direction in the branching waveguide 3. It is. The width of the heating electrode 40 may be set to be the same as the width W of the main waveguide 2, etc., or may be set to be narrow so as to be unevenly distributed on the branch waveguide 3 side as shown in the figure. Both ends of the heating electrode 4 are led out to a position away from the area immediately above the main waveguide 2 and the branch waveguide 3, and are connected to a power source V. ■This power supply is.
直流又は商用周波数の交流電源等、いずれでもよく、電
源■によって加熱電極4に通電することによりその直下
域にある主導波路2及び分岐導波路3を加熱するように
なっている。加熱電極4の長さLFi例えば、3嘱諷程
度に設定するが、その分岐導波路側端部が分岐導波路3
と近接した主導波路2から10μ露程度離隔するまで分
岐導波路側に延長させれば十分である。これは、後述す
る如くして1分岐導波路3に分岐させた光波が近接する
主導波路2KKじみ出すことがない位置まで、加熱電極
4による分岐導波路3の加熱によって光波全分岐導波路
3内に導波するためである。Either a DC power source or a commercial frequency AC power source may be used, and by energizing the heating electrode 4 using the power source (2), the main waveguide 2 and the branch waveguide 3 located directly below the heating electrode 4 are heated. The length LFi of the heating electrode 4 is set to, for example, about 3 mm, and the end of the heating electrode 4 on the branch waveguide side is connected to the branch waveguide 3.
It is sufficient to extend it to the branch waveguide side until it is separated by about 10 μm from the main waveguide 2 which is adjacent to it. As will be described later, the heating of the branch waveguide 3 by the heating electrode 4 allows the light wave to be heated within the full-branch waveguide 3 to a position where the light wave branched into the single-branch waveguide 3 does not leak out into the adjacent main waveguide 2KK. This is to guide the wave.
上述の如く構成された光スィッチにおいては。In the optical switch configured as described above.
加・熱電極4が通電されていない場合は、主導波路2か
らX軸方向に光波(例えばTM光)を入射させるセ、主
導波路2’i伝搬する光波はその大部分が分岐点を直進
して主導波路2から出射し。When the heating/heating electrode 4 is not energized, most of the light waves propagating through the main waveguide 2'i go straight through the branch point, when a light wave (for example, TM light) is incident in the X-axis direction from the main waveguide 2. The light is emitted from the main waveguide 2.
分岐導波路3から出射する光波は入射光の171゜以下
である。而して、加熱電極4に電圧を印加して通電する
と、加熱電極4が抵抗発熱してその直下域の主導波路2
及び分岐導波路3が加熱される。そして、この部分の温
度が上昇して屈折率が上昇し1例えば1001C(D温
度上昇においては屈折率が0.005乃至0゜006だ
け上昇する。The light wave emitted from the branch waveguide 3 has an angle of less than 171° of the incident light. When a voltage is applied to the heating electrode 4 to energize it, the heating electrode 4 generates resistance and the main waveguide 2 in the region directly below it.
And the branch waveguide 3 is heated. Then, as the temperature of this portion rises, the refractive index increases, and for example, 1001C (D When the temperature rises, the refractive index increases by 0.005 to 0°006.
その結果、主導波路2t−分岐点近傍まで伝搬してきた
光波は屈折率が高い分岐導波路3側に偏向し、主として
分岐導波路3會伝搬して出射する。即ち、加熱電極4に
通電した場合は、出射光の強度が分岐導波路31gに集
中し1通電しない場合は光波は直進するので出射光の強
度が主導波路2側に集中するから、加熱電極4に対する
通電のオン・オフにより光波の進行方向が制御されるこ
とになる。As a result, the light wave that has propagated from the main waveguide 2t to the vicinity of the branch point is deflected toward the branch waveguide 3 side having a high refractive index, propagates mainly through the branch waveguide 3, and is emitted. That is, when the heating electrode 4 is energized, the intensity of the emitted light is concentrated on the branch waveguide 31g, and when the heating electrode 4 is not energized, the light wave travels straight, so the intensity of the emitted light is concentrated on the main waveguide 2 side. The traveling direction of the light wave is controlled by turning on and off the current.
