[go: up one dir, main page]

JPS5852456B2 - Continuous casting method for undeoxidized steel - Google Patents

Continuous casting method for undeoxidized steel

Info

Publication number
JPS5852456B2
JPS5852456B2 JP53135776A JP13577678A JPS5852456B2 JP S5852456 B2 JPS5852456 B2 JP S5852456B2 JP 53135776 A JP53135776 A JP 53135776A JP 13577678 A JP13577678 A JP 13577678A JP S5852456 B2 JPS5852456 B2 JP S5852456B2
Authority
JP
Japan
Prior art keywords
mold
flow
molten steel
steel
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53135776A
Other languages
Japanese (ja)
Other versions
JPS5564953A (en
Inventor
徹郎 大橋
修 北村
博務 藤井
征三 峰雪
栄一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP53135776A priority Critical patent/JPS5852456B2/en
Priority to AU51997/79A priority patent/AU516491B2/en
Priority to CA000338725A priority patent/CA1152723A/en
Priority to DE2944159A priority patent/DE2944159C2/en
Priority to BR7907167A priority patent/BR7907167A/en
Priority to GB7938163A priority patent/GB2034219B/en
Priority to FR7927762A priority patent/FR2440794A1/en
Priority to US06/091,813 priority patent/US4298050A/en
Priority to IT69160/79A priority patent/IT1119408B/en
Publication of JPS5564953A publication Critical patent/JPS5564953A/en
Publication of JPS5852456B2 publication Critical patent/JPS5852456B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Description

【発明の詳細な説明】 本発明はリムド鋼あるいはセミキルド鋼相当のいわゆる
未脱酸鋼の連続鋳造による製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing so-called undeoxidized steel, which is equivalent to rimmed steel or semi-killed steel, by continuous casting.

リムド鋼、セミキルド鋼相当の鋼を連続鋳造で製造する
試みは古くから行なわれているが、操業性ならびに品質
、特に表面気泡欠陥の問題から未だ実用化に至っていな
い。
Attempts have been made to produce steel equivalent to rimmed steel or semi-killed steel by continuous casting for a long time, but it has not yet been put to practical use due to problems with operability and quality, especially surface bubble defects.

現在これらの鋼種に相当するものとしては、過剰のAA
、Siで脱酸したものを連続鋳造に供して鋳造するのが
一般的であるが、これら脱酸に要する合金の使用は連鋳
化の利点を低下させるものとなっている。
The current equivalents of these steel types are excessive AA
, Si deoxidized products are generally cast by subjecting them to continuous casting, but the use of alloys required for these deoxidizations reduces the advantages of continuous casting.

その改善策として、A#、Si等の脱酸剤の使用量の低
下が試行されているが、脱酸剤の使用量の低下にともな
って溶鋼中の自由酸素濃度は増加し、ある一定レベルを
超えるとこの酸素は溶鋼中の炭素と反応し、COガスを
生じ、若干のH2t N2と共にスラブ表面にピンホー
ル欠陥を形成する。
As an improvement measure, attempts have been made to reduce the amount of deoxidizers used, such as A# and Si, but as the amount of deoxidizers used decreases, the free oxygen concentration in molten steel increases and reaches a certain level. This oxygen reacts with the carbon in the molten steel to produce CO gas, which together with some H2tN2 forms pinhole defects on the slab surface.

一方高酸素溶鋼の連鋳化に電磁攪拌を利用し、凝固界面
に生皮する気泡を除去する内容の公知例は幾例かある。
On the other hand, there are several known examples in which electromagnetic stirring is used to continuously cast high-oxygen molten steel to remove air bubbles forming at the solidification interface.

これらの思想は強力な攪拌により凝固界面に発生した気
泡をできるだけ早くはく離、浮上させるとしたものであ
る。
These ideas are based on the idea that air bubbles generated at the solidification interface are peeled off and floated as quickly as possible by strong stirring.

このような物理的気泡除去に要する溶鋼流速は約1.0
m/sec以上であり、この値は例えば特開昭51−
2621号公報で開示されている値とよく一致している
The molten steel flow rate required for such physical bubble removal is approximately 1.0
m/sec or more, and this value is, for example, disclosed in JP-A-51-
This value agrees well with the value disclosed in Japanese Patent No. 2621.

しかし、現在の連鋳操業を考慮してみると、鋳型内潤滑
および溶鋼の湯面温度低下防止、再酸化防止、溶鋼中の
介在物の吸着等の点から鋳型パウダーは必要不可欠であ
るが、鋳型内において1m/sec以上といった強烈な
攪拌溶鋼流が存在する場合、プラスの凝固時にこの鋳型
パウダーを巻き込んで品質欠陥となる危険性が極めて高
い。
However, when considering current continuous casting operations, mold powder is indispensable for lubricating the inside of the mold, preventing the temperature of the molten steel from dropping, preventing re-oxidation, adsorbing inclusions in the molten steel, etc. If there is an intensely stirred molten steel flow of 1 m/sec or more in the mold, there is an extremely high risk that this mold powder will be drawn in during positive solidification, resulting in quality defects.

また巻き込みまでに至らない場合でもパウダーの流れ込
みが不均一となってパウダ一本来の機能が発揮されない
こととなる。
Furthermore, even if it does not reach the point of entrainment, the powder will flow unevenly and the powder will not be able to perform its original function.

電磁攪拌による溶鋼流速を低くした報告例としては、例
えば特開昭50−68915号公報があるが、これは鋳
型下方に鋳造方向に垂直に電磁攪拌装置を設置し溶鋼流
速を0.2〜0.5m/sec以上としたものである。
An example of a report on lowering the flow rate of molten steel by electromagnetic stirring is, for example, Japanese Patent Application Laid-Open No. 1983-68915, which discloses that an electromagnetic stirrer is installed below the mold perpendicular to the casting direction to reduce the flow rate of molten steel by 0.2 to 0. .5 m/sec or more.

しかしながらその下限値は上述の1.0m/SeCに比
べれば低いとはいうものの、その根底思想は成るべく高
い値を指向したものである。
However, although the lower limit value is lower than the above-mentioned 1.0 m/SeC, the underlying idea is to aim for a value as high as possible.

しかも得ようとする溶鋼流は鋳型内湯面に対して垂直の
対流もしくは循環流であることにより、溶鋼流の下限値
を例えば0.5m/secに折角低下させたにもかかわ
らず、実作業上は未だメニスカス上のパウダーの不均一
分布、並びにパウダー流れ込みの不均一、更には巻き込
みといった懸念がある。
Moreover, since the molten steel flow to be obtained is a convection or circulation flow perpendicular to the molten metal surface in the mold, even though the lower limit of the molten steel flow has been lowered to, for example, 0.5 m/sec, it is not practical in actual work. However, there are still concerns about non-uniform distribution of powder on the meniscus, non-uniform powder flow, and even entrainment.

上記の欠点を解消するものとして本願出願人は特願昭5
3−99972号発明を提供した。
In order to eliminate the above-mentioned drawbacks, the applicant filed a patent application in 1973.
No. 3-99972 invention was provided.

