[go: up one dir, main page]

JPH05222551A - Manufacture of coated cermet cutting tool - Google Patents

Manufacture of coated cermet cutting tool

Info

Publication number
JPH05222551A
JPH05222551A JP5668492A JP5668492A JPH05222551A JP H05222551 A JPH05222551 A JP H05222551A JP 5668492 A JP5668492 A JP 5668492A JP 5668492 A JP5668492 A JP 5668492A JP H05222551 A JPH05222551 A JP H05222551A
Authority
JP
Japan
Prior art keywords
vapor deposition
layer
cutting tool
carbonitrides
lower layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5668492A
Other languages
Japanese (ja)
Inventor
Katsuya Uchino
克哉 内野
Masuo Nakado
益男 中堂
Akinori Kobayashi
晄徳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5668492A priority Critical patent/JPH05222551A/en
Publication of JPH05222551A publication Critical patent/JPH05222551A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

(57)【要約】 【目的】 耐欠損性の低下を抑えながら耐摩耗性を大幅
に向上させ、超高速切削にも適した被覆サーメット切削
工具の製造方法を提供する。 【構成】 サーメット母材上に物理的蒸着法によりT
i、Zr、Hfの炭化物、窒化物、炭窒化物など、及び
酸化アルミニウム、窒化チタンアルミニウム、酸窒化チ
タンアルミニウムから選ばれた単層又は複層で膜厚が
0.3μm以上の下層を形成し、該下層の上に化学的蒸
着法により設けたTi、Zr、Hfの炭化物、窒化物、
炭窒化物、ホウ窒化物など、及び酸化アルミニウムから
選ばれた単層又は複層で膜厚が0.5μm以上の上層を
形成し、且つ下層と上層の合計膜厚を15μm以下とす
る被覆サーメット切削工具の製造方法。
(57) [Abstract] [Purpose] To provide a method for manufacturing a coated cermet cutting tool which is capable of significantly improving wear resistance while suppressing deterioration of fracture resistance and is also suitable for ultra-high speed cutting. [Constitution] T was formed on the cermet base material by physical vapor deposition.
i, Zr, Hf carbides, nitrides, carbonitrides, etc., and a single layer or multiple layers selected from aluminum oxide, titanium aluminum nitride, titanium aluminum oxynitride to form a lower layer having a thickness of 0.3 μm or more. A Ti, Zr or Hf carbide or nitride provided on the lower layer by a chemical vapor deposition method,
A coated cermet in which a single layer or multiple layers selected from carbonitride, boronitride, etc., and aluminum oxide forms an upper layer having a thickness of 0.5 μm or more, and the total thickness of the lower layer and the upper layer is 15 μm or less. Manufacturing method of cutting tool.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、サーメットの母材上に
硬質セラミックスからなる硬質被覆層を備えた被覆サー
メット切削工具の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a coated cermet cutting tool having a hard coating layer made of hard ceramics on a base material of a cermet.

【0002】[0002]

【従来の技術】サーメットは、Tiを主とする周期律表
の4A、5A、6A族金属の炭化物、窒化物、炭窒化
物、酸化物などを硬質相とし、これら硬質相を結合する
ための結合相としてFe、Co、Ni、Cr、Mo、
W、Ti、Aiなどの金属を少なくとも1種含むセラミ
ックスと金属の複合焼結体であり、主に切削工具として
鋼や鋳鉄等の仕上げ加工に使用されている。
2. Description of the Related Art Cermet has a hard phase composed of carbides, nitrides, carbonitrides, oxides, etc. of 4A, 5A, and 6A metals in the periodic table mainly containing Ti, and is used to bond these hard phases. Fe, Co, Ni, Cr, Mo as a binder phase,
It is a composite sintered body of ceramics and metal containing at least one kind of metal such as W, Ti and Ai, and is mainly used as a cutting tool for finishing of steel, cast iron and the like.

【0003】近年、切削加工の分野では、高能率化を図
るために切削速度を従来よりも大幅に引き上げる動きが
あり、切削速度500m/min以上の高速切削にも耐
える切削工具が望まれている。これに伴い、切削中にお
ける切削工具の刃先温度は益々高くなる傾向にあるが、
サーメット切削工具においては耐熱強度の不足から、上
記のような高速切削領域では刃先が熱により変形した
り、逃げ面摩耗が促進されるため、工具の寿命が著しく
低下して使用に耐えない。
In recent years, in the field of cutting, there has been a movement to significantly increase the cutting speed as compared with the conventional one in order to achieve high efficiency, and a cutting tool which can endure high-speed cutting at a cutting speed of 500 m / min or more is desired. .. Along with this, the cutting edge temperature of the cutting tool during cutting tends to become higher and higher,
Since the cermet cutting tool lacks heat resistance strength, the cutting edge is deformed by heat and flank wear is accelerated in the above high-speed cutting region, so that the life of the tool is remarkably reduced and it cannot be used.

