JPS5856033B2 - Coated cemented carbide parts - Google Patents
Coated cemented carbide partsInfo
- Publication number
- JPS5856033B2 JPS5856033B2 JP4261778A JP4261778A JPS5856033B2 JP S5856033 B2 JPS5856033 B2 JP S5856033B2 JP 4261778 A JP4261778 A JP 4261778A JP 4261778 A JP4261778 A JP 4261778A JP S5856033 B2 JPS5856033 B2 JP S5856033B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- cemented carbide
- coated
- base material
- carbonitrides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Chemical Vapour Deposition (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
【発明の詳細な説明】
この発明は、すぐれた耐摩耗性および粘性を有し、切削
工具、特にスローアウェイチップとして使用するのに適
した被覆超硬合金部材に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coated cemented carbide member having excellent wear resistance and viscosity and suitable for use as a cutting tool, particularly as an indexable insert.
従来、周期律表の4a、5a、および6a族の金属の炭
化物、炭窒化物、炭酸化物、および炭酸窒化物のうちの
1種または2種以上からなる硬質相:60〜97重量饅
と、
必要に応じてCr族金属、Sl、およびAllのうちの
1種または2種以上を含有した、Fe族金属のうちの1
種または2種以上および不可避不純物からなる結合相:
3〜40重量φとからなる超硬合金基材の表面に、化学
蒸着法や物理蒸着法によって、上記4a、5a、および
6a族の金属の炭化物、窒化物、炭酸化物、および炭窒
酸化物、並びにAl酸化物、さらにこれら成分の2種以
上の固溶体からなる群のうちの1種からなる単層または
2種以上からなる複層の硬質層を2〜20μmの層厚で
被覆したものからなる被覆超硬合金部材が提案されてお
り、この被覆超硬合金部材は、前記硬質層の形成によっ
て高い耐摩耗性、耐酸化性、および耐拡散摩耗性を有す
るようになり、切削工具寿命も前記硬質層を形成しない
ものに比して2〜10倍も向上したものになるが、一方
前記硬質層の形成によって前記超硬合金基材の靭性が低
下(抗折力で20〜40%の低下)するようになるため
、切削時の高応力により前記硬質層に発生した無数のク
ラックを起点として、前記クラックが前記超硬合金基材
に伝播するようになることから、チッピングや破損が発
生するのを避けることができなかった。Conventionally, a hard phase consisting of one or more of carbides, carbonitrides, carbonates, and carbonitrides of metals in Groups 4a, 5a, and 6a of the periodic table: 60 to 97 wt. One of the Fe group metals, containing one or more of the Cr group metals, Sl, and All as necessary.
Bonded phase consisting of a species or two or more species and unavoidable impurities:
The carbides, nitrides, carbonates, and carbonitrides of metals of the 4a, 5a, and 6a groups are deposited on the surface of a cemented carbide base material having a weight of 3 to 40 φ by chemical vapor deposition or physical vapor deposition. , Al oxide, and a single layer consisting of one type of solid solution of two or more of these components or a multilayer hard layer consisting of two or more types coated with a layer thickness of 2 to 20 μm. A coated cemented carbide member has been proposed, and this coated cemented carbide member has high wear resistance, oxidation resistance, and diffusion wear resistance due to the formation of the hard layer, and has a long cutting tool life. Although the toughness of the cemented carbide base material is improved by 2 to 10 times compared to that without the hard layer, on the other hand, the toughness of the cemented carbide base material decreases (20 to 40% in transverse rupture strength). As a result, the numerous cracks generated in the hard layer due to the high stress during cutting propagate to the cemented carbide base material, resulting in chipping and breakage. I couldn't avoid doing it.
