JPS5851099B2 - Pre-cast concrete - Google Patents
Pre-cast concreteInfo
- Publication number
- JPS5851099B2 JPS5851099B2 JP13193575A JP13193575A JPS5851099B2 JP S5851099 B2 JPS5851099 B2 JP S5851099B2 JP 13193575 A JP13193575 A JP 13193575A JP 13193575 A JP13193575 A JP 13193575A JP S5851099 B2 JPS5851099 B2 JP S5851099B2
- Authority
- JP
- Japan
- Prior art keywords
- members
- precast concrete
- concrete
- beam member
- slab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Joining Of Building Structures In Genera (AREA)
Description
【発明の詳細な説明】
この発明は単独又は組み合わせ、或いは一部スラブを含
むプレキャストコンクリート小梁部材(以下20部材と
いう)と鉄骨コンクリート大梁、プレハブ鉄筋コンクリ
ート大梁、鉄筋コンクリート大梁(以下架構大梁という
)とを一体的に架構することを目的とした20部材と大
梁との組立架構工法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention uses precast concrete beam members (hereinafter referred to as 20 members), which may be used alone or in combination, or partially include slabs (hereinafter referred to as 20 members), steel frame concrete girders, prefabricated reinforced concrete beams, and reinforced concrete beams (hereinafter referred to as frame beams). This relates to a construction method for assembling 20 members and girders for the purpose of integrally constructing the frame.
従来大梁或いは小梁のプレキャストコンクリート部材を
鉄筋コンクリート構造柱体、或いは大梁体と施工順次に
よる応力分布を合理的に組合せるプレキャストコンクリ
ート部材の組立架構工法はすでに提案されている。A construction method for assembling precast concrete members has already been proposed, which rationally combines precast concrete members such as large beams or small beams with reinforced concrete structural columns or large beams to achieve stress distribution according to the construction sequence.
その要旨は、接合個所を少なくする事、並びに接合仕口
を簡単にする事であるが、支持用架設材に鉄骨柱又は鉄
骨横架材を使用することによっている。The gist of this is to reduce the number of joints and to simplify the joints, but this is done by using steel columns or horizontal steel frames as supporting construction materials.
然るにこの発明は、仮架設支持材を使用し、架構コンク
リートの硬化後、前記支持材を撤去することによって、
架構材断面、柱、大梁に架設用鉄骨材を使用することな
く、架構大梁と、PC小梁とを、施工順次によって生ず
る応力分布(曲げモーメント)を合理的に組合わせるよ
うにした組立架構工法である。However, this invention uses temporary construction support materials and removes the support materials after the structural concrete has hardened.
An assembled frame construction method that rationally combines the stress distribution (bending moment) caused by the construction sequence of the frame girders and PC beams without using steel frames for the cross sections, columns, and girders. It is.
従って仮架設支持材を反復使用し得ると共に、断面応力
に加算しない構造材料を使用する必要がなく資材の節減
を図り、工費を低減する利点がある。Therefore, the temporary support material can be used repeatedly, and there is no need to use structural materials that do not add to the cross-sectional stress, leading to savings in materials and construction costs.
次にこの発明を第1図乃至第3図°について説明すれば
、部材中間位置に交叉小梁板を保有させた20部材10
両端部へ、同構造の他のPC部材la、lbを互に接合
できる位置に仮架設支持材4.4aにより支持すると共
に、各20部材1゜1a、1bの中央部A線上へ架構大
梁2を設げることを考慮して20部材の位置を定める。Next, the present invention will be described with reference to FIGS.
At both ends, other PC members la and lb of the same structure are supported by temporary support members 4.4a at positions where they can be joined to each other, and the frame girder 2 is attached onto the center line A of each of the 20 members 1° 1a and 1b. The positions of the 20 members are determined in consideration of the provision of
そこで現場打設コンクリートによって大梁2およびスラ
ブ3を構築する。Therefore, the girder 2 and slab 3 are constructed using concrete poured on site.
上記において、40部材1゜1a、lbおよび現場打設
コンクリートスラブの自重は仮架設支持材4,4aによ
って支持されているので、20部材には第4図中すに示
すような曲げモーメントが発生し、その中央部は(+)
の曲げモーメントになっていることがわかる。In the above, since the weight of the 40 member 1゜1a, lb and the on-site cast concrete slab is supported by the temporary support members 4 and 4a, a bending moment as shown in Fig. 4 is generated in the 20 member. And the center part is (+)
It can be seen that the bending moment is .
前記の現場打設コンクリートの硬化により、スラブおよ
び架構大梁とが一体化されるので、前記仮架設支持材を
撤去すれば、架構大梁を中央位置とする通称弥次郎兵衛
状態となり、又は構造によっては両端固定状態となり、
20部材の中央位置Aにおいて曲げモーメントはOl又
は前記と反対(−)の曲げモーメントが生じる。As the concrete poured on-site hardens, the slab and the frame girder are integrated, so if the temporary support material is removed, the structure will be in the so-called Yajirobei state with the frame girder in the center position, or depending on the structure, Both ends are fixed,
At the center position A of the 20 members, the bending moment is O1, or the opposite (-) bending moment occurs.
即ち20部材の両端接合部Bの接合状態によって決定さ
れる。That is, it is determined by the joining state of the both end joints B of the 20 members.
