JPS5856327A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS5856327A JPS5856327A JP15461081A JP15461081A JPS5856327A JP S5856327 A JPS5856327 A JP S5856327A JP 15461081 A JP15461081 A JP 15461081A JP 15461081 A JP15461081 A JP 15461081A JP S5856327 A JPS5856327 A JP S5856327A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- lsi
- single crystal
- impurities
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000012535 impurity Substances 0.000 claims abstract description 16
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- 238000000137 annealing Methods 0.000 abstract description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 6
- 229920005591 polysilicon Polymers 0.000 abstract description 6
- 239000013078 crystal Substances 0.000 abstract description 5
- 238000009792 diffusion process Methods 0.000 abstract description 5
- 229910021421 monocrystalline silicon Inorganic materials 0.000 abstract description 4
- 239000000758 substrate Substances 0.000 abstract description 4
- 230000004913 activation Effects 0.000 abstract description 3
- 230000003647 oxidation Effects 0.000 abstract description 3
- 238000007254 oxidation reaction Methods 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 38
- 238000005468 ion implantation Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本宛@は半導体装置の製造方法、4Iに三次元的な多層
L@l IF)製造方法に関し更に詳しくは不純物イオ
ン注入層の7二−ル方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, a method of manufacturing a three-dimensional multilayer L@l IF), and more particularly a method of manufacturing an impurity ion implantation layer.
LJII (Layg@glea1@Int@grat
@d eir*u1t )の装造技術として集積度を上
げるために多層化が計られるが。LJII (Layg@glea1@Int@grat
As a construction technology for @d eir * ult), multilayering is being attempted to increase the degree of integration.
将来的&Cはチップ当り16Mビットという超嶌集積度
のデバイスが1つの目標とされており、その場合には8
〜lO層という多層構造のものが実用化されなければな
らない、かかる三次元Li1I t)製造11C’aし
ては、従来のL81の装造技術をそのまま適用したので
命工槓々の不都合を生じる場合が多く。One of the future targets for &C is a device with a super-density density of 16 Mbits per chip, in which case 8
A multi-layered structure called ~IO layer must be put into practical use.For such three-dimensional Li1I t) Manufacturing 11C'a, the conventional L81 fabrication technology was applied as is, which caused various inconveniences in life engineering. In many cases.
例えば不純物イオン注入層の活性化のために行うアニー
ルやゲート酸化などの熱工程を各層形成ごとに行うと、
下層(初めに作られた層) LJIIはど熱履歴を多(
受け、拡散層の過剰拡散(深さおよび横方向の広がり)
やキャリヤ嬢度の減少などの弊害が発生する。特に、不
純物のドーピングに関しては、イオン注入法がドーピン
グ一度や深さの制御が容易であり、集積度を上げものに
適した方法であることから、三次元Lgl F)製造に
おいても主流をなすものであり、したがってイオン注入
層の宿性化のためのアニールは必要、不可欠の熱工程で
あり、これに伴う前記弊害の発生は避けられず、この対
策を信じる必要がある。For example, if thermal processes such as annealing and gate oxidation are performed to activate the impurity ion-implanted layer after each layer is formed,
Lower layer (first layer created) LJII has a large thermal history (
over-diffusion of the diffusion layer (depth and lateral extent)
This can lead to negative effects such as a decrease in the number of carriers. In particular, when it comes to impurity doping, ion implantation is the method that is the mainstream in three-dimensional LglF) manufacturing because it is easy to control the doping once and the depth, and is suitable for increasing the degree of integration. Therefore, annealing for making the ion-implanted layer hostal is a necessary and indispensable thermal process, and the occurrence of the above-mentioned problems accompanying this is unavoidable, and it is necessary to believe in this countermeasure.
本発明は1、多層LSIの作成にあたって、熱工程にお
ける熱影響をできるだけ小さくすゐ製造方法の確立を目
的としたものであり、そのために、多層IC[層された
半導体層の41叔の層に不純豐領域を形成する半導体装
置の製造方法において、該複数の層にそれぞれ不純物を
導入した後、導入された不#III會な活性化″fも熱
処理を行なうことを特徴とする半導体装置の製造方法を
提供する。The purpose of the present invention is 1. to establish a manufacturing method that minimizes the thermal influence in the thermal process when creating a multilayer LSI; A method for manufacturing a semiconductor device in which an impurity region is formed, wherein after impurities are introduced into each of the plurality of layers, the introduced impurities are also subjected to heat treatment for activation. provide a method.
以下、M(Nil、all を対象として本発明の実
施例について説明すも。Hereinafter, embodiments of the present invention will be described for M(Nil, all).