上述したところから明らかな如く1本発明の光スィッチ
においては加熱電極4は分岐点近傍の主導波路2及び分
岐導波路3を加熱するために設けられるものであるから
、その幅寸法に制約を受けず、またその形状は単純なも
ので−よいので形成が容易であり、従来の電気光学効果
を利用した光スィッチの如く導波路の幅方向1ζ複数本
の電極を並設する必要はないため耐圧上も問題とならな
い。これは、特に光スイツfk多重通信に有利な単一モ
ードの光波について動作可能とした場合に利点がある。As is clear from the above, in the optical switch of the present invention, the heating electrode 4 is provided to heat the main waveguide 2 and the branch waveguide 3 near the branch point, and therefore is limited by its width. Moreover, it is easy to form because it has a simple shape, and there is no need to arrange multiple electrodes in the width direction of the waveguide in parallel, as in conventional optical switches that utilize the electro-optic effect, so it has a high withstand voltage. The top is not a problem either. This is particularly advantageous when it is possible to operate with single mode light waves, which is advantageous for optical switch FK multiplex communication.
即ち、導波路を厚み方向と共に幅方向についても単一モ
ード化した場合は導波路幅が5μ寓以下となるが、電極
形状が単純であるためその形成は容易であり。That is, if the waveguide is made into a single mode in both the thickness direction and the width direction, the waveguide width will be less than 5μ, but since the electrode shape is simple, it is easy to form.
導波路の狭幅化に対し電極形成上の制約1受けない。史
に、電源は加熱電極4t−抵抗発熱させるためのもので
あるから、その実効値のみを適宜調節すればよく、直流
又は商用周波数の交流電源等、適当なものを使用するこ
とができる。No restriction 1 on electrode formation is applied to the narrowing of the waveguide. Historically, since the power source is for heating the heating electrode 4t through resistance, it is only necessary to adjust its effective value as appropriate, and an appropriate power source such as a DC power source or an AC power source at a commercial frequency can be used.
以上、詳説した如く1本発明に係る光スィッチは、その
製造が容易であり、電源に制約を受けず、また動作対象
の光波はその偏向状態及び波長等の制約を受けず、従来
動作不能であった白色光も動作可能である。なお1本発
明は上記の特定の実施例に限定されるべきものではなく
。As explained in detail above, the optical switch according to the present invention is easy to manufacture, is not limited by power supply, and the light wave to be operated is not limited by its polarization state, wavelength, etc., and is not operable in the past. White light can also be used. Note that the present invention is not limited to the specific embodiments described above.
本発明の技術的範囲内において種々の変形が可能である
。例えば、基板1の材料としては前述の如< LiNb
0.の外に石英等、屈折率温度依存性を有する種々の綽
電体結晶が使用可能である。Various modifications are possible within the technical scope of the present invention. For example, the material of the substrate 1 may be <LiNb> as described above.
0. In addition to quartz, various types of electric crystals having a refractive index temperature dependence can be used.
また、基板10表面に形成される導波路もTi拡散によ
るものに限らないことは勿論である。更に、加熱電極4
の材料もNi−0r系合金に限らず。Furthermore, it goes without saying that the waveguide formed on the surface of the substrate 10 is not limited to one formed by Ti diffusion. Furthermore, the heating electrode 4
The material is not limited to Ni-0r alloy.
種々の金属が使用可能である。更にまた。厚み方向がY
軸方向になるように切り出したLiNb0゜結晶を基板
とし、光波としてTE光を使用すれば。Various metals can be used. Yet again. Thickness direction is Y
If a LiNb 0° crystal cut in the axial direction is used as the substrate, and TE light is used as the light wave.