【0004】この様な状況下でサーメット切削工具の耐
欠損性や耐摩耗性を改善するため、例えば特開平2−4
972号公報等に記載されるごとく、切削工具のサーメ
ット母材の表面に、イオンスパッタリング法等の物理的
蒸着法又はCVD法等の化学的蒸着法のいずれかによ
り、TiC、TiN、TiCNのような硬質セラミック
スの単層又は複層からなる被覆層を形成することが提案
されている。しかしながら、これらの物理的蒸着法又は
化学的蒸着法のいずれかで形成した硬質被覆層を有する
被覆サーメット切削工具においても、前記のような超高
速切削領域ではなお十分な耐摩耗性が得られていない現
状である。
Under these circumstances, in order to improve the fracture resistance and wear resistance of the cermet cutting tool, for example, Japanese Patent Laid-Open No. 2-4
As described in Japanese Patent Publication No. 972 etc., TiC, TiN, TiCN, etc. can be formed on the surface of a cermet base material of a cutting tool by a physical vapor deposition method such as an ion sputtering method or a chemical vapor deposition method such as a CVD method. It has been proposed to form a coating layer consisting of a single layer or multiple layers of different hard ceramics. However, even in a coated cermet cutting tool having a hard coating layer formed by any of these physical vapor deposition methods or chemical vapor deposition methods, sufficient wear resistance is still obtained in the ultra-high speed cutting region as described above. There is no current situation.

【0005】即ち、化学的蒸着法では約1000℃とい
う高温で硬質被覆層を成膜することから、成膜中に母材
のサーメットから結合相の構成成分であるFe、Co、
Niなどが被覆層内に拡散し、その結果被覆層の硬度が
低下し、また成長核の生成時に異常成長が発生して、十
分な耐摩耗性が得られない。一方、物理的蒸着法では約
500〜600℃という比較的低温で成膜できるので、
サーメットの結合相成分が被覆層に拡散することはな
く、従って被覆層の硬度低下や異常成長は見られない
が、物理的蒸着法で形成した硬質被覆層はサーメット母
材との密着強度が不十分なため、十分な耐摩耗性が得ら
れない。
That is, in the chemical vapor deposition method, since the hard coating layer is formed at a high temperature of about 1000 ° C., Fe, Co, which are constituents of the binder phase, from the cermet of the base material, during the film formation.
Ni or the like diffuses into the coating layer, and as a result, the hardness of the coating layer decreases, and abnormal growth occurs when the growth nuclei are generated, so that sufficient wear resistance cannot be obtained. On the other hand, since the physical vapor deposition method can form a film at a relatively low temperature of about 500 to 600 ° C.,
The binder phase component of cermet does not diffuse into the coating layer, and therefore the hardness of the coating layer does not decrease and abnormal growth does not occur, but the hard coating layer formed by physical vapor deposition has a poor adhesion strength with the cermet base material. Since it is sufficient, sufficient abrasion resistance cannot be obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明はかかる従来の
事情に鑑み、サーメットの母材に適切な硬質被覆層を形
成し、耐欠損性の低下を最小限に抑えつつ、耐摩耗性を
従来よりも大幅に向上させることにより、超高速の切削
加工領域にも十分使用できる、被覆サーメット切削工具
の製造方法を提供することを目的とする。
In view of the above conventional circumstances, the present invention forms a suitable hard coating layer on the base material of the cermet to minimize the deterioration of the fracture resistance and at the same time, to improve the wear resistance of the prior art. It is an object of the present invention to provide a method for producing a coated cermet cutting tool, which can be sufficiently used even in an ultrahigh-speed cutting region by making a great improvement.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明によるサーメットからなる母材の表面上に硬
質被覆層を有する被覆サーメット切削工具の製造方法に
おいては;物理的蒸着法により母材の表面に直接Ti、
Zr、Hfの炭化物、窒化物、炭窒化物、炭酸化物、炭
酸窒化物、及び酸化アルミニウム、窒化チタンアルミニ
ウム、酸窒化チタンアルミニウムの少なくとも1種から
選ばれた単層又は複層からなる膜厚が0.3μm以上の
下層を形成し、該下層の上に化学的蒸着法によりTi、
Zr、Hfの炭化物、窒化物、炭窒化物、炭酸化物、炭
酸窒化物、ホウ窒化物、ホウ炭窒化物、及び酸化アルミ
ニウムの少なくとも1種から選ばれた単層又は複層から
なる膜厚が0.5μm以上の上層を形成し、且つ下層と
上層の合計膜厚を15μm以下とすることを特徴とす
る。
In order to achieve the above object, in a method for producing a coated cermet cutting tool having a hard coating layer on the surface of a base material made of cermet according to the present invention, the base material is prepared by a physical vapor deposition method. Ti directly on the surface of
Zr, Hf carbide, nitride, carbonitride, carbon oxide, carbonitride, and a film thickness of a single layer or multiple layers selected from at least one of aluminum oxide, titanium aluminum nitride, titanium aluminum oxynitride A lower layer having a thickness of 0.3 μm or more is formed, and Ti on the lower layer is formed by a chemical vapor deposition method.
A film thickness of a single layer or multiple layers selected from at least one of Zr and Hf carbides, nitrides, carbonitrides, carbon oxides, carbonitrides, boronitrides, borocarbonitrides, and aluminum oxides. It is characterized in that an upper layer of 0.5 μm or more is formed and the total film thickness of the lower layer and the upper layer is 15 μm or less.