この接合部Bが完全接合(一体的)と仮定すれば両端固
定状態となり、Ma=Mbとなる。Assuming that this joint B is completely joined (integral), both ends are fixed, and Ma=Mb.
即ち中央部Aにおいて、スラブおよび20部材1の固定
荷重(自重)に対しての曲げモーメントは0となる。That is, in the central portion A, the bending moment with respect to the fixed load (self-weight) of the slab and the 20 member 1 becomes 0.
次に各20部材の接合部Bをビン状接合、例えば鉄骨接
合法とした場合、なる。Next, when the joint part B of each of the 20 members is made into a bottle-shaped joint, for example, by a steel frame joint method, the following results will be obtained.
換言すれば、20部材の架設時並びに積載荷重状態を合
成して考慮した応力は最も合理的な分布を選ぶことが可
能となり、最も合理的な20部材の断面を設計すること
ができる。In other words, it becomes possible to select the most rational distribution of stress by combining and considering the conditions of the 20 members during construction and the live load, and it is possible to design the most rational cross section of the 20 members.
尚上記実施例は、プレストレスドエ法を20部材の軸方
向に採用し、中間位置交叉小梁枝は鉄筋コンクリート構
造としているが、この交叉する小梁方向にもボストテン
ションプレストレスドエ法によることで交叉梁を有効に
形成させることができる。In the above embodiment, the prestressing method was applied in the axial direction of the 20 members, and the intersecting small beam branches at intermediate positions were made of reinforced concrete. Cross beams can be effectively formed.
またスラブはプレキャストパネルを組込み、これを従来
工法に準じて接合することもできる。The slab can also incorporate precast panels and join them using conventional construction methods.
然し乍ら小規模の場合にはむしろ鉄筋コンクリート構造
で充分の場合もある。However, in small-scale cases, a reinforced concrete structure may be sufficient.
次に第3図の実施例においては、第1図の実施例の鉄筋
コンクリート大梁に代えて鉄骨5を用いたものである。Next, in the embodiment shown in FIG. 3, a steel frame 5 is used in place of the reinforced concrete beam of the embodiment shown in FIG.
この場合には鉄骨5の上面と、20部材1の下面との間
に若干の隙間を設け、当初20部材の中央部で下端にモ
ーメントを生せしめ、然る後前記隙間Cにモルタルをグ
ラウトして充填させれば前記第2図の実施例と同様に第
4図のような応力関係を得ることができる。In this case, a slight gap is provided between the upper surface of the steel frame 5 and the lower surface of the 20 members 1, a moment is initially generated at the lower end at the center of the 20 members, and then mortar is grouted into the gap C. If it is filled with the same amount of water, the stress relationship as shown in FIG. 4 can be obtained similarly to the embodiment shown in FIG. 2.
尚この場合にはピーシ−鋼棒6によって20部材1と鉄
骨大梁5とを連結させる必要があるが、鉄骨鉄筋コンク
リートにすれば鋼棒による連結の必要はない。In this case, it is necessary to connect the 20 members 1 and the steel girder 5 using the PC steel rods 6, but if steel reinforced concrete is used, there is no need for the connection using the steel rods.
次に第5図の実施例は20部材7の交叉小梁板の方向を
、架構大梁の方向りと45度にした場合であり、接合工
法は前記実施例と同様である。Next, the embodiment shown in FIG. 5 is a case where the direction of the intersecting beam plates of the 20 members 7 is set at 45 degrees with respect to the direction of the frame girder, and the joining method is the same as in the previous embodiment.
図中8は柱位置である。8 in the figure is the column position.
即ちこの発明によれば、20部材の端部又は端部に近接
して仮架設支持し、各20部材の端部な相互に接合させ
た後、前記20部材の中央部に架構大梁を設けると共に
、前記20部材と架構大梁とを現場打コンクリート打設
によって一体化すると共にスラブも設け、前記コンクリ
ートの硬化後仮架設支持材を取除くので、応力的に合理
的20部材の断面を決定し、構造材料を節減すると共に
施工を合理化し得る効果がある。That is, according to the present invention, the 20 members are temporarily installed and supported at or near the ends, and after the ends of each of the 20 members are joined to each other, a frame girder is provided at the center of the 20 members. , the 20 members and the frame girder are integrated by pouring concrete on-site, and a slab is also provided, and after the concrete hardens, the temporary support material is removed, so a stress-wise rational cross section of the 20 members is determined, This has the effect of saving structural materials and streamlining construction.
第1図はこの発明の実施例による20部材の配置状態を
示す平面図、第2図は同じく20部材、架構大梁および
スラブの関係を示す断面図、第3図は鉄骨大梁を用いた
場合の断面図、第4図は仮架設支持材を除去する前すと
除去後aの20部材のモーメント図、第5図は他の実施
20部材の配置状態を示す平面図である。
1.1a、lb・・・・・・20部材、2・・・・・・
架構大梁、3・・・・−・スラブ、4,4a・・・−・
仮架設支持材、5・・・・・・鉄骨、6・・・・・・鋼
棒、7,7a・・・−・20部材、8・・・・・・柱位
置。Fig. 1 is a plan view showing the arrangement of 20 