絶縁層5を形成することなく各導波路上に直接加熱電極
を形成しても光波の伝搬損失は問題とならない。更にま
た。加熱電極4における導波路上の部分以外の導出部分
は、Au又はAt尋の発熱量が少い金属で形成すること
としてもよい。Even if heating electrodes are formed directly on each waveguide without forming the insulating layer 5, the propagation loss of light waves will not be a problem. Yet again. The lead-out portion of the heating electrode 4 other than the portion on the waveguide may be formed of a metal that generates a small amount of heat, such as Au or At.
第1図は本発明の1実施例を示す模式的斜視図、第2図
はその平面図、第3図は従来の光スィッチの模式的斜視
図、第4図は第3図01V−IV線による縦断面図であ
る。
(符号の説明)
l・・・基 板 2・・・主導波路3・・・分
岐導波路 4・・・加熱電極5・・・絶縁層
特許出願人 株式会社 リ コ −
代理人 小備正明
第3図
第4図
手続補正書
昭和57年2月19日
特許庁長官 島1)春樹殿
1 ・11件の表示
昭和56年 特許願事 156116号2発明の名称
光スィッチ
3 補正をする者
事1f1・との関係 特許出願人
民 名 (7618)弁理士小シ喬正明5、 ?+l
i +E命令の日付 自 発(] 補+Iヱより増〃
1ける発明の数 な し7 補正の対象
明細書
8 袖+Eの内′各 別紙のとおり
補 正 の 内 容
1、明細書中、[発明の詳細な説明」の傭を以トの如く
補正子ゐ。
(1) 第1真下から3行目、「結晶」とめ@1r、
「光学」に41正す心。
(2) 第5i4上から5行目、「結晶Jとめ心Qノ
t1「光学」に訂正丁ゐ。
(3) a4崗bv−ら5乃至7行目、「ft1C*
tc、光スィッチの駆動用電源としてINK電源を必要
とするため装置構成に制約がある。」との記載を削除丁
@。
第4jM下から1行目、「結晶」とめるの鉦、「光学」
に訂正する。
第5真上から5行目、「白色光」とめるのを、「自然光
」に訂正する。
(6)15貞Fから2行目、「中・\の」とめるのを、
「に工ゐJ [Hr正丁心。
(7)第5頁下から1行目、l−LiNb01. Ll
’l’MO,。
Te021石英等の結晶材料」とあるのrlr LiN
bO3,PLZT−1ミツク、6A、 JJ 9 ス
等O光学材料」に訂正する。
(8)47自上から8乃至1()行目、1基板lは誘電
体結晶材料のLiNb0a結晶kZ軸方向が厚み方向に
なるように切出したものであり、」とあΦσtkx r
基板lはLiNb0j等からなり、」に訂′lETる。
(9) 、m711:カら111行目r’l’l’t
−Jと64の’に、Il”皿等kJに訂正丁金。
(lO)第11貞とから13乃至155行目「これば、
符に光スイッチ會多重通信に有利な単−七−ドの光波に
ついて動作oJ能とした場合に利点がある。」とめ心の
t削除し、vOに1この元スイッチは加熱による屈折本
変化が人きく多モード元ファイバ通信系に使用するのに
有用であるが、光スィッチを多重通信に有利な早−モー
ド光フアイバ系に適用丁ゐ場ひにも利点がある。」との
記載を挿入子ゐ。
(II)第12真上から8行目、「白色光」とあるの7
1 「°自然光(LgD光、水銀ランプ単色光等)」V
こ訂正下め・
(12)第12貞Eから12乃至133行目[自矢等、
屈折単温度依存性會舊丁□慎々の妨電湊結晶」とあるの
會、「石英、セラミック、ガラス、−分子材料等、屈折
4温直依仔社倉句・丁Φ櫨々の光学材料」に訂正下Φ。
以 しFig. 1 is a schematic perspective view showing one embodiment of the present invention, Fig. 2 is a plan view thereof, Fig. 3 is a schematic perspective view of a conventional optical switch, and Fig. 4 is a line taken along the line 01V-IV in Fig. 3. FIG. (Explanation of symbols) 1...Substrate 2...Main waveguide 3...Branch waveguide 4...Heating electrode 5...Insulating layer Patent applicant Ricoh Co., Ltd. - Agent Masaaki Kobi No. 3 Figure 4 Procedural amendment February 19, 1980 Commissioner of the Japan Patent Office Shima 1) Haruki-dono 1 ・11 indications 1982 Patent application No. 156116 2 Title of the invention Optical switch 3 Person making the amendment 1f1・Relationship with Patent applicant name (7618) Patent attorney Xiao Shiqiao Masaaki 5, ? +l