これによると鋳型内湯面に、鋳型長辺方向の流れを与え
、後でガス気泡となる気泡様自身の生成を鋳造初期段階
で抑止するため0.1〜0.5m/secといった緩や
かな溶鋼流速にできる。
According to this, the molten steel flows at a gentle flow rate of 0.1 to 0.5 m/sec in order to give a flow in the long side direction of the mold to the surface of the molten metal in the mold, and to suppress the generation of bubbles themselves that later become gas bubbles at the initial stage of casting. Can be done.

このように特願昭53−99972号発明により、気泡
の発生の防止並びに鋳造作業に支障のない最適な流速が
判明した。
As described above, according to the invention of Japanese Patent Application No. 53-99972, an optimum flow rate has been found which prevents the generation of bubbles and does not interfere with casting operations.

しかしながらその後の本発明者らの実験、研究結果によ
ると、上記の流速以外に他の条件をも整えればより安定
的に未脱酸鋼の連鋳化が行なえることが判明した。
However, subsequent experiments and research results by the present inventors revealed that undeoxidized steel could be continuously cast more stably if other conditions were set in addition to the above flow rate.

すなわち、上記の流速の攪拌流を得る例として例えば鋳
型内溶鋼湯面に対して垂直の循環流パターンを採用した
場合に欠配する欠点が生じる。
That is, when, for example, a circulating flow pattern perpendicular to the surface of the molten steel in the mold is adopted as an example of obtaining the stirring flow at the above-mentioned flow rate, a disadvantage arises.

第1図に上記の攪拌パターンの水モデル実験結果を模型
的に示すが、この実験結果に示すように、鋳型内溶鋼湯
面1に対して垂直の循環流であると、この溶鋼流2が湯
面に到達した場合、湯面1全体にわたって均一な所望流
速の溶鋼流を及ぼすことができない。
Figure 1 schematically shows the results of a water model experiment with the above-mentioned stirring pattern.As shown in the experimental results, when the circulating flow is perpendicular to the molten steel surface 1 in the mold, this molten steel flow 2 When the molten steel reaches the molten metal surface, it is not possible to uniformly flow the molten steel at the desired flow rate over the entire molten metal surface 1.

すなわち所望流速の溶鋼流を必ずしも鋳型短辺3部の湯
面にまでも与えることができず、第1図Aに示した部分
に流れの“よどみ部を生じる。
In other words, the molten steel flow at the desired flow rate cannot necessarily be applied to the molten metal surface on the three short sides of the mold, and a stagnation portion of the flow occurs in the portion shown in FIG. 1A.

更に湯面に到達した溶鋼流は浸漬ノズル4に衝突し流速
が低下し反対側の鋳型短辺3部(第1図B部)でもまた
もや6よどみ”′部を生じる。
Furthermore, the molten steel flow that has reached the molten metal surface collides with the immersion nozzle 4, and the flow velocity is reduced, resulting in another 6" stagnation section on the opposite side of the mold on the short side 3 (section B in FIG. 1).

溶鋼流が対流の場合にも同じく両鋳型短辺部ないしは中
央部でも6よどみ′部が生じる。
When the molten steel flow is convection, 6 stagnation areas also occur at the short sides of both molds or at the center.

この現象は上記の攪拌パターンを与えて鋳造した際に、
含有酸素量が多いもの程、両短辺部に表面気泡が出やす
いことから裏付けされる。
This phenomenon occurs when casting with the above stirring pattern.
This is evidenced by the fact that the higher the oxygen content, the more surface bubbles appear on both short sides.

従って、上記第1図の攪拌パターンにより湯面1の鋳型
長辺方向中央部で0.1〜0.5m/secの溶鋼流動
が実現されている場合においても、鋳型の両短辺3部で
は0〜0.1 m/secの場合が存在し、このためこ
の部分では表面気泡が残存し易く、溶鋼中の酸素濃度に
よってはその程度が極めて悪化し、圧延後の成品に表面
疵等の欠陥を生せしめることになる。
Therefore, even if the molten steel flows at a rate of 0.1 to 0.5 m/sec at the center of the mold in the long side direction of the hot water surface 1 according to the stirring pattern shown in Fig. 0 to 0.1 m/sec, and for this reason, surface bubbles tend to remain in this part, and depending on the oxygen concentration in the molten steel, the degree of bubbles may deteriorate significantly, causing defects such as surface scratches on the rolled product. It will give rise to

上記のよどみ部は溶鋼の流速を早めることにより最小限
に抑えることは可能であるが、この場合鋳型長辺方向湯
面中央部での溶鋼流速は可成りな値、例えば1m/Se
C以上にも達し、パウダー5の偏り部Cやパウダー5の
無い部分りができることによるパウダー5の不均一分布
、パウダー流れ込みの不均一、さらにはパウダーの巻き
込みという悪い現象を生ずることになる。
The above-mentioned stagnation area can be minimized by increasing the flow velocity of the molten steel, but in this case, the molten steel flow velocity at the center of the molten metal surface in the longitudinal direction of the mold should be set to a considerable value, for example, 1 m/Se.
C or higher, resulting in uneven distribution of the powder 5 due to uneven portions C of the powder 5 and areas where no powder 5 is present, uneven powder flow, and further, bad phenomena such as powder entrainment.

以上のように先願発明においては、未脱酸鋼の連鋳化を
可能にする最適流速並びにそれを与える位置を安定化せ
しめたが、本発明はその流速を安定的に全体に対して与
える与え方について解明したものである。
As described above, in the prior invention, the optimum flow velocity and the position at which it is applied are stabilized to enable continuous casting of unoxidized steel, but the present invention stably provides the flow velocity throughout the entire body. This explains how to give it.

本発明は上記の先願発明の改良を行ったもので電磁攪拌
装置による未脱酸鋼の連続鋳造化を安定的に可能ならし
める攪拌流の与え方を開発したものである。
The present invention is an improvement on the prior invention described above, and has developed a method of providing a stirring flow that enables stable continuous casting of undeoxidized steel using an electromagnetic stirring device.

すなわち、鋳造作業に支障を来たさないように流速の溶
鋼流動を凝固開始点前後の溶鋼にスラブ鋳型横断面の隅
々にまで行きわたるように与えることにより、このよう
な極力緩やかな溶鋼流動でもって後述のガス気泡様の発
生を鋳型短辺部を含め全体にわたって防止し、もってパ
ウダーの巻き込みあるいは湯面におけるパウダーの不均
一分布、更にパウダー流れ込みの不均一を防止したもの
であり、これにより、未脱酸鋼の連鋳化を品質上、操業
上のトラブルを生せしめることなく可能ならしめたもの
である。
In other words, by applying a flow rate of molten steel to the molten steel before and after the solidification start point so as to spread it to every corner of the cross section of the slab mold so as not to interfere with the casting operation, such a slow flow of molten steel as possible can be achieved. This prevents the generation of gas bubbles, which will be described later, throughout the entire mold including the short sides of the mold, thereby preventing powder entrainment, non-uniform distribution of powder on the surface of the mold, and non-uniform flow of powder. This makes it possible to continuously cast unoxidized steel without causing quality or operational problems.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明者らは先ずリムド、セミキルド鋼の連鋳化の場合
のように、脱酸不足状態のときに生ずる(CO)ガスあ
るいは(CO+C02)ガスによるスラブ表面欠陥の生
成機構について調査を行なった。
The present inventors first investigated the formation mechanism of slab surface defects due to (CO) gas or (CO+CO2) gas generated when deoxidation is insufficient, as in the case of continuous casting of rimmed and semi-killed steel.