このように上記被覆超硬合金部材は、上記硬質層の形成
によって耐摩耗性が向上したものになるものの、上記超
硬合金基材の靭性が低下するようになることから、その
用途が制限されるのが現状である。Although the coated cemented carbide member has improved wear resistance due to the formation of the hard layer, the toughness of the cemented carbide base material decreases, which limits its use. The current situation is that
この発明は、上述のような観点から、すぐれた耐摩耗性
および粘性を兼ね備え、どのような用途にも適用できる
被覆超硬合金部材を提供するもので
周期律表の4a 、 5a 、および6a族の金属の炭
化物、炭窒化物、炭酸化物、および炭酸窒化物のうちの
1種または2種以上からなる硬質相:60〜97重量係
と、必要に応じてCr族金属、Si、およびAlのうち
の1種または2種以上を含有した、Fe族金属のうちの
1種または2種以上および不可避不純物からなる結合相
:3〜40重量φとからなる既知の超硬合金基材の表面
に、上記4a、5a、および6a族の金属の炭化物、窒
化物、炭酸化物、炭窒化物、および炭窒酸化物、並びに
Al酸化物、さらにこれら成分の2種以上の固溶体から
なる群のうちの1種からなる単層または2種以上からな
る複層の既知の硬質層を被覆することによって耐摩耗性
を付与し、
上記超硬合金基材を、層厚50〜500μmの遊離炭素
を含有しない表層部と、0.01〜05重量φの遊離炭
素を含有する芯部とから構成すると共に、前記表層部に
、内側から前記基材表面に亘って連続的に硬さが10φ
以上低下する軟化層を存在させることによって靭性を付
与した点に特徴を有するものである。From the above-mentioned viewpoint, the present invention provides a coated cemented carbide member that has excellent wear resistance and viscosity and can be applied to any purpose. A hard phase consisting of one or more of carbides, carbonitrides, carbonates, and carbonitrides of metals: 60 to 97% by weight, and optionally Cr group metals, Si, and Al. A binder phase consisting of one or more Fe group metals and unavoidable impurities: 3 to 40 weight φ. , carbides, nitrides, carbonates, carbonitrides, and carbonitrides of metals of Groups 4a, 5a, and 6a, and Al oxides, as well as solid solutions of two or more of these components. Abrasion resistance is imparted by coating a known hard layer of a single layer consisting of one type or a multilayer consisting of two or more types, and the cemented carbide base material is coated with a layer thickness of 50 to 500 μm that does not contain free carbon. It consists of a surface layer part and a core part containing free carbon of 0.01 to 05 weight φ, and the surface layer part has a hardness of 10φ continuous from the inside to the surface of the base material.
It is characterized in that toughness is imparted by the presence of a softened layer that decreases the toughness.
なお、この発明の被覆超硬合金部材の製造において、超
硬合金基材表面への硬質層の被覆形成に際しては、前記
基材中の炭素が前記硬質層へ拡散移動するため、遊離炭
素を含有しない超硬合金基材を用いて硬質層形成を行な
うと、前記硬質層直下の前記基材の表層部には靭性を阻
害する低級炭化物が生成して軟化層を確保することがで
きなくなることから、硬質層形成前の超硬合金基材とし
ては遊離炭素を含有するものを使用し、硬質層形成時に
遊離炭素が硬質層中へ拡散して、前記基材の表層部には
遊離炭素が含有しない状態となるようにして靭性を損害
する低級炭化物の生成を抑制するようにする必要がある
。In the production of the coated cemented carbide member of the present invention, when forming a hard layer on the surface of the cemented carbide base material, carbon in the base material diffuses and moves to the hard layer. If a hard layer is formed using a cemented carbide base material that does not have a hard surface, lower carbides that inhibit toughness will be generated in the surface layer of the base material directly below the hard layer, making it impossible to secure a softened layer. As the cemented carbide base material before forming the hard layer, one containing free carbon is used, and when the hard layer is formed, the free carbon diffuses into the hard layer, and the surface layer of the base material contains free carbon. It is necessary to suppress the formation of lower carbides that impair toughness.
しかしながら、単に遊離炭素を含有する超硬合金基材の
表面に硬質層を形成しても、前記基材の表層部に1a%
以上の硬さくビッカース硬さ)勾配をもった軟化層を形
成することはできないのであって、超硬合金基材の表層
部に、あらかじめ脱炭処理、さらに必要に応じて浸炭処
理を施すことによって軟化層を形成し、しかも遊離炭素
を含有した状態で硬質層の被覆形成を行ない、この結果
として前記基材に、内側から表面に亘って連続的に10
%以上の硬さ低下のある軟化層が存在すると共に、遊離
炭素の含有しない表層部が形成されるようになるもので
ある。However, even if a hard layer is simply formed on the surface of a cemented carbide base material containing free carbon, 1a%
It is not possible to form a softened layer with a gradient of hardness (Hardness to Vickers Hardness), but it is necessary to decarburize the surface layer of the cemented carbide base material in advance and carburize it if necessary. A hard layer is formed in a state in which a soft layer is formed and also contains free carbon, and as a result, the base material is coated with 10% of the hard layer continuously from the inside to the surface.
% or more of hardness is present, and a surface layer portion containing no free carbon is formed.