i + Date of E command Self-initiated (] Increased from Supplement + Iヱ
Number of inventions in 1 None 7 Specification to be amended 8 Sleeves + E' contents Contents of amendment 1. In the description, the ``detailed description of the invention'' is replaced with the amendor as follows. Wow. (1) 3rd row from the 1st bottom, “crystal” stop @1r,
A mind that corrects 41 things in ``optics.'' (2) 5th line from the top of No. 5i4, “Crystal J and center Q not t1 “Optics” has been corrected. (3) a4gangbv-etc. lines 5 to 7, “ft1C*
Since an INK power source is required as a power source for driving the optical switch, there are restrictions on the device configuration. ” was deleted. 4jM 1st line from the bottom, “crystal” stopper gong, “optics”
Correct. In the 5th line from the top, correct the word ``white light'' to ``natural light.'' (6) In the second line from 15 Sada F, stop with “中・\の”.
``Nikoi J [Hr Sei Ding Shin. (7) Page 5, 1st line from the bottom, l-LiNb01.Ll
'l'MO,. Crystal materials such as Te021 quartz" rlr LiN
bO3, PLZT-1 Mitsu, 6A, JJ 9, etc. O optical materials”. (8) 47 Lines 8 to 1 () from above, 1 substrate l is a LiNb0a crystal of dielectric crystal material cut out so that the kZ axis direction is the thickness direction, and Φσtkx r
The substrate 1 is made of LiNb0j, etc. (9) , m711: 111th line r'l'l't
- J and 64', Il" plate etc. kJ correction. (lO) From the 11th Sada, lines 13 to 155 "If this...
In particular, there is an advantage in using the OJ function for single-seven-band light waves, which are advantageous for optical switch multiplex communication. This switch is useful for multi-mode fiber communication systems where refraction changes due to heating are a problem, but optical switches can be used in fast mode, which is advantageous for multiplex communication. Applications to fiber optic systems also have advantages. Insert the statement ``. (II) Line 8 from the top of No. 12, 7 where it says “white light”
1 “°Natural light (LgD light, mercury lamp monochromatic light, etc.)” V
Please correct this. (12) Lines 12 to 133 from the 12th Sada E [Jiya et al.