すなわち、凝固界面に気泡が発生し、いわゆるピンホー
ルが形成される過程は、気泡の核発生とその成長に分け
て考えることができる。
In other words, the process in which bubbles are generated at the solidification interface and a so-called pinhole is formed can be considered to be divided into bubble nucleation and bubble growth.

実験結果によると、一旦気泡が発生したならばこれが成
長するには気泡内のガス分圧Pco:1 (aim)で
十分であるが、凝固界面での核発生にはPco:2〜3
(atm)が必要であるというものであった。
According to experimental results, once a bubble is generated, a gas partial pressure of Pco: 1 (aim) within the bubble is sufficient for the bubble to grow, but Pco: 2 to 3 is sufficient for nucleation at the solidification interface.
(ATM) was required.

この事実は核発生自体はおこりにくいが、一旦核ができ
ると気泡は容易に成長することを意味する。
This fact means that although nucleation itself is difficult to occur, once a nucleation occurs, bubbles grow easily.

上記ピンホールを発生させる気泡様の生成については溶
鋼中の炭素、酸素の濃度が起因しており、第2図に示す
ように溶鋼中の成分元素が濃縮される凝固界面において
その可能性が高くなり、一定の濃度以上、すなわちCで
以上、例えば第2図のCxとなると気泡核が生成される
The bubble-like formation that causes the pinholes mentioned above is caused by the concentration of carbon and oxygen in the molten steel, and as shown in Figure 2, this is likely to occur at the solidification interface where the constituent elements in the molten steel are concentrated. When the concentration exceeds a certain level, that is, C, for example Cx in FIG. 2, bubble nuclei are generated.

このことは凝固開始点からすでに後で成長じてピンホー
ル欠陥を生じさせる気泡核が発生することを示す。
This indicates that bubble nuclei are generated which grow even later from the point of onset of solidification and give rise to pinhole defects.

従って凝固界面に一定値以上の流動を与えた場合、気泡
の生成に関与する元素の濃度分布は第2図1点* 鎖線のようになり、界面での値がCxを下まわる例えば
第2図のC/の場合、気泡の核生成を阻止することが可
能となる。
Therefore, when a flow of more than a certain value is applied to the solidification interface, the concentration distribution of the elements involved in the formation of bubbles will be as shown by the dotted line at point 1 in Figure 2, and the value at the interface will be lower than Cx. In the case of C/, it is possible to prevent bubble nucleation.

第2図において、Clは液相中の元素濃度、C5は固相
中の元素濃度を示す。
In FIG. 2, Cl indicates the element concentration in the liquid phase, and C5 indicates the element concentration in the solid phase.

本発明は上記調査結果をもとにして得た1)気泡の核発
生はその成長に比べておこりに<<、所定値以上のC1
0濃度を必要とすること、2)表面気泡を発生させる気
泡核は凝固開始からすでに発生する事実、そして鋳型湯
面に対して垂直な溶鋼対流もしくは循環流では3)パウ
ダーの巻き込み、不均一分布が生じやすいこと、 更に
は4)鋳型両短辺部で溶鋼流のよどみ部が生じ、ピンホ
ールが発生しやすいことに着目し、スラブ鋳型内溶鋼の
特に湯面自身にその全体に対して(湯面の隅々にまで)
均一なそして気泡核の生成を阻止する速度を持つ鋳型横
断面水平面の溶鋼流動を与えるようにしたものである。
The present invention is based on the above research results. 1) The nucleation of bubbles occurs less than the growth of the bubbles, and the C1 is higher than a predetermined value.
2) the fact that the bubble nuclei that generate surface bubbles are already generated from the start of solidification; and 3) powder entrainment and non-uniform distribution in molten steel convection or circulation flow perpendicular to the mold surface. Furthermore, we focused on the fact that 4) Stagnant areas of the molten steel flow occur on both short sides of the mold, and pinholes are likely to occur. (to every corner of the hot water surface)
It is designed to provide a uniform flow of molten steel in the horizontal plane of the cross section of the mold at a speed that prevents the formation of bubble nuclei.

このような溶鋼流を鋳型内湯面に与えることにより、パ
ウダーの巻き込み、平均−分布更には鋳片両短辺部にピ
ンホールを生じさせることな〈従来に比し極力緩やかな
溶鋼流でもって、効果的に未脱酸鋼の連鋳を可能ならし
めたものである。
By applying such a molten steel flow to the molten metal surface in the mold, powder entrainment, average distribution, and pinholes on both short sides of the slab can be prevented. This effectively enables continuous casting of non-deoxidized steel.

すなわち、前出の従来例特開昭51−2621号公報に
おいては気泡核が生成された後に生成される気泡それ自
体を物理的に浮上させようという思想であるところから
鋳型内部の溶鋼流速を1〜3m/sec以上といった強
烈な攪拌が必要となり、また、前出の特開昭50−68
915号公報に示されるような鋳型内湯面に対して垂直
な対流もしくは循環流を与える溶鋼流動パターンにおい
ては、鋳型内面短辺部においてよどみ部が生じ、気泡核
の発生を阻止するに必要な流速を全体的に得られないこ
とから、鋳型内溶鋼流速が不均一となり、鋳型短辺部の
凝固界面でのC,Oの濃度が核生成に必要な値Cxを超
え、その結果鋳片の短辺部に表面気泡が残存してしまう
That is, in the conventional example disclosed in Japanese Patent Application Laid-Open No. 51-2621, the idea is to physically float the bubbles themselves that are generated after the bubble nuclei are generated, so the flow velocity of the molten steel inside the mold is reduced to 1. Intense stirring of ~3m/sec or more is required, and
In the molten steel flow pattern that provides convection or circulation flow perpendicular to the mold surface as shown in Publication No. 915, stagnation occurs on the short sides of the mold inner surface, and the flow velocity required to prevent the generation of bubble nuclei occurs. As a result, the flow rate of molten steel in the mold becomes non-uniform, and the concentration of C and O at the solidification interface on the short side of the mold exceeds the value Cx required for nucleation, resulting in shortening of the slab. Surface bubbles remain on the edges.

また、パウダーの巻き込み、不均一分布といった問題点
も同時にかかえているのである。
In addition, there are also problems such as powder entrainment and non-uniform distribution.