ついで、この発明の被覆超硬合金部材において、表層部
の層厚、芯部の遊離炭素含有量、および軟化層における
連続的硬さ勾配を上述のように限定した理由を説明する
。Next, in the coated cemented carbide member of the present invention, the reason why the layer thickness of the surface layer, the free carbon content of the core, and the continuous hardness gradient in the softened layer are limited as described above will be explained.
(a) 表層部の層厚
その層厚が50μm未満では、所望の靭性を確保するこ
とができず、したがって切削時にチッピングや破損が発
生するようになり、一方500μmを越えた層厚にする
と、強度が劣化するようになることから、その層厚を5
0〜500μmと定めた。(a) Layer thickness of the surface layer If the layer thickness is less than 50 μm, the desired toughness cannot be secured, and therefore chipping or damage will occur during cutting. On the other hand, if the layer thickness exceeds 500 μm, Since the strength will deteriorate, the layer thickness will be reduced to 5.
It was determined to be 0 to 500 μm.
(b) 芯部の遊離炭素含有量
その含有量が0.01φ未満では所望の強度を芯部に確
保することができず、一方0.5 %を越えて含有させ
ると芯部の靭性が低下するようになることから、その含
有量を0.01〜0.5%と定めた。(b) Free carbon content in the core If the content is less than 0.01φ, the desired strength cannot be secured in the core, while if the content exceeds 0.5%, the toughness of the core decreases. Therefore, its content was determined to be 0.01 to 0.5%.
(c) 軟化層における連続的硬さ勾配工具として使
用した時に表層部に発生したクラックの伝播を防止する
ために(ま、靭性が高く、硬さの低い軟化層を設ける必
要があるが、その連続的硬さ勾配が10%未満では、芯
部と軟化層が明確に区分される境界を持ったり、あるい
は軟化層内部に硬さ勾配のうねりを持つようになり、そ
の境界部や勾配の変異点ではかえってハクリや内部クラ
ックなどの発生が起って好ましくないことから、その芯
部側から基材表面に亘って連続的に硬さをビッカース硬
さで10饅以上低下させる必要がある。(c) Continuous hardness gradient in the softened layer In order to prevent the propagation of cracks that occur in the surface layer when used as a tool (well, it is necessary to provide a softened layer with high toughness and low hardness, If the continuous hardness gradient is less than 10%, the core and the softened layer will have a clear boundary, or the softened layer will have undulations with a hardness gradient, and variations in the boundary and gradient will occur. Since peeling and internal cracks may occur at points, which is undesirable, it is necessary to continuously reduce the hardness by at least 10 Vickers hardness from the core side to the surface of the base material.
つぎに、この発明の被覆超硬合金部材を実施例により説
明する。Next, the coated cemented carbide member of the present invention will be explained using examples.
実施例 1
遊離炭素:0.1重量幅を含有したWC−6%Coの組
成をもち、さらにチップ形状:CIS。Example 1 Free carbon: Has a composition of WC-6% Co containing 0.1 weight range, and further has a chip shape: CIS.
SNMN432をもった超硬合金基材:20個を通常の
粉末冶金法によって製造した。Cemented carbide substrates with SNMN432: 20 pieces were produced by conventional powder metallurgy methods.
ついで、上記基材のうち15個を炉内に装入し、H2−
H20混合ガスを使用し、温度10000Cに5時間保
持の脱炭処理を施した。Next, 15 of the above base materials were charged into the furnace and heated to H2-
Decarburization treatment was performed using H20 mixed gas and maintaining the temperature at 10,000C for 5 hours.
この結果得られた表面脱炭基材の表層部をX線回折によ
り分析したところ層厚50μmに亘ってW3Co3C9
W2C9およびWのピークが強く現わされた軟化層の存
在が確認された。When the surface layer of the resulting surface-decarburized base material was analyzed by X-ray diffraction, W3Co3C9 was observed over a layer thickness of 50 μm.
The existence of a softened layer in which W2C9 and W peaks appeared strongly was confirmed.
つぎに、上記表面脱炭基材の5個づつに、それぞれ温度
1200°C,1250℃、および1300°Cに加熱
し、H2−5%CH4混合ガスを使用し、3時間保持の
浸炭処理を施して上記軟化層に遊離炭素をそれぞれ0.
01%、0.05%、および0.5%含*1有させた後
、
反応温度:1000℃、
炉内圧カニ100關Hg。Next, five of the surface-decarburized substrates were heated to 1200°C, 1250°C, and 1300°C, respectively, and carburized using a H2-5% CH4 mixed gas for 3 hours. to add 0.0% free carbon to the softened layer.