【0008】[0008]

【作用】本発明者らは、硬質被覆層の形成方法である物
理的蒸着法と化学的蒸着法のそれぞれの欠点を改善する
ため、硬質被覆層を下層と上層とに分けた各層を、物理
的蒸着法と化学的蒸着法を組み合わせてそれぞれ形成す
ることを種々検討した。その結果、下層を物理的蒸着法
で形成すればサーメットの結合相を構成する金属成分が
硬質被覆層中に拡散することを防止でき、しかも下層の
上に化学的蒸着法で上層を形成することにより、先に物
理的蒸着法で形成した下層が上層形成中に約1000℃
に加熱される結果、当該下層と母材との密着強度が物理
的蒸着法による単独の被覆層に比較して改善向上するこ
とが判明した。
In order to improve the respective drawbacks of the physical vapor deposition method and the chemical vapor deposition method, which are the methods for forming the hard coating layer, the present inventors have made the hard coating layer into a lower layer and an upper layer, and Various studies were conducted on the formation of each by combining the chemical vapor deposition method and the chemical vapor deposition method. As a result, if the lower layer is formed by a physical vapor deposition method, it is possible to prevent the metal components constituting the binder phase of the cermet from diffusing into the hard coating layer, and further form the upper layer by a chemical vapor deposition method on the lower layer. As a result, the lower layer previously formed by the physical vapor deposition method was heated to about 1000 ° C during the formation of the upper layer.
It was found that as a result of the heating, the adhesion strength between the lower layer and the base material is improved and improved as compared with a single coating layer formed by physical vapor deposition.

【0009】従って、本発明における硬質被覆層のう
ち、物理的蒸着法で形成した下層はサーメット母材と強
固に接合し、且つ化学的蒸着法で形成した上層は母材で
あるサーメットの結合相を構成するFe、Co、Ni、
Cr、Mo、Wなど金属成分を含まないので、硬度の低
下や異常な粒成長がない。そのため、本発明方法により
製造した被覆サーメット切削工具は、超高速の切削加工
にも十分耐え得る耐摩耗性を備え、且つ耐欠損性にも優
れている。
Therefore, in the hard coating layer of the present invention, the lower layer formed by the physical vapor deposition method is firmly bonded to the cermet base material, and the upper layer formed by the chemical vapor deposition method is the bonding phase of the cermet base material. Fe, Co, Ni constituting
Since it does not contain metal components such as Cr, Mo and W, there is no decrease in hardness or abnormal grain growth. Therefore, the coated cermet cutting tool manufactured by the method of the present invention has wear resistance sufficient to withstand ultra-high-speed cutting and is also excellent in fracture resistance.

【0010】本発明における硬質被覆層の膜厚につい
て、物理的蒸着法で形成する下層の膜厚が0.3μm未
満か又は化学的蒸着法で形成する上層の膜厚が0.5μ
m未満の場合には共に十分な耐摩耗性が得られず、又下
層と上層の合計膜厚が15μmを越えると耐欠損性の低
下が大きくなる。
Regarding the film thickness of the hard coating layer in the present invention, the film thickness of the lower layer formed by physical vapor deposition is less than 0.3 μm or the film thickness of the upper layer formed by chemical vapor deposition is 0.5 μm.
If it is less than m, sufficient abrasion resistance cannot be obtained, and if the total film thickness of the lower layer and the upper layer exceeds 15 μm, the fracture resistance is greatly reduced.