また、先願においても流速自体は極めて低く効果的では
あったが、溶鋼流動の与え方が明確でないため、均一な
溶鋼流速が得られず、鋳型短辺部によどみ部が生じ安定
的に気泡発生を抑止できなかったものである。
In addition, in the previous application, although the flow rate itself was extremely low and effective, the method of providing molten steel flow was not clear, so a uniform molten steel flow rate could not be obtained, and stagnation occurred on the short sides of the mold, resulting in stable bubble formation. The occurrence could not be prevented.

これらの例に対し、本発明は第3図に示すように鋳型6
内湯面1自身にその横断面に対して水平で、気泡核の発
生を防止するだけの流速の溶鋼回転流7を与え、溶鋼流
動を鋳型6内の隅々にまで行きわたるようにする思想な
ので、湯面1における溶鋼の流れによどみ部はなく全体
的に均一な溶鋼流れγが得られる。
In contrast to these examples, the present invention uses a mold 6 as shown in FIG.
The idea is to give the molten steel rotating flow 7 to the inner melt surface 1 itself, which is horizontal to its cross section and at a flow velocity sufficient to prevent the generation of bubble nuclei, and to spread the molten steel flow to every corner of the mold 6. , there is no stagnation part in the flow of molten steel at the molten metal surface 1, and an overall uniform molten steel flow γ is obtained.

これにより従来のような強烈な溶鋼流を不要とし、気泡
核の発生防止に最低限必要な溶鋼流だけで表面気泡の発
生を完全に防止でき、このように溶鋼流が緩やかなこと
とその溶鋼流のパターンが鋳型横断面に対して水平の回
転流γであることとが相まって鋳型パウダーの巻き込み
、流れ込みの不均一、更には不均一分布の問題点をも同
時に解消できるものである。
This eliminates the need for an intense molten steel flow as in the past, and completely prevents the generation of surface bubbles with only the minimum amount of molten steel flow required to prevent the generation of bubble nuclei. Coupled with the fact that the flow pattern is a rotating flow γ horizontal to the cross section of the mold, the problems of mold powder entrainment, non-uniform flow, and even non-uniform distribution can be solved at the same time.

かくして本発明により、リムド、セミキルド鋼相当の未
脱酸鋼の工業的実施が実現できるものである。
Thus, according to the present invention, it is possible to realize industrial production of unoxidized steel equivalent to rimmed or semi-killed steel.

上記本発明に基づき、鋳型内湯面にその横断面に対して
水平方向に与える回転流の流速については以下の通りで
ある。
Based on the present invention, the flow velocity of the rotational flow applied to the mold surface in the horizontal direction with respect to its cross section is as follows.

先ず本発明の対象の未脱酸鋼はインゴット法でいうリム
ド、セミキルド鋼とほぼ同じものを示し、リムド鋼は、
C<0.10%、 S i<0.10%。
First, the undeoxidized steel that is the object of the present invention is almost the same as rimmed or semi-killed steel in the ingot method, and rimmed steel is
C<0.10%, Si<0.10%.

Mn<0.30%、 P<0.025%、 S<0.0
25饅の溶鋼にO〜2.0KGI/l−5tee1の脱
酸剤を添加して溶鋼中自由酸素を50〜400 ppm
としたものを、またセミキルド鋼はC=0.10〜0.
30% 、 S i=0.02〜0.20%、Mn=0
.20〜1600%、 P<0.025%、S<0.0
25%。
Mn<0.30%, P<0.025%, S<0.0
Add a deoxidizing agent of O~2.0KGI/l-5tee1 to 25 pieces of molten steel to reduce free oxygen in the molten steel to 50~400 ppm.
For semi-killed steel, C=0.10 to 0.
30%, Si=0.02~0.20%, Mn=0
.. 20-1600%, P<0.025%, S<0.0
25%.

5olAl=tr s自由酸素を50〜1100ppと
したものである。
5olAl=trs Free oxygen is 50 to 1100 pp.

なお、リムド鋼においては、ボイリング現象が生じ鋳造
作業そのものを困難とするので、上限は低い方が好まし
い。
Note that in rimmed steel, a boiling phenomenon occurs, making the casting operation itself difficult, so a lower upper limit is preferable.

上記の未脱酸鋼を連続鋳造する際の最適な湯面回転流の
流速は実験により定量化した。
The optimal flow rate of the surface rotation flow when continuously casting the above-mentioned undeoxidized steel was quantified through experiments.

すなわち、鋳型内湯面の溶鋼流速を全体的に0.1m/
sec以上とすれば安定的に鋳片短辺部においても表面
気泡が発生しないという所望効果が得られた。
In other words, the overall flow velocity of molten steel at the surface of the mold is 0.1 m/
sec or more, the desired effect of not generating surface bubbles even on the short sides of the slab was stably achieved.

上限については、操業性の確保の面から規制される。The upper limit is regulated to ensure operability.

先願発明では一方向のみの流れを湯面に与えることから
、鋳型内厚さ方向の中央部での流速が最も早くなり、注
入ノズル位置において湯面に乱れが生じたり、パウダー
の偏りが生じるので上限値を0.5 m/secと比較
的低く抑える必要があった。
In the prior invention, since the flow is applied to the molten metal surface in only one direction, the flow velocity is highest at the center of the mold in the thickness direction, causing turbulence on the molten metal surface and uneven powder at the injection nozzle position. Therefore, it was necessary to keep the upper limit to a relatively low value of 0.5 m/sec.

これに対し本発明での水平方向の回転流であると鋳型周
辺部(鋳型内凝固界面)で所望の流速が得られるのみで
、中央部では流動は殆んど生じず、湯面そのものが安定
していることから、上限値を先願の0.5m/SeCよ
りも引き上げることができたものである。
On the other hand, with the horizontal rotating flow in the present invention, the desired flow velocity is only obtained at the periphery of the mold (solidification interface within the mold), and almost no flow occurs in the center, resulting in a stable molten metal surface. Therefore, the upper limit value could be raised higher than the 0.5 m/SeC of the previous application.

但し、この回転流の流速が速すぎる場合には、パウダー
による鋳型面と鋳片表面との潤滑作用が得られなくなり
、パウダーの本来機能の一つが発揮されなくなる。
However, if the flow rate of this rotational flow is too fast, the powder will not be able to lubricate the mold surface and the slab surface, and one of the original functions of the powder will not be achieved.

この潤滑作用に不均衡が生じ始める限界点は1.0 m
/secの流速であり、これは実験により定量化した。
The critical point at which this lubrication begins to become unbalanced is 1.0 m.
/sec, which was quantified experimentally.

上記パウダーの潤滑作用に不均衡が生じると凝固厚さに
も不均衡が生じ、応力差によるたて割れ表面欠陥が発生
したり、最悪の場合はブレークアウトにもつながる。
If the lubricating action of the powder is unbalanced, the solidified thickness will also be unbalanced, leading to surface defects due to stress differences and, in the worst case, breakout.

このように本発明に基づき鋳型内溶鋼に与える回転流の
最適流速範囲は0.1〜1.0m/secである。
As described above, the optimum flow velocity range of the rotational flow given to the molten steel in the mold according to the present invention is 0.1 to 1.0 m/sec.