After containing 01%, 0.05%, and 0.5% *1, reaction temperature: 1000°C, furnace internal pressure 100Hg.
反応ガス組成:96φH2−2φTi(J!4−2係C
H4、
反応時間:2時間、
の条件でTiCからなる硬質層を前記基材表面に被覆形
成して本発明被覆超硬合金部材(以下本発明被覆部材と
いう)1〜3を製造した。Reaction gas composition: 96φH2-2φTi (J!4-2 section C
H4, reaction time: 2 hours, a hard layer made of TiC was coated on the surface of the base material to produce coated cemented carbide members of the present invention (hereinafter referred to as coated members of the present invention) 1 to 3.
ノ なお、比較の目的で、上記基材のうちの残りの5
個に対しては、直接に上記条件で硬質層を形成して、比
較被覆超硬合金部材(以下比較被覆部材という)1を製
造した。For the purpose of comparison, the remaining 5 of the above base materials
A hard layer was directly formed on the sample under the above conditions to produce a comparative coated cemented carbide member (hereinafter referred to as a comparative coated member) 1.
上記本発明被覆部材1〜3および上記比較被覆デ部材1
の特性(5個の平均値)を第1表に示した。The above-mentioned coated members 1 to 3 of the present invention and the above-mentioned comparative coated member 1
The characteristics (average values of 5) are shown in Table 1.
第1表に示されるように、本発明被覆部材および比較被
覆部材のいずれにも遊離炭素を含有しない表層部が形成
されているが、前記本発明被覆部材においでは、前記表
層部の硬さ、特に基材表面の硬さが基材芯部に比して1
0%以上低下したものになっており、軟化層が存在して
いるのに対して、前記比較被覆部材においては、基材表
面硬さと基材芯部硬さとにほとんど差がなく、軟化層が
存在していないことがわかる。As shown in Table 1, both the coated member of the present invention and the comparative coated member have a surface layer portion that does not contain free carbon, but in the coated member of the present invention, the hardness of the surface layer portion, In particular, the hardness of the base material surface is 1 compared to the base material core.
In contrast, in the comparative coated member, there is almost no difference between the base material surface hardness and the base material core hardness, and the softened layer is present. Turns out it doesn't exist.
ついで、上記本発明被覆部材1〜3および比較被覆部材
1について、
被削材: JIs、SNCM−8角材(硬さHB:30
0)、切削速度:100m/mjn、
送り: 0.35mm/rev、
切込み:2mm、
の条件で断続切削試験を行ない、欠損までの時間を測定
した。Next, regarding the above-mentioned coated members 1 to 3 of the present invention and comparison coated member 1, work material: JIs, SNCM-8 square material (hardness HB: 30
An interrupted cutting test was conducted under the following conditions: cutting speed: 100 m/mjn, feed: 0.35 mm/rev, depth of cut: 2 mm, and the time until breakage was measured.
第2表に測定結果(5個の平均値)を示した。Table 2 shows the measurement results (average of 5 measurements).
第2表に示されるように、基材表層部に軟化層が存在す
る本発明被覆部材1〜3はいずれも、軟化層が存在しな
い比較被覆部材1に比して著しくすぐれた切削特性をも
つことが明らかである。As shown in Table 2, coated members 1 to 3 of the present invention in which a softening layer is present on the surface layer of the base material all have significantly superior cutting properties compared to comparative coated member 1 in which a softening layer is not present. That is clear.
実施例 2
遊離炭素:0.15重重量型含有したWC−8%Coの
組成をもち、さらにチップ形状: CIS 。Example 2 The composition was WC-8% Co containing 0.15% free carbon, and the chip shape was CIS.
SNMN432をもった超硬合金基材:20個を通常の
粉末冶金法によって製造した。Cemented carbide substrates with SNMN432: 20 pieces were produced by conventional powder metallurgy methods.
ついで、上記基材のうち10個を炉内に装入し、H2−
CO2混合ガスを使用し、温度800°Cに3時間保持
の酸化脱炭処理を施して前記基材の表層部に層厚30μ
mの脱炭軟化層を形成した後、0続いて真空中、温度1
400℃に1時間加熱して前記軟化層に芯部の炭素を拡
散させて0.01重量φの遊離炭素を含有させ、引続い
て、
反応温度:1000°C1
炉内圧カニ 100mvtH&、
反応ガス組成:67%H2−2%TiC141咎CH4
−30%N2、
反応時間:2時間、
の条件でTlCo、2No、8からなる硬質層を被覆し
て本発明被覆部材4を制造した。Then, 10 of the above base materials were charged into the furnace and heated to H2-
Using CO2 mixed gas, oxidation decarburization treatment was performed at a temperature of 800°C for 3 hours to form a layer thickness of 30μ on the surface layer of the base material.