【0011】又、一般に物理的蒸着法により形成した硬
質被覆層には、1.5〜2.0GPa程度の圧縮応力が残
留するとされている。そこで本発明では、上記のごとく
物理的蒸着法で形成した下層の上に化学的蒸着法で形成
した後、更にその上層の上に物理的蒸着法より最上層を
形成して硬質被覆層全体に圧縮残留応力を与えることに
より、耐欠損性の低下を抑制することが可能である。た
だし、最上層の膜厚が0.3μm未満ではその効果がな
く、5μmを越えると硬質被覆層全体の総膜厚が厚くな
り過ぎ、逆に耐欠損性の低下が見られる。
Further, it is generally said that a compressive stress of about 1.5 to 2.0 GPa remains in the hard coating layer formed by physical vapor deposition. Therefore, in the present invention, after the chemical vapor deposition method is formed on the lower layer formed by the physical vapor deposition method as described above, the uppermost layer is further formed by the physical vapor deposition method on the upper layer to form the entire hard coating layer. By giving the compressive residual stress, it is possible to suppress the decrease in fracture resistance. However, if the film thickness of the uppermost layer is less than 0.3 μm, that effect is not obtained, and if it exceeds 5 μm, the total film thickness of the entire hard coating layer becomes too thick, and conversely the fracture resistance is reduced.

【0012】[0012]

【実施例】型番CNMG432ENGのチップ形状を有
するISO P01のサーメットからなる母材を用意
し、この母材表面に公知の物理的蒸着法により通常の条
件で表1に示す単層又は複層の下層を形成し、この下層
の上に公知の化学的蒸着法により通常の条件で表1に示
す単層又は複層の上層を形成した。更に、そのうち幾つ
かの試料については、上層の上に公知の物理的蒸着法に
より通常の条件で表1に示す単層又は複層の最上層を形
成した。尚、表1の下層、上層及び最上層が複層の場
合、すべて左側の層ほど母材寄りであることを示してい
る。
EXAMPLE A base material made of a cermet of ISO P01 having a chip shape of the model number CNMG432ENG was prepared, and the surface of this base material was formed by a known physical vapor deposition method under the normal conditions under the single layer or multiple layers shown in Table 1. Was formed, and the upper layer of the single layer or the multiple layers shown in Table 1 was formed on this lower layer by a known chemical vapor deposition method under ordinary conditions. Furthermore, for some of the samples, the uppermost layer of the single layer or multiple layers shown in Table 1 was formed on the upper layer by a known physical vapor deposition method under normal conditions. In Table 1, when the lower layer, the upper layer and the uppermost layer are multiple layers, it is indicated that the leftmost layer is closer to the base material.

【0013】[0013]