安定性を考慮しより好ましい範囲は0.1〜0.5 m
/secである。
Considering stability, the more preferable range is 0.1 to 0.5 m.
/sec.

第8図は溶鋼の回転流速(m/5ec)とピンホール判
定及びパウダ巻込み発生率との関係を示したものである
FIG. 8 shows the relationship between the rotational flow velocity (m/5ec) of molten steel, pinhole determination, and powder entrainment occurrence rate.

第8図においてピンホールの判定A、Bは合格、C,D
は降格、Eはスクラップである。
In Figure 8, pinhole judgments A and B are passed, C and D.
is demoted and E is scrapped.

この図から、本発明に従って溶鋼の回転流速を0.1〜
1.0m/secに限定にすることによって、パウダー
を巻込むことなくピンホールのない健全なスラブを得る
ことができることが判る。
From this figure, it can be seen that according to the present invention, the rotational flow rate of molten steel is 0.1~
It can be seen that by limiting the speed to 1.0 m/sec, a sound slab without pinholes can be obtained without involving powder.

次に本発明に従い鋳型内凝固界面の溶鋼へ溶鋼回転流を
与える具体的手段としては、経済性、安定性を考慮し電
磁攪拌装置が最適である。
Next, as a specific means for applying a rotating flow of molten steel to the molten steel at the solidification interface in the mold according to the present invention, an electromagnetic stirring device is optimal in consideration of economic efficiency and stability.

回転流速のコントロールは電磁攪拌装置、例えば電磁攪
拌コイル(リニアーモーター)に通電する電流を変更し
ておこなう。
The rotational flow rate is controlled by changing the current applied to an electromagnetic stirring device, for example, an electromagnetic stirring coil (linear motor).

もちろん鋳型の銅板厚み、銅板の電気伝導度などにより
、通電する電流は異なるが、銅板の電気伝導度4.2
X 10” U/cm、銅板厚み10mmのときに電流
40〜400Aで回転流速0.1〜1.0 m/ se
cに相当する。
Of course, the current applied will vary depending on the thickness of the copper plate in the mold, the electrical conductivity of the copper plate, etc., but the electrical conductivity of the copper plate is 4.2.
X 10” U/cm, when the copper plate thickness is 10 mm, the current is 40 to 400 A, and the rotational flow rate is 0.1 to 1.0 m/se.
Corresponds to c.

なお電流と回転流速は一次関数の関係を有する。Note that the current and rotational flow speed have a linear function relationship.

かくして鋳型内湯面に回転流を与えるには鋳型自体に電
磁攪拌装置を設ける必要がある。
Thus, it is necessary to provide an electromagnetic stirring device in the mold itself in order to apply a rotational flow to the molten metal surface in the mold.

この場合鋼鋳造用の鋳型は通常銅鋳型を使用しており、
電源としては低周波電源を使用することが好ましい。
In this case, the mold for steel casting usually uses a copper mold,
It is preferable to use a low frequency power source as the power source.

但し、第4図に示すようにスラブ鋳型6の長辺8の一辺
だけに電磁攪拌装置9を設けた場合では、鋳造厚みにも
よるが、装置9を設けた側にしか所望流速の溶鋼流動は
生ぜず回転流が得られない。
However, if the electromagnetic stirring device 9 is provided on only one long side 8 of the slab mold 6 as shown in FIG. 4, the molten steel will flow at the desired flow rate only on the side where the device 9 is provided, depending on the casting thickness. does not occur and rotational flow cannot be obtained.

出力を上昇させれば、対面側にもその影響が与えられ回
転流そのものは得られるが、この回転流では設置側が強
力、対面側が弱いというように凝固界面全体にかつ均一
に本発明でいう0.1〜1.0m/secを満足させる
ことができず所期の目的が遠戚できない。
If the output is increased, the effect is also exerted on the opposite side, and a rotational flow itself can be obtained, but in this rotational flow, the installation side is strong and the opposite side is weak, so that the solidification interface is uniformly distributed over the entire solidification interface. .1 to 1.0 m/sec cannot be satisfied, and the intended purpose cannot be achieved.

更に出力を上昇させること自体、電磁攪拌装置9を鋳型
6に設置することを考慮して、装置の大型化にて設備的
な不利を強いられる。
Furthermore, increasing the output itself requires installation of the electromagnetic stirring device 9 in the mold 6, which results in an increase in the size of the device, which is disadvantageous in terms of equipment.

しかして本発明は第5図に示すように鋳型6の長月側8
に夫々電磁攪拌装置9を設け、それぞれに反対方向の推
力10,10’を与えるようにして装置9の出力を大き
くすることなく、例えば湯面全体に0.1〜1.0m/
secといった気泡核の除去に有効な回転流7を均一に
与えるものであり、これにより本発明所期の目的を遠戚
するものである。
However, as shown in FIG.
An electromagnetic stirring device 9 is provided at each of the molten metal, and thrust forces 10 and 10' in opposite directions are applied to each of the two, so that the output of the device 9 can be, for example, 0.1 to 1.0 m/min, without increasing the output of the device 9.
sec, which is effective for removing bubble nuclei, is uniformly provided, and this is a distant relative of the original purpose of the present invention.

上記の配置で鋳型内湯面に回転流動を与えるに際し湯面
だけに0.1〜1.0m/secの流速の回転流動を与
えることだけでは不充分である。
When applying rotational flow to the molten metal surface in the mold with the above arrangement, it is insufficient to apply rotational flow only to the molten metal surface at a flow rate of 0.1 to 1.0 m/sec.

すなわち、現実の工程では鋳造鋳片の再加熱−圧延時に
おいて可成りのスケールオフが考えられることから、発
生気泡をこの量に相当する分より内側に位置させる必要
がある。
That is, in the actual process, since a considerable amount of scale-off is likely to occur during reheating and rolling of the cast slab, it is necessary to position the generated bubbles inside by an amount corresponding to this amount.

従って、本発明の実施に当っては、湯面に0.1〜1.
0m/secの回転流を与えるのみならず、そこから上
記のスケールオフ量に相当以上の厚みの凝固厚が得られ
るまでの凝固界面にも溶鋼流動を与える必要がある。
Therefore, in carrying out the present invention, the hot water level should be 0.1 to 1.
It is necessary not only to provide a rotational flow of 0 m/sec, but also to provide molten steel flow at the solidification interface until a solidification thickness equivalent to or greater than the above-mentioned scale-off amount is obtained.

しかし現実にはこのスケールオフ量は1〜2m/m程度
であり、それに相当する凝固厚さ位置は湯面下20m/
m程度であるから、電磁攪拌装置の設置位置を工夫して
この湯面下20m/mの位置にも0.1m/sec以上
の流速が与えられるように注意する。
However, in reality, this scale-off amount is about 1 to 2 m/m, and the corresponding solidification thickness position is 20 m/m below the molten metal surface.
Since the electromagnetic stirring device is installed at a position of about 20 m/m, care must be taken to ensure that a flow velocity of 0.1 m/sec or more is applied even at a position 20 m/m below the molten metal surface.