After forming a decarburized softening layer of 0 m, followed by a temperature of 1 in vacuum.
The core carbon is diffused into the softened layer by heating at 400°C for 1 hour to contain 0.01 weight φ of free carbon, and then: Reaction temperature: 1000°C1 Furnace pressure 100 mvtH & Reaction gas composition :67%H2-2%TiC141CH4
A hard layer consisting of TlCo, 2No, and 8 was coated under the following conditions: -30% N2, reaction time: 2 hours, and the coated member 4 of the present invention was manufactured.
なお、比較の目的で、上記基材のうちの残りの10個に
対しては、上記の酸化脱炭および遊離炭素形成処理を行
なうことなく、直接に上記条件で硬質層を形成して比較
被覆部材2を製造した。For the purpose of comparison, the remaining 10 of the above substrates were coated with a hard layer directly under the above conditions without being subjected to the above oxidation decarburization and free carbon formation treatment. Part 2 was manufactured.
上記本発明被覆部材4および比較被覆部材2の特性(1
0個の平均値)を第3表に示した。Characteristics of the above-mentioned coated member 4 of the present invention and comparative coated member 2 (1
0 average values) are shown in Table 3.
第3表に示される結果から明らかなように、実施例2の
場合も実施例1における場合と同様な結果を示している
。As is clear from the results shown in Table 3, the results of Example 2 are similar to those of Example 1.
ついで、上記本発明被覆部材4および比較被覆部材2の
各10個について、
被削材:JIS、SNCM−8角材(硬さHB:300
)、切削速度:80m/m1n1
送り: 0.45mm/rev、
切込み:2鼎、
の条件で断続切削試験を行なったところ、上記比較被覆
部材2はすべて10回以内で破損したのに対して、上記
本発明被覆部材4は、すべてが1000回でも破損せず
、すぐれた切削特性を示した。Next, for each 10 pieces of the above-mentioned coated member 4 of the present invention and comparison coated member 2, the following was carried out: Work material: JIS, SNCM-8 square material (hardness HB: 300
), Cutting speed: 80m/m1n1 Feed: 0.45mm/rev, Depth of cut: 2 cuts, When an interrupted cutting test was conducted under the following conditions, the comparative coated member 2 was all damaged within 10 times, whereas All of the coated members 4 of the present invention did not break even after being cut 1000 times, and exhibited excellent cutting characteristics.
上述のように、この発明の被覆超硬合金部材は、超硬合
金基材の遊離炭素を含有しない表層部に軟化層を有し、
しかも前記軟化層は硬質層直下において最も軟質な状態
となっているので、切削中に前記硬質層に生じたクラッ
クが前記軟化層の存在によって超硬合金基材内部に伝播
することがなく、したがってチッピングや欠損の発生が
ほとんど皆無になると共に、広範囲に亘る用途にも使用
可能であるなど工業上有用な特性を有するものである。As mentioned above, the coated cemented carbide member of the present invention has a softened layer in the surface layer portion that does not contain free carbon of the cemented carbide base material,
Moreover, since the softened layer is in its softest state immediately below the hard layer, cracks generated in the hard layer during cutting will not propagate inside the cemented carbide base material due to the presence of the softened layer. It has industrially useful properties such as almost no occurrence of chipping or defects and can be used in a wide range of applications.
Claims (1)
の炭化物、炭窒化物、炭酸化物、および炭酸窒化物のう
ちの1種または2種以上からなる硬質相:60〜97重
量ダと、 必要に応じてCr族金鳳Si 、およびAlのうちの1
種または2種以上を含有した、Fe族金属のうちの1種
または2種以上および不可避不純物からなる結合相:3
〜40重量優と、 からなる超硬合金基材の表面に、 上記4a、5a、および6a族の金属の炭化物、窒化物
、炭酸化物、炭窒化物、および炭窒酸化物、並びにAl
酸化物、さらにこれら成分の2種以上の固溶体からなる
群のうちの1種からなる単層または2種以上からなる複
層の硬質層を被覆したものからなる被覆超硬合金部材に
おいて、 上記超硬合金基材は、層厚50〜500μmの遊離炭素
を含有しない表層部と、0.01〜0.5重量優の遊離
炭素を含有する芯部とからなり、しかも前記表層部には
、内側から上記基材表面に亘って連続的に硬さが1a%
以上低下する軟化層が存在することを特徴とする被覆超
硬合金部材。[Scope of Claims] 1. A hard phase consisting of one or more types of carbides, carbonitrides, carbonates, and carbonitrides of metals in Groups 4a, 5a, and 6a of the periodic table: 60-60 97 weight Da, Cr group metal Si, and one of Al as necessary.