【表1】 下層と膜厚(μm) 上層と膜厚(μm) 最上層と膜厚(μm)試料 母材側→ →外側→ →最外側 1* なし なし なし 2* TiCN なし なし 3.0 3* TiCN TiC/Al2O3 なし 0.2 2.0 3.0 4* TiCN TiCN なし 0.3 0.4 5* TiC/TiCN TiBCN/Al2O3 なし 2.0 3.0 9.0 2.0 6* TiCN/TiN TiN/TiCN/Al2O3/TiN TiCN 2.0 3.0 2.0 5.0 2.5 0.5 0.2 7* TiN/TiAlN TiN/TiCN/Al2O3/TiN TiAlN 2.0 3.0 1.0 6.0 2.5 0.5 6.0 8 TiCN TiCN/TiC/TiBN/Al2O3 なし 3.0 2.0 3.0 0.5 2.5 9 TiCN TiCN/TiC/TiBN/Al2O3 TiAlN 3.0 2.0 3.0 0.5 2.5 3.0 10 TiAlN Al2O3 なし 0.3 0.5 11 HfC/HfCN/HfN HfN/HfCN/HfBCN/Al2O3/HfN なし 2.0 2.0 1.0 0.5 5.0 0.5 3.0 1.0 12 HfN HfN/HfC/HfCO/HfCNO/Al2O3 なし 5.0 1.0 5.0 1.0 0.5 1.0 13 TiCN/TiC TiC/TiCN/TiCNO/Al2O3 TiN/TiCN 2.0 3.0 3.0 5.0 1.5 0.5 0.1 0.2 14 ZrC/ZrCN/ZrN ZrN/ZrCN/ZrC/ZrCN/ZrN ZrN/ZrCN/ZrC 3.0 1.5 0.5 0.5 2.0 5.0 2.0 0.5 0.5 1.5 3.0 15 TiCN/TiCNO/TiN TiN/TiBCN TiCN/TiN 1.5 0.5 1.0 4.0 4.0 2.5 0.5 16 TiC/TiCO TiCO/TiC/TiCN TiCNO/TiCO/TiC 2.5 0.5 1.0 6.0 1.0 0.5 1.0 1.5 17 HfCN/HfCNO/HfN HfBN/Al2O3/HfN HfN/HfCNO/HfCN 2.0 0.5 0.5 0.5 4.0 3.5 0.5 0.5 2.0 18 HfC/HfCO HfCO/Al2O3/HfN HfN/HfC/HfCO 2.5 0.5 0.5 4.0 3.5 0.5 2.0 0.5 19 ZrC/ZrCO/ZrCNO ZrCNO/ZrCO ZrCO/ZrCNO 2.0 0.5 0.5 4.0 4.0 1.5 1.5 20 Al2O3 ZrN/ZrBN/ZrBCN Al2O3 3.0 4.0 1.0 3.0 3.0 21 TiAlNO Al2O3 TiAlNO 3.0 8.0 3.0 (注)*を付した試料1〜7は比較例である(以下同じ)。[Table 1] Lower layer and film thickness (μm) Upper layer and film thickness (μm) Upper layer and film thickness (μm) Sample base material side → → Outer → → Outermost 1 * None None 2 * TiCN None None 3.0 3 * TiCN TiC / Al 2 O 3 None 0.2 2.0 3.0 4 * TiCN TiCN None 0.3 0.4 5 * TiC / TiCN TiBCN / Al 2 O 3 None 2.0 3.0 9.0 2.0 6 * TiCN / TiN TiN / TiCN / Al 2 O 3 / TiN TiCN 2.0 3.0 2.0 5.0 2.5 0.5 0.2 7 * TiN / TiAlN TiN / TiCN / Al 2 O 3 / TiN TiAlN 2.0 3.0 1.0 6.0 2.5 0.5 6.0 8 TiCN TiCN / TiC / TiBN / Al 2 O 3 None 3.0 2.0 3.0 0.5 2.5 9 TiCN TiCN / TiC / TiBN / Al 2 O 3 TiAlN 3.0 2.0 3.0 0.5 2.5 3.0 10 TiAlN Al 2 O 3 None 0.3 0.5 11 HfC / HfCN / HfN HfN / HfCN / HfBCN / Al 2 O 3 / HfN None 2.0 2.0 1.0 0.5 5.0 0.5 3.0 1.0 12 HfN HfN / HfC / HfCO / HfCNO / Al 2 O 3 None 5.0 1.0 5.0 1.0 0.5 1.0 13 TiCN / TiC TiC / TiCN / TiCNO / Al 2 O 3 TiN / TiCN 2.0 3.0 3.0 5.0 1.5 0.5 0.1 0.2 14 ZrC / ZrCN / ZrN ZrN / ZrCN / ZrC / ZrCN / ZrN ZrN / ZrCN / ZrC 3.0 1.5 0.5 0.5 2.0 5.0 2.0 0.5 0.5 1.5 3.0 15 TiCN / T iCNO / TiN TiN / TiBCN TiCN / TiN 1.5 0.5 1.0 4.0 4.0 2.5 0.5 16 TiC / TiCO TiCO / TiC / TiCN TiCNO / TiCO / TiC 2.5 0.5 1.0 6.0 1.0 0.5 1.0 1.5 17 HfCN / HfCNO / HfN HfBN / Al 2 O 3 / HfN HfN / HfCNO / HfCN 2.0 0.5 0.5 0.5 4.0 3.5 0.5 0.5 2.0 18 HfC / HfCO HfCO / Al 2 O 3 / HfN HfN / HfC / HfCO 2.5 0.5 0.5 4.0 3.5 0.5 2.0 0.5 19 ZrC / ZrCO / ZrCNO ZrCNO / ZrCO ZrCO / ZrCNO 2.0 0.5 0.5 4.0 4.0 1.5 1.5 20 Al 2 O 3 ZrN / ZrBN / ZrBCN Al 2 O 3 3.0 4.0 1.0 3.0 3.0 21 TiAlNO Al 2 O 3 TiAlNO 3.0 8.0 3.0 (Note) Samples 1 to 7 marked with * Is a comparative example (hereinafter the same).