``Refraction single temperature dependence 會舊 □ Modest disturbance crystals'', ``Quartz, ceramics, glass, - molecular materials, etc., refraction 4-temperature Naoyorikoshakura ku・cho Φ Φ below corrected to "Materials". From now on
Claims (1)
伝送媒体からなる主導波路及び分岐点にて前記主導波路
から分岐した分岐導波路と。 前記主導波路における前記分岐点から光進行方向の反対
方向に延在する適長部分及び前記分岐導波路における前
記分岐点から光進行方向に延在する適長部分に亘り形成
された加熱電極とを有することを特徴とする光スィッチ
。 2、上記第1項において、前記加熱電極は、t!i記主
導波路及び前記分岐導波路との間に絶縁層を介在させて
形成しであることt%徴とする光スィッチ。[Scope of Claims] 1. A main waveguide formed on the surface of a substrate and made of an optical transmission medium whose refractive index changes depending on temperature, and a branch waveguide branched from the main waveguide at a branch point. a heating electrode formed over an appropriate length portion of the main waveguide extending from the branch point in a direction opposite to the direction of light propagation; and a heating electrode formed over an appropriate length portion of the branch waveguide extending from the branch point in the direction of light propagation. A light switch comprising: 2. In the above item 1, the heating electrode has a temperature of t! An optical switch characterized in that it is formed with an insulating layer interposed between the i main waveguide and the branch waveguide.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15611681A JPS5858524A (en) | 1981-10-02 | 1981-10-02 | Optical switch |
US06/431,020 US4648687A (en) | 1981-10-02 | 1982-09-30 | Optical switching device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15611681A JPS5858524A (en) | 1981-10-02 | 1981-10-02 | Optical switch |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5858524A true JPS5858524A (en) | 1983-04-07 |
Family
ID=15620659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15611681A Pending JPS5858524A (en) | 1981-10-02 | 1981-10-02 | Optical switch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5858524A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60237432A (en) * | 1984-05-10 | 1985-11-26 | Fujitsu Ltd | dynamic branch optical circuit |
JPS6429815A (en) * | 1987-07-24 | 1989-01-31 | Fujitsu Ltd | Optical switching element |
WO1990009605A1 (en) * | 1989-02-07 | 1990-08-23 | E.I. Du Pont De Nemours And Company | Optical switch |
JPH09211501A (en) * | 1996-01-31 | 1997-08-15 | Nippon Telegr & Teleph Corp <Ntt> | Thermo optical switch |
-
1981
- 1981-10-02 JP JP15611681A patent/JPS5858524A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60237432A (en) * | 1984-05-10 | 1985-11-26 | Fujitsu Ltd | dynamic branch optical circuit |
JPS6429815A (en) * | 1987-07-24 | 1989-01-31 | Fujitsu Ltd | Optical switching element |
WO1990009605A1 (en) * | 1989-02-07 | 1990-08-23 | E.I. Du Pont De Nemours And Company | Optical switch |
US5016958A (en) * | 1989-02-07 | 1991-05-21 | E. I. Du Pont De Nemours And Company | Optical switch having a phase change region therein |
JPH09211501A (en) * | 1996-01-31 | 1997-08-15 | Nippon Telegr & Teleph Corp <Ntt> | Thermo optical switch |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3294105B2 (en) | Silica optical circuit switch and method | |
JPS59143109A (en) | optical integrated circuit | |
JPS5858524A (en) | Optical switch | |
JP3573180B2 (en) | Polling method for Mach-Zehnder interferometer arm | |
JP2932742B2 (en) | Waveguide type optical device | |
JPH1184434A (en) | Light control circuit and operation method | |
JP2765529B2 (en) | Waveguide type optical device | |
JPS5895330A (en) | Optical switch | |
JPH05224044A (en) | Waveguide type optical device with monitor | |
JPH0954291A (en) | Optical phase shifter and optical switch using the same | |
JPH05273260A (en) | Voltage sensor | |
JP2566923B2 (en) | Light switch | |
JP2635986B2 (en) | Optical waveguide switch | |
US20250068003A1 (en) | Low-loss phase shifters | |
JP2848209B2 (en) | Waveguide type N × N optical switch | |
JPS5897028A (en) | Optical waveguide switch | |
JPS60177318A (en) | Modulated light source | |
JP2000206577A (en) | Waveguide type grating element and Add / Drop filter using the same | |
JPS5858525A (en) | Optical switch | |
JP2659786B2 (en) | Mode light separator | |
JPS60260925A (en) | Optical "and" circuit | |
JPH0980364A (en) | Waveguide type optical device | |
JPS63256928A (en) | Optical waveguide switch | |
JPS60192913A (en) | Waveguide type light reflector | |
JPH0511294B2 (en) |