第6図に高さ方向での電磁攪拌装置9の配置を示す。FIG. 6 shows the arrangement of the electromagnetic stirring device 9 in the height direction.

この場合当然、湯面の流速が0.1〜1.0m/sec
となるように電磁攪拌装置の出力を調節する。
In this case, naturally, the flow velocity at the surface of the hot water is 0.1 to 1.0 m/sec.
Adjust the output of the electromagnetic stirring device so that

(流速のピークは設置点となる。)本発明は以上のよう
にして未脱酸鋼の連続鋳造を行なうものである。
(The peak of the flow rate is the installation point.) The present invention performs continuous casting of undeoxidized steel as described above.

本発明の実施において、鋳片内部で気泡の発生はあるが
、これは本発明の実施により健全な表面層がスケールオ
フ量以上に形成されることから、酸化がなく以後の工程
で圧着されてしまって欠陥とはならず実用上何ら支障は
ない。
In the practice of the present invention, bubbles may occur inside the slab, but this is because a healthy surface layer is formed in excess of the scale-off amount by carrying out the present invention, so there is no oxidation and it is crimped in the subsequent process. However, it is not a defect and does not cause any practical problems.

鋳型に電磁攪拌装置を設置すること自体は公知であるが
、それらには何れも、リムド、セミキルド鋼等の未脱酸
鋼を鋳造する目的でスラブ用鋳型内にパウダーの巻き込
み、不均一分布のない極力緩やかな回転流を湯面から、
所望厚さが形成されるまでの範囲に与えるという本発明
思想を示唆するものではない。
It is well known to install an electromagnetic stirring device in a mold, but all of these methods involve the incorporation of powder into a slab mold and the prevention of uneven distribution for the purpose of casting undeoxidized steel such as rimmed and semi-killed steel. The rotational flow is as gentle as possible from the surface of the hot water.
This does not imply the idea of the present invention that the thickness is given within a range until a desired thickness is formed.

なお、上記電磁攪拌装置の設置に当っては攪拌**流が
注入7′ズル噴流を妨げると湯面回転流に乱れが生じパ
ウダーの巻き込み、不均一分布、さらにはよどみ部が生
じる可能性があるので、第6図のように注入ノズル4の
噴出孔11位置よりも上方に設置するのが好ましい。
When installing the above-mentioned electromagnetic stirring device, if the stirring** flow interferes with the pouring jet 7', it may cause turbulence in the rotating flow of the hot water surface, which may cause powder entrainment, uneven distribution, and even stagnation. Therefore, it is preferable to install the injection nozzle 4 above the ejection hole 11 position as shown in FIG.

また、本発明の実施に際しては、溶鋼注入ノズル4と鋳
型長辺8との間隙は片側は約20m/m以上とするのが
溶鋼流動のさまたげにならないことから好ましい。
Further, in carrying out the present invention, it is preferable that the gap between the molten steel injection nozzle 4 and the long side 8 of the mold be approximately 20 m/m or more on one side, since this will not impede the flow of the molten steel.

更には所望流速の溶鋼の回転流を極力小さい出力で得る
ように鋳型自身を第7図a、bのように改良してもよい
Furthermore, the mold itself may be improved as shown in FIGS. 7a and 7b so as to obtain a rotating flow of molten steel at a desired flow rate with as little output as possible.

この鋳型で得たスラブの断面形状は特殊ではあるが圧延
上何ら支障はなく、従来通りの工程で最終成品にするこ
とができる。
Although the cross-sectional shape of the slab obtained with this mold is special, it poses no problem during rolling and can be made into a final product using conventional processes.

次に本発明の実施例並びに比較例を示す。Next, examples of the present invention and comparative examples will be shown.

下記表に示すリムド鋼(A1,2)、セミキルド鋼(嵐
3t4)を対象に本発明を実施した。
The present invention was carried out on rimmed steel (A1, 2) and semi-killed steel (Arashi 3t4) shown in the table below.

鋳造条件は以下の通りである。The casting conditions are as follows.

処理量は何れも100Tである。The processing amount is 100T in both cases.

鋳造寸法・・・・・・250%(厚)X2100%(巾
)鋳造速度・・・・・・0.7m/min 電磁攪拌装置設置位置並びに推力方向・・・・・・鋳型
内湯面下20(mで各長辺に1ケ、それぞれの推力方向
が反対となるよう設置 電磁攪拌装置設置位置の鋳片凝固厚さ・・・・・・3駕
電磁攪拌装置の出力・・・・・・鋳型内湯面の水平回転
流の流速が0.1〜0.5rn/SeCの範囲内になる
様調整注入ノズル・・・・・・外径100%ものを鋳型
中央で使用 以上の結果実施例1〜4何れの場合も鋳型内で水平回転
流が得られ湯面のパウダーを巻き込むことなく表面欠陥
(ピンホール)のない健全なスラブを得ることができた
Casting dimensions: 250% (thickness) x 2100% (width) Casting speed: 0.7 m/min Electromagnetic stirring device installation position and thrust direction: 20 below the surface of the mold (1 piece on each long side in m, installed so that the direction of each thrust is opposite. Thickness of solidified slab at the installation position of the electromagnetic stirring device... 3 pieces. Output of the electromagnetic stirring device... Adjustment so that the flow rate of the horizontal rotation flow on the surface of the mold is within the range of 0.1 to 0.5 rn/SeC Injection nozzle... 100% outer diameter is used in the center of the mold Results Example 1 ~4 In all cases, a horizontally rotating flow was obtained within the mold, and a healthy slab without surface defects (pinholes) could be obtained without involving powder on the surface of the molten metal.

上記実施例にて得られたスラブの横断面状況を調査した
ところ1および2で示したリムド鋼スラブでは気泡は表
面から23%内に位置しており、3および4で示したセ
ミキルド鋼スラブでは気泡の発生は皆無であった。
When we investigated the cross-sectional condition of the slabs obtained in the above examples, we found that in the rimmed steel slabs shown in 1 and 2, air bubbles were located within 23% from the surface, and in the semi-killed steel slabs shown in 3 and 4. There was no generation of bubbles.

そして上記実施例1〜4で得たスラブを常法に従い、再
加熱−熱間圧延−冷間圧延により最終成品としたが何れ
の場合も最終成品に表面欠陥は見られなかった。
The slabs obtained in Examples 1 to 4 were then reheated, hot rolled, and cold rolled to produce final products according to conventional methods, but no surface defects were observed in the final products in any case.

比較例 1 実施例1〜4と同−組成の溶鋼を、鋳型内湯面の水平回
転流が0.1m/SeC以下となるようにして鋳造した
Comparative Example 1 Molten steel having the same composition as Examples 1 to 4 was cast so that the horizontal rotational flow at the surface of the mold was 0.1 m/SeC or less.

この結果1および2の組成の溶鋼から得たスラブは表面
層からすでに大きな気泡が発生し、以後の工程に流すこ
とはできなかった。
As a result, large bubbles were already generated in the surface layer of the slabs obtained from the molten steel of compositions 1 and 2, and the slabs could not be passed to subsequent steps.