【0014】得られた被覆サーメット切削工具の各試料
を用いて、下記切削条件による切削試験を行って切削性
能をそれぞれ評価し、結果を表2に示した。耐摩耗性 被 削 材: S45C 切削速度: 500m/min. 送 り: 0.3mm/rev. 切 込 み: 0.5mm 切 削 油: 湿式 寿命判定: 逃げ面摩耗量0.2mmとなるまでの時間
(分)耐欠損性 被 削 材: S45C溝付き材(外周上等間隔に長手方
向の溝4本) 切削速度: 200m/min. 送 り: 0.2mm/rev. 切 込 み: 1.0mm 切 削 油: 湿式 評価判定: チッピング発生率
Using each of the samples of the obtained coated cermet cutting tool, a cutting test was conducted under the following cutting conditions to evaluate the cutting performance, and the results are shown in Table 2. Wear resistance Work material: S45C Cutting speed: 500 m / min. Delivery: 0.3 mm / rev. Depth of cut: 0.5 mm Cutting oil: Wet life judgment: Time until flank wear amount reaches 0.2 mm (minutes) Defect resistance Work material: S45C grooved material (equal to the outer circumference in the longitudinal direction) 4 grooves) Cutting speed: 200 m / min. Delivery: 0.2 mm / rev. Depth of cut: 1.0 mm Cutting oil: Wet Evaluation judgment: Chipping occurrence rate

【0015】[0015]

【表2】試料 耐摩耗性(分) 欠損率(%) 1* 5 30 2* 18 45 3* 16 45 4* 18 40 5* 40 90 6* 33 90 7* 48 90 8 30 55 9 35 40 10 28 40 11 40 70 12 35 60 13 35 70 14 45 70 15 30 38 16 33 38 17 38 43 18 39 43 19 35 40 20 40 43 21 42 45[Table 2] Sample wear resistance (min) Defect rate (%) 1 * 5 30 2 * 18 45 3 * 16 45 4 * 18 40 5 * 40 90 6 * 33 90 7 * 48 90 8 30 55 9 35 40 10 28 40 11 40 70 12 35 60 13 35 70 14 45 70 15 30 38 16 33 38 17 38 43 18 39 43 19 35 40 20 40 43 21 42 45

【0016】表1及び表2の結果から、硬質被覆層のな
い試料1及び物理的蒸着法による下層のみを被覆した試
料2は共に超高速切削での耐摩耗性が極めて悪く、また
物理的蒸着法による下層と化学的蒸着法による上層で被
覆した試料でも、下層又は上層の膜厚が薄すぎる試料3
及び4では耐摩耗性に劣り、逆に膜厚が厚すぎる試料5
では耐欠損性に劣ることが解る。試料6及び7は下層と
上層の上に物理的蒸着法により最上層を設けてあるが、
その膜厚が厚すぎるので耐欠損性に劣る。
From the results shown in Tables 1 and 2, both the sample 1 without the hard coating layer and the sample 2 coated with only the lower layer by the physical vapor deposition method have extremely poor wear resistance in ultra-high speed cutting and physical vapor deposition. Even if the sample is covered with the lower layer by chemical vapor deposition and the upper layer by chemical vapor deposition, the thickness of the lower or upper layer is too thin Sample 3
Sample Nos. 5 and 4 are inferior in wear resistance and the film thickness is too thick.
Then, it is understood that the fracture resistance is poor. In Samples 6 and 7, the uppermost layer was provided on the lower layer and the upper layer by physical vapor deposition,
Since the film thickness is too thick, the chipping resistance is poor.

【0017】これに対して、本発明の試料8〜21はい
ずれも耐摩耗性と耐欠損性の両方に優れていることが解
る。特に、物理的蒸着法による下層のみの試料2とその
上に化学的蒸着法による上層を設けた試料8を比較する
と、本発明によるこれら2層を積層したことによる効果
が明白である。又、試料8と9の比較、及び試料6、7
と試料13、14の比較から、物理的蒸着法により厚さ
0.3〜5μmの最上層を設けることで、耐欠損性が更
に改善されることが解る。
On the other hand, it is understood that the samples 8 to 21 of the present invention are excellent in both wear resistance and fracture resistance. In particular, comparing the sample 2 having only the lower layer formed by the physical vapor deposition method with the sample 8 having the upper layer formed by the chemical vapor deposition method thereon, the effect of stacking these two layers according to the present invention is clear. Also, a comparison of Samples 8 and 9 and Samples 6 and 7
From the comparison between Samples 13 and 14, it is understood that the fracture resistance is further improved by providing the uppermost layer having a thickness of 0.3 to 5 μm by the physical vapor deposition method.

【0018】[0018]

【発明の効果】本発明によれば、サーメット母材への硬
質被覆層として、物理的蒸着法により下層を形成し、こ
の下層の上に化学的蒸着法により上層を積層することに
より、母材への密着強度に優れ且つ母材のサーメットか
ら結合相金属の拡散のない硬質被覆層が得られるので、
超高速の切削領域においても十分な耐摩耗性を有すると
同時に耐欠損性にも優れた被覆サーメット切削工具を提
供することが出来る。
According to the present invention, as a hard coating layer on a cermet base material, a lower layer is formed by a physical vapor deposition method, and an upper layer is laminated on the lower layer by a chemical vapor deposition method to form a base material. Since a hard coating layer that has excellent adhesion strength to and does not diffuse the binder phase metal from the base material cermet,
It is possible to provide a coated cermet cutting tool which has sufficient wear resistance even in an ultra-high speed cutting region and at the same time has excellent fracture resistance.

【0019】又、上記の上層の上に、更に物理的蒸着法
により最上層を設ければ、硬質被覆層に残留圧縮応力を
与えることができるので、前記下層と上層の膜厚が比較
的厚い場合であっても、耐欠損性の低下を有効に抑制す
ることが可能である。
If the uppermost layer is further provided on the upper layer by a physical vapor deposition method, residual compressive stress can be applied to the hard coating layer, so that the lower layer and the upper layer are relatively thick. Even in this case, it is possible to effectively suppress the decrease in fracture resistance.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 サーメットからなる母材の表面上に硬質
被覆層を有する被覆サーメット切削工具の製造方法にお
いて;物理的蒸着法により母材の表面に直接Ti、Z
r、Hfの炭化物、窒化物、炭窒化物、炭酸化物、炭酸
窒化物、及び酸化アルミニウム、窒化チタンアルミニウ
ム、酸窒化チタンアルミニウムの少なくとも1種から選
ばれた単層又は複層からなる膜厚が0.3μm以上の下
層を形成し、該下層の上に化学的蒸着法によりTi、Z
r、Hfの炭化物、窒化物、炭窒化物、炭酸化物、炭酸
窒化物、ホウ窒化物、ホウ炭窒化物、及び酸化アルミニ
ウムの少なくとも1種から選ばれた単層又は複層からな
る膜厚が0.5μm以上の上層を形成し、且つ下層と上
層の合計膜厚を15μm以下とすることを特徴とする被
覆サーメット切削工具の製造方法。
1. A method for producing a coated cermet cutting tool having a hard coating layer on the surface of a base material made of cermet; Ti, Z directly on the surface of the base material by a physical vapor deposition method.
The film thickness of a single layer or multiple layers selected from at least one of carbides, nitrides, carbonitrides, carbon oxides, carbonitrides of r and Hf, and aluminum oxide, titanium aluminum nitride, and titanium aluminum oxynitride. A lower layer having a thickness of 0.3 μm or more is formed, and Ti, Z is formed on the lower layer by a chemical vapor deposition method.
The film thickness of a single layer or multiple layers selected from at least one of carbides, nitrides, carbonitrides, carbon oxides, carbonitrides, boronitrides, and borocarbonitrides of r and Hf. A method for producing a coated cermet cutting tool, which comprises forming an upper layer having a thickness of 0.5 μm or more and making a total film thickness of the lower layer and the upper layer 15 μm or less.
【請求項2】 前記化学的蒸着法により設けた上層が、
母材であるサーメットの結合相を構成する金属成分を含
まないことを特徴とする、請求項1記載の被覆サーメッ
ト切削工具の製造方法。
2. The upper layer provided by the chemical vapor deposition method,
The method for producing a coated cermet cutting tool according to claim 1, wherein a metal component constituting a binder phase of the base material cermet is not included.
【請求項3】 請求項1記載の方法で製造した被覆サー
メット切削工具の前記上層の上に、物理的蒸着法により
Ti、Zr、Hfの炭化物、窒化物、炭窒化物、炭酸化
物、炭酸窒化物、及び酸化アルミニウム、窒化チタンア
ルミニウム、酸窒化チタンアルミニウムの少なくとも1
種から選ばれた単層又は複層からなる膜厚が0.3〜5
μmの最上層を形成することを特徴とする被覆サーメッ
ト切削工具の製造方法。
3. Ti, Zr, Hf carbides, nitrides, carbonitrides, carbonates, carbonitrides by physical vapor deposition on the upper layer of the coated cermet cutting tool produced by the method of claim 1. And at least one of aluminum oxide, titanium aluminum nitride, and titanium aluminum oxynitride.
The film thickness consisting of a single layer or multiple layers selected from seeds is 0.3 to 5
A method for manufacturing a coated cermet cutting tool, which comprises forming an uppermost layer of μm.
JP5668492A 1992-02-07 1992-02-07 Manufacture of coated cermet cutting tool Pending JPH05222551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5668492A JPH05222551A (en) 1992-02-07 1992-02-07 Manufacture of coated cermet cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5668492A JPH05222551A (en) 1992-02-07 1992-02-07 Manufacture of coated cermet cutting tool

Publications (1)

Publication Number Publication Date
JPH05222551A true JPH05222551A (en) 1993-08-31

Family

ID=13034265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5668492A Pending JPH05222551A (en) 1992-02-07 1992-02-07 Manufacture of coated cermet cutting tool

Country Status (1)

Country Link
JP (1) JPH05222551A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1266980A2 (en) * 2001-06-11 2002-12-18 Mitsubishi Materials Corporation Surface-coated carbide alloy tool
US7413591B2 (en) 2002-12-24 2008-08-19 Kyocera Corporation Throw-away tip and cutting tool
JP6641610B1 (en) * 2018-10-10 2020-02-05 住友電工ハードメタル株式会社 Cutting tool and manufacturing method thereof
JP6641611B1 (en) * 2018-10-10 2020-02-05 住友電工ハードメタル株式会社 Cutting tool and manufacturing method thereof
WO2020075356A1 (en) * 2018-10-10 2020-04-16 住友電工ハードメタル株式会社 Cutting tool and manufacturing method therefor
WO2020075355A1 (en) * 2018-10-10 2020-04-16 住友電工ハードメタル株式会社 Cutting tool and manufacturing method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1266980A2 (en) * 2001-06-11 2002-12-18 Mitsubishi Materials Corporation Surface-coated carbide alloy tool
EP1266980A3 (en) * 2001-06-11 2003-03-12 Mitsubishi Materials Corporation Surface-coated carbide alloy tool
US6855405B2 (en) 2001-06-11 2005-02-15 Mitsubishi Materials Corporation Surface-coated carbide alloy tool
CN100425391C (en) * 2001-06-11 2008-10-15 三菱综合材料株式会社 Tools coated with cemented carbides
US7413591B2 (en) 2002-12-24 2008-08-19 Kyocera Corporation Throw-away tip and cutting tool
DE10361321B4 (en) * 2002-12-24 2011-02-24 Kyocera Corp. Disposable tip and method of making same
JP6641610B1 (en) * 2018-10-10 2020-02-05 住友電工ハードメタル株式会社 Cutting tool and manufacturing method thereof
JP6641611B1 (en) * 2018-10-10 2020-02-05 住友電工ハードメタル株式会社 Cutting tool and manufacturing method thereof
WO2020075356A1 (en) * 2018-10-10 2020-04-16 住友電工ハードメタル株式会社 Cutting tool and manufacturing method therefor
WO2020075355A1 (en) * 2018-10-10 2020-04-16 住友電工ハードメタル株式会社 Cutting tool and manufacturing method therefor
EP3865234A4 (en) * 2018-10-10 2022-08-17 Sumitomo Electric Hardmetal Corp. Cutting tool and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US6599062B1 (en) Coated PCBN cutting inserts
US8715838B2 (en) Surface-coated cutting tool
US8137795B2 (en) Indexable insert
US5643658A (en) Coated cemented carbide member
EP0074759A2 (en) Sintered hard metal products having a multi-layer wear-restistant coating
JP3382781B2 (en) Multi-layer coated hard tool
US8968866B2 (en) Surface-coated cutting tool
US9920423B2 (en) Surface-coated cutting tool and process for producing same
JPH09323204A (en) Multilayer coated hard tool
JPH08209337A (en) Coated hard alloy
JP4155641B2 (en) Abrasion resistant coating, method for producing the same, and abrasion resistant member
JP3001849B2 (en) Coated hard tool
US20170356091A1 (en) Multilayer structured coatings for cutting tools
JP3658948B2 (en) Coated cemented carbide
JPH05177413A (en) Coated cermet cutting tool and manufacturing method thereof
JPH05222551A (en) Manufacture of coated cermet cutting tool
JPS6117909B2 (en)
JP2017164859A (en) Surface coated cutting tool with excellent chipping and peeling resistance with excellent hard coating layer
JPH10225804A (en) Surface-coated cemented carbide cutting tool excellent in chipping resistance and manufacture therefor
JPH1121651A (en) Cutting tool made of surface coated cemented carbide, excellent in thermal shock resistance
CN118302560A (en) Cutting tool having hard coating layer excellent in wear resistance and toughness
JPS5826428B2 (en) Coated cemented carbide tools
JP3358696B2 (en) High strength coating
JPH05177412A (en) Coated ceramic cutting tool and manufacturing method thereof
JP3705382B2 (en) Multi-layer hard tool