多層LSIの製造方法に関し、本願出願人は例えば添付
図面に示す方法を実現している。この方法においては、
先ず単結晶シリラン基板l上に4a縁層(1110m
) 2を設け、スクライプライン4上において基板半導
体な産出させ、全面にポリシリコン層を被着し、次いで
エネルギー−〇照射により露出基板を核としてポリシリ
コン層を単結晶化す会。Regarding a method for manufacturing a multilayer LSI, the applicant of the present application has realized, for example, a method shown in the accompanying drawings. In this method,
First, a 4a edge layer (1110 m
) 2 is provided, a semiconductor substrate is produced on the scribe line 4, a polysilicon layer is deposited on the entire surface, and the polysilicon layer is then single-crystalized using the exposed substrate as a nucleus by irradiation with energy.
このように形成した単結晶シψツン層に不純物拡散やゲ
ート酸化を行い81層の半導体装置(IJI)を形成す
る(夏矢印)、シかる後に、スクライプライン4を除く
部分に層間結縁層3を設け、再びポリシリコン層を被着
し、エネルギー總照射によリスクライブラインを核とし
【ポリシリコン層を単結晶化し、以降前記した工程を繰
り返して4z層のLSIを形成する(■矢印)、なお添
付図中。Impurity diffusion and gate oxidation are performed on the single crystal thin layer thus formed to form an 81-layer semiconductor device (IJI) (summer arrow). After that, a polysilicon layer is deposited again, and the polysilicon layer is made into a single crystal by using the risk line as a core by energy irradiation.Then, the above steps are repeated to form a 4z layer LSI (■ arrow). , in the attached figure.
5゛は単結晶シリコン層、Vはポリ7921層を衆わし
、第3層(矢印■)は丁度単結晶化されつつある状態を
示したものであり、また6&エグート酸化膜、7はリン
・ドープドポリシリコン層を表わす拳
前記したように第1層、第2層・・・・−と積層して多
層LBIは作成されるものであるが、かかる作成過11
において、イオン注入層のアニールを各層ごとに行うと
下層はと高温の熱工根を不必要にIIIAIJ返し受け
ることになり、せりか(形成した拡散層が過剰拡散にな
ったりまたキャリヤ濃度が減少したりして所定の性能が
得られないことにもなる。5 is a single-crystal silicon layer, V is a poly 7921 layer, the third layer (arrow ■) is just being made into a single crystal, 6 is an oxide film, and 7 is a phosphorus layer. As mentioned above, a multilayer LBI is created by stacking the first layer, second layer, etc.
If the ion-implanted layer is annealed for each layer, the lower layer will be unnecessarily subjected to the high-temperature thermal process, which may cause the formed diffusion layer to become over-diffused or the carrier concentration to decrease. Otherwise, the desired performance may not be obtained.
本発qi4においては、多層LSIの作画過楊で行う不
純物イオン注入までは通常の工程で進め、その次の工程
でなすべきイオン注入層の活性化のための7二−ルな各
層ごとには行わず、全層が完成した段階で最WkVC一
括して通常の炉7二−ル(例えば不活性ガス雰囲気中で
1050 ℃で30分) で熱処理する方法を実施す
るものであ・心、また界一単位安定化のための低温水嵩
7二−ル(迅十ムr)も同様に最終段階で一括して行う
ようにする。かかる方法により、下層Lliilの過m
7二−ルは防止でき、またキャリヤ一度の減少も避は得
るものであり、さらには各層ごとに同じアニールを繰9
返丁手関と時間か省略でき効率的な三次元LBIの剃造
が可能になる。In this qi4, the process up to the impurity ion implantation performed during the drawing process of the multilayer LSI is carried out in the normal process, and the 7-layer process for activating the ion-implanted layer is performed in the next process. Instead, when all the layers are completed, the entire WkVC is heat-treated in a normal furnace at 1050 °C for 30 minutes (for example, in an inert gas atmosphere at 1050 °C for 30 minutes). In the same way, the volume of low-temperature water (72 ml) for stabilizing the field is also carried out all at once at the final stage. By such a method, the overmold of the lower layer Lliil is
7-annealing can be prevented, carrier reduction can be avoided even once, and furthermore, the same annealing can be repeated for each layer.
It is possible to omit the return process and time, allowing for efficient three-dimensional LBI shaving.
なお、酸化膜の形成に関しては例えば高圧鹸化処Ilを
採用することにより熱影響を小さくする製造方法も可能
である。Regarding the formation of the oxide film, it is also possible to employ a manufacturing method that reduces thermal effects by employing, for example, high-pressure saponification treatment Il.
添付図面は本発明の方法を実りする工程における多層L
SIの1例の要部を示すM面図である。
1・・・単結晶シリコン基板、2・・・絶縁層。
3・・・層間絶縁膜、4・・・スクライプラインー5・
・・単結晶シリコン層、ぎ・−ポリシリコン層、6・−
ゲート酸化膜、7・・・ゲート電極、I・・・第1層牛
導体装置・
■・・・第2層牛導体装置。
in−・・第3層半導体装置The accompanying drawings show a multilayer L in the process of carrying out the method of the invention.