Binding phase consisting of one or more Fe group metals and unavoidable impurities: 3
~40% by weight, carbides, nitrides, carbonates, carbonitrides, and carbonitrides of the metals of groups 4a, 5a, and 6a, and Al
In a coated cemented carbide member which is coated with a single layer or a multi-layer hard layer made of an oxide and a solid solution of two or more of these components, The hard metal base material is composed of a surface layer that does not contain free carbon and has a layer thickness of 50 to 500 μm, and a core that contains free carbon in an amount of 0.01 to 0.5% by weight. The hardness is 1a% continuously over the surface of the base material.
A coated cemented carbide member characterized in that there is a softening layer that reduces the softening of the material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4261778A JPS5856033B2 (en) | 1978-04-13 | 1978-04-13 | Coated cemented carbide parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4261778A JPS5856033B2 (en) | 1978-04-13 | 1978-04-13 | Coated cemented carbide parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54134719A JPS54134719A (en) | 1979-10-19 |
JPS5856033B2 true JPS5856033B2 (en) | 1983-12-13 |
Family
ID=12640972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4261778A Expired JPS5856033B2 (en) | 1978-04-13 | 1978-04-13 | Coated cemented carbide parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5856033B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4454205A (en) * | 1981-10-09 | 1984-06-12 | Esco Corporation | Method of drill bit manufacture and product |
US4568614A (en) * | 1984-06-27 | 1986-02-04 | Energy Conversion Devices, Inc. | Steel article having a disordered silicon oxide coating thereon and method of preparing the coating |
JPH01287245A (en) * | 1988-05-12 | 1989-11-17 | Toshiba Tungaloy Co Ltd | Surface heat-treated sintered alloy, its manufacture and coated surface heat-treated sintered alloy with hard film |
JP5978671B2 (en) * | 2012-03-15 | 2016-08-24 | 住友電気工業株式会社 | Replaceable cutting edge |
-
1978
- 1978-04-13 JP JP4261778A patent/JPS5856033B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS54134719A (en) | 1979-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4497874A (en) | Coated carbide cutting tool insert | |
KR910003480B1 (en) | Surface Modified Sintered Alloy and Manufacturing Method Thereof | |
US4578087A (en) | Nitride based cutting tool and method for producing the same | |
JPH07103468B2 (en) | Coated cemented carbide and method for producing the same | |
JP4731645B2 (en) | Cemented carbide and coated cemented carbide and method for producing the same | |
JPS6117909B2 (en) | ||
JPS5952703B2 (en) | Surface coated cemented carbide parts | |
JPS5856033B2 (en) | Coated cemented carbide parts | |
JPH1121651A (en) | Cutting tool made of surface coated cemented carbide, excellent in thermal shock resistance | |
JPS586969A (en) | Surface coated cemented carbide parts for cutting tools | |
JPS5822374A (en) | Surface coated high speed steel member | |
JPH05222551A (en) | Manufacture of coated cermet cutting tool | |
JPH02190403A (en) | Production of cutting tool made of surface-coated tungsten carbide-based sintered hard alloy | |
JPS5853065B2 (en) | Nisouhifukukoshitsubutsutai | |
JPH0122344B2 (en) | ||
JPS60187678A (en) | Coated sintered alloy tool | |
JPS61110771A (en) | Surface covered sintered hard alloy | |
JPS6119777A (en) | Wear-resistant and heat-resistant coated cemented carbide parts | |
JPS6343453B2 (en) | ||
JP2648718B2 (en) | Manufacturing method of coated cemented carbide tool | |
JPS59153862A (en) | Tungsten carbide-based cemented carbide member for cutting tools and its manufacturing method | |
JPS62105628A (en) | High-tenacity coated cemented carbide and manufacture thereof | |
JPH0387368A (en) | Coated sintered hard alloy tool | |
JPH0258336B2 (en) | ||
JPS60174876A (en) | Manufacture of coated cutting tool |