また3および4の組成の溶鋼から得たスラブは表面にピ
ンホールがすい所に見られこれを最終成品にしたところ
最終成品に表面疵が多発し、著しい歩留低下をきたした
In addition, the slabs obtained from the molten steel of compositions 3 and 4 had many pinholes on their surfaces, and when they were made into final products, the final products had many surface defects, resulting in a significant decrease in yield.

比較例 2 実施例1〜4と同−組成の溶鋼を、鋳型内湯面の水平回
転流が1.0m/sec以上となるようにして鋳造した
Comparative Example 2 Molten steel having the same composition as Examples 1 to 4 was cast so that the horizontal rotational flow at the surface of the mold was 1.0 m/sec or more.

この結果1および2の組成の溶鋼から得たスラブ並びに
3および4の組成の溶鋼から得たスラブともに表面に断
片的にたて割れが発生し、これらの大小にかかわらずス
カーフィングして以後の常法工程に流したが、最終成品
の表面に表面疵が断片的に発生し歩留が低下した。
As a result, fragmentary vertical cracks occurred on the surface of both the slabs obtained from the molten steel with compositions 1 and 2 and the slabs obtained from the molten steel with compositions 3 and 4, and regardless of their size, they were scarfed and the subsequent Although the product was passed through a conventional process, surface defects appeared on the surface of the final product, resulting in a decrease in yield.

これは、スラブ段階でのたて割れの大きいものをスカー
フィングしたことによる疵が二次キズの原因となったも
のと思われる。
This is thought to be caused by scarfing of a slab with large vertical cracks during the slab stage, which caused secondary scratches.

上記のたて割れは、この例の実施にて回転流が強くパウ
ダーが中央に集まる傾向が見られたが、これにより鋳片
と鋳型との潤滑作用が円滑に行なわれなかったためと思
われる。
The above-mentioned vertical cracks are thought to be due to the fact that in this example, the rotational flow was strong and the powder tended to collect in the center, which prevented smooth lubrication between the slab and the mold.

比較例3(先願例) 実施例1〜4と同一組成の溶鋼を第1図に示す様な攪拌
パターンで鋳型内溶鋼平均流速が0.5m/secとな
るように電磁攪拌装置(鋳型下方の案内ロールゾーンに
設置し、鋳造方向に対して垂直な推力を有するもの)の
出力を調整し鋳造した。
Comparative Example 3 (Previous Application Example) Molten steel having the same composition as Examples 1 to 4 was stirred using an electromagnetic stirring device (below the mold) with a stirring pattern as shown in Fig. 1 so that the average flow velocity of the molten steel in the mold was 0.5 m/sec. Casting was performed by adjusting the output of the guide roll (which has a thrust perpendicular to the casting direction).

この結果3および4ではピンホールは見られなかったが
1および2の組成の溶鋼から得たスラブでは、スラブの
両短辺側においてピンホールが可成り見られ、これを最
終成品にしたところ最終成品の両端に表面疵が発生し、
歩留が低下した。
As a result, no pinholes were observed in samples 3 and 4, but in the slabs obtained from the molten steel of compositions 1 and 2, pinholes were observed on both short sides of the slab. Surface flaws occur on both ends of the product.
Yield decreased.

そこで流速を1.0 m/secに上昇させたところ1
〜4伺れもピンホールこそ発生しなかったが、パウダー
の巻き込みにより欠陥が断片的に発生した。
Therefore, when the flow velocity was increased to 1.0 m/sec, 1
Although pinholes did not occur in the ~4 samples, defects did occur in fragments due to powder entrainment.

これはスカーフィングにより除去したが、最終成品にま
で影響を与えるものが若干発生し歩留低下となった。
Although this was removed by scarfing, some of it affected the final product, resulting in a decrease in yield.

なお、上記実施例並びに比較例で用いたパウダーは何れ
も以下のものを使用した。
The following powders were used in the above examples and comparative examples.

CaO/5i02=1.0 A1203 =10% Na+=3.5% に+ =2.5% F−=4% C=4.5% 粘性 at 1511℃、 2.3 poise融点
11500C なお比較例1では鋳型内水半回転流の流速不足にてガス
気泡核の発生を防止できなかったため表面気泡が発生し
たものである。
CaO/5i02=1.0 A1203=10% Na+=3.5% +=2.5% F-=4% C=4.5% Viscosity at 1511°C, 2.3 poise Melting point 11500C Comparative Example 1 In this case, the surface bubbles were generated because the generation of gas bubble nuclei could not be prevented due to insufficient flow velocity of the semi-rotational flow of water in the mold.

比較例2では流速が早すぎたためパウダーの潤滑作用が
得られず、たて割れが発生したものである。
In Comparative Example 2, because the flow rate was too fast, the lubricating effect of the powder could not be obtained, and vertical cracks occurred.

比較例3では攪拌パターンが鋳型内湯面に対して垂直の
循環流であるため酸素レベルの高いものではよどみ部と
なるスラブ両端部でピンホールが発生したものであり、
また流速を上昇させたからパウダーを巻き込んだもので
ある。
In Comparative Example 3, the stirring pattern was a circulating flow perpendicular to the mold surface, so pinholes occurred at both ends of the slab, which would become stagnation areas in the case of high oxygen levels.
Also, since the flow velocity was increased, powder was drawn in.

以上の様に本発明は未脱酸鋼鋳造時のガス気泡の発生機
構の解析をもとに、スラブ連続鋳造鋳型の両長辺に設置
し、しかもその推力方向が互いに対向するようにした電
磁攪拌装置により鋳型内情鋼に水平回転流を与えて鋳型
内の隅々にまでその影響が及ぶようにして凝固界面全体
のガス気泡核の発生を防止するようにしたので、パウダ
ーの潤滑作用に影響を与えることなく、シかも従来のよ
うな攪拌パターンのようにパウダーの巻き込みのけ念な
く、スラブ全面にわたってガス気泡の発生が防止できる
もので、これにより工業的にリムド、セミキルド鋼相当
の未脱酸鋼の連続鋳造を可能ならしめたものである。
As described above, the present invention is based on the analysis of the mechanism of gas bubble generation during casting of non-deoxidized steel.The present invention is based on the analysis of the mechanism of gas bubble generation during casting of non-deoxidized steel. A horizontal rotational flow is applied to the inner steel of the mold by a stirring device, which affects every corner of the mold and prevents the generation of gas bubble nuclei at the entire solidification interface, which affects the lubricating effect of the powder. It is possible to prevent the generation of gas bubbles over the entire surface of the slab without causing powder to be mixed in as with conventional stirring patterns. This made continuous casting of acid steel possible.

以上実施例、比較例から明らかなように本発明はリムド
、セミキルド鋼相当の未脱酸鋼の工業的実施に寄与する
こと犬である。
As is clear from the above Examples and Comparative Examples, the present invention contributes to the industrial implementation of unoxidized steel equivalent to rimmed and semi-killed steel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の攪拌パターンを示すモデル図、第2図は
成分元素の濃化状況を示す図、第3図は本発明に従い鋳
型内湯面に与える水平回転流の模型図、第4図はスラブ
鋳型の長辺の一辺のみに電磁攪拌装置を設置した場合に
得られる流動パターンを示す図、第5図はスラブ鋳型の
両長辺にそれぞれ電磁攪拌装置を設置し、本発明に従う
流動パターンを得るための推力方向を示す図、第6図は
電磁攪拌装置の鋳型高さ方向での設置位置を示し、第5
図のI−I断面図を示す図、第7図a、bは本発明の実
施に好適な鋳型断面例を示す図、第8図は溶鋼の回転流
速(m/5ec)とピンホール判定及びパウダ巻込み発
生率との関係を示す図である。 1:湯面、2:溶鋼流、3:鋳型短辺、4:注入ノズル
、5:パウダー、6:鋳型、7:水平回転流、8.:鋳
型長辺、9:電磁攪拌装置、10゜10′・・・・・・
推力方向、11:噴出孔。
Figure 1 is a model diagram showing the conventional stirring pattern, Figure 2 is a diagram showing the concentration status of component elements, Figure 3 is a model diagram of the horizontal rotational flow applied to the mold surface according to the present invention, and Figure 4 is a diagram showing the concentration status of component elements. Figure 5 shows a flow pattern obtained when an electromagnetic stirrer is installed on only one long side of a slab mold. Figure 6 shows the installation position of the electromagnetic stirring device in the mold height direction.
Figures 7a and 7b are diagrams showing cross-sectional examples of molds suitable for implementing the present invention, and Figure 8 is a diagram showing the molten steel rotational flow velocity (m/5ec) and pinhole determination. FIG. 3 is a diagram showing the relationship with the powder entrainment incidence rate. 1: Molten metal surface, 2: Molten steel flow, 3: Mold short side, 4: Injection nozzle, 5: Powder, 6: Mold, 7: Horizontal rotating flow, 8. : Long side of mold, 9: Electromagnetic stirring device, 10°10'...
Thrust direction, 11: Ejection hole.

Claims (1)

【特許請求の範囲】[Claims] 1 スラブ鋳型の両長辺に設けた電磁攪拌装置にて両長
辺と接する鋳型内溶鋼に長辺長さ方向で互いに異なる方
向に推力を与えて0.1〜1.0m/secの流速の水
平方向の溶鋼回転流を鋳型向凝固界面全体にわたり形成
することを特徴とする未脱酸鋼の連続鋳造方法。
1 An electromagnetic stirrer installed on both long sides of the slab mold applies thrust to the molten steel in the mold in contact with both long sides in different directions along the length of the long sides to achieve a flow rate of 0.1 to 1.0 m/sec. A continuous casting method for undeoxidized steel characterized by forming a horizontal rotating flow of molten steel over the entire pro-solidification interface of the mold.
JP53135776A 1978-11-06 1978-11-06 Continuous casting method for undeoxidized steel Expired JPS5852456B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP53135776A JPS5852456B2 (en) 1978-11-06 1978-11-06 Continuous casting method for undeoxidized steel
AU51997/79A AU516491B2 (en) 1978-11-06 1979-10-22 Continuous casting
CA000338725A CA1152723A (en) 1978-11-06 1979-10-30 Process for continuous casting of a slightly deoxidized steel slab
DE2944159A DE2944159C2 (en) 1978-11-06 1979-11-02 Method and device for continuous slab casting with electromagnetic stirring
BR7907167A BR7907167A (en) 1978-11-06 1979-11-05 PROCESS FOR THE CONTINUOUS FOUNDATION OF A SLIGHTLY DEOXIDED STEEL STABLE
GB7938163A GB2034219B (en) 1978-11-06 1979-11-05 Process for continuous casting of a slightly deoxidized steel slab
FR7927762A FR2440794A1 (en) 1978-11-06 1979-11-06 CONTINUOUS CASTING PROCESS OF A WEAKLY DEOXIDIZED STEEL PLATE
US06/091,813 US4298050A (en) 1978-11-06 1979-11-06 Process for continuous casting of a slightly deoxidized steel slab
IT69160/79A IT1119408B (en) 1978-11-06 1979-11-06 CONTINUOUS CASTING PROCEDURE OF SLIGHTLY DEOXIDIZED STEELS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53135776A JPS5852456B2 (en) 1978-11-06 1978-11-06 Continuous casting method for undeoxidized steel

Publications (2)

Publication Number Publication Date
JPS5564953A JPS5564953A (en) 1980-05-16
JPS5852456B2 true JPS5852456B2 (en) 1983-11-22

Family

ID=15159580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53135776A Expired JPS5852456B2 (en) 1978-11-06 1978-11-06 Continuous casting method for undeoxidized steel

Country Status (2)

Country Link
JP (1) JPS5852456B2 (en)
CA (1) CA1152723A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142751A (en) * 1981-02-27 1982-09-03 Nippon Steel Corp Production of bloom and billet of weak disoxidized steel having sound surface layer part by continuous casting machine
JPS5884648A (en) * 1981-11-16 1983-05-20 Nippon Steel Corp In-mold electromagnetic stirring method in continuous casting
JPS59101263A (en) * 1982-12-02 1984-06-11 Kobe Steel Ltd Electromagnetically stirring method of molten steel in continuous casting

Also Published As

Publication number Publication date
JPS5564953A (en) 1980-05-16
CA1152723A (en) 1983-08-30

Similar Documents

Publication Publication Date Title
JP4495455B2 (en) Steel strip casting
KR102490142B1 (en) continuous casting
EP0027510A1 (en) Bismuth containing steel
JPS5852456B2 (en) Continuous casting method for undeoxidized steel
JPS58148055A (en) Method for electromagnetic stirring in casting mold in horizontal continuous casting
JPH0215856A (en) Method of cooling continuous casting metallic product
US4298050A (en) Process for continuous casting of a slightly deoxidized steel slab
JP4203167B2 (en) Continuous casting method for molten steel
JP3283746B2 (en) Continuous casting mold
JP3152276B2 (en) Continuous casting method of SUS304 stainless steel
US2510154A (en) Process for treatment of molten stainless steel
JP3502830B2 (en) Casting method of aluminum deoxidized steel
JP4330518B2 (en) Continuous casting method
JP2545588B2 (en) Casting method for ultra low carbon titanium killed steel
JPS5924903B2 (en) Continuous casting method for weakly deoxidized steel slabs
JP2991073B2 (en) Wide thin slab casting method
JP3234964B2 (en) Mold powder for continuous casting and continuous casting method
JPH09239494A (en) Discharge runner in the bottom pouring method
KR840001144B1 (en) Process for continuous casting of a slightly deoxidized steel slab
JPH11342456A (en) Continuous casting of dissimilar steel types with small component mixing range
JPH02247052A (en) Continuous casting method for slabs for thin steel sheets
CN118023490A (en) Continuous casting method of ultra-thick martensitic stainless steel
JP2024040078A (en) Ingot casting method
JP3643460B2 (en) Continuous casting mold and continuous casting method
JPH07124716A (en) Continuous casting method