FIG. 2 is an M-plane view showing a main part of an example of SI. 1... Single crystal silicon substrate, 2... Insulating layer. 3...Interlayer insulating film, 4...Scripe line-5.
・・Single crystal silicon layer, ・−polysilicon layer, 6・−
Gate oxide film, 7...Gate electrode, I...First layer conductor device, ■...Second layer conductor device. in-...Third layer semiconductor device
Claims (1)
成する半導体装置の製造方法において、賦複数の層にそ
れぞれ不純−を4人した後、導入された不純物を活性化
する熱処理を行なうことを特徴とする半導体装置の製造
方法。In a method of manufacturing a semiconductor device in which impurity regions are formed in multiple layers of multilayered semiconductor layers, after impurities are added to each of the multiple layers, heat treatment is performed to activate the introduced impurities. A method for manufacturing a semiconductor device, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15461081A JPS5856327A (en) | 1981-09-29 | 1981-09-29 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15461081A JPS5856327A (en) | 1981-09-29 | 1981-09-29 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5856327A true JPS5856327A (en) | 1983-04-04 |
Family
ID=15587940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15461081A Pending JPS5856327A (en) | 1981-09-29 | 1981-09-29 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5856327A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4554570A (en) * | 1982-06-24 | 1985-11-19 | Rca Corporation | Vertically integrated IGFET device |
JPS6295813A (en) * | 1985-10-23 | 1987-05-02 | Hitachi Ltd | Manufacturing method of semiconductor device |
US4902637A (en) * | 1986-03-03 | 1990-02-20 | Mitsubishi Denki Kabushiki Kaisha | Method for producing a three-dimensional type semiconductor device |
US5670390A (en) * | 1991-12-04 | 1997-09-23 | Mitsubishi Denki Kabushiki Kaisha | Method of making semiconductor device having thin film transistor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5424582A (en) * | 1977-07-27 | 1979-02-23 | Hitachi Ltd | Manufacture for mis semiconductor device |
-
1981
- 1981-09-29 JP JP15461081A patent/JPS5856327A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5424582A (en) * | 1977-07-27 | 1979-02-23 | Hitachi Ltd | Manufacture for mis semiconductor device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4554570A (en) * | 1982-06-24 | 1985-11-19 | Rca Corporation | Vertically integrated IGFET device |
US4566025A (en) * | 1982-06-24 | 1986-01-21 | Rca Corporation | CMOS Structure incorporating vertical IGFETS |
JPS6295813A (en) * | 1985-10-23 | 1987-05-02 | Hitachi Ltd | Manufacturing method of semiconductor device |
US4902637A (en) * | 1986-03-03 | 1990-02-20 | Mitsubishi Denki Kabushiki Kaisha | Method for producing a three-dimensional type semiconductor device |
US5670390A (en) * | 1991-12-04 | 1997-09-23 | Mitsubishi Denki Kabushiki Kaisha | Method of making semiconductor device having thin film transistor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5256894A (en) | Semiconductor device having variable impurity concentration polysilicon layer | |
EP2006894B1 (en) | Method for producing a semiconductor device | |
JPS58115864A (en) | semiconductor equipment | |
US4575466A (en) | Treatment process for semiconductor wafer | |
JPS5856327A (en) | Manufacture of semiconductor device | |
JPS61187274A (en) | Manufacturing method of thin film transistor | |
JPS62293772A (en) | Semiconductor device | |
JPS621269B2 (en) | ||
JPH0193132A (en) | Manufacture of semiconductor device | |
JPH05144730A (en) | Manufacture of semiconductor device | |
JPH0225072A (en) | Manufacture of semiconductor device | |
JPH01238144A (en) | Manufacture of semiconductor device | |
JPS6373566A (en) | Manufacture of nonvolatile semiconductor storage device | |
JPS5810838A (en) | Manufacturing method of semiconductor device | |
JPH01260832A (en) | Manufacture of semiconductor device | |
JPH0795550B2 (en) | Semiconductor device | |
JPS6188543A (en) | Manufacture of semiconductor device | |
JPH01161713A (en) | Manufacture of semiconductor device | |
JPS6221264A (en) | Manufacture of semiconductor device | |
JPS6386426A (en) | Manufacture of compound semiconductor device | |
JPH0272676A (en) | Polycrystalline silicone solar cell element and manufacture thereof | |
JPS5895868A (en) | Manufacturing method of semiconductor device | |
JPH04100219A (en) | Manufacturing method of semiconductor device | |
JPH02224326A (en) | Manufacture of semiconductor device | |
Wallmark et al. | Processing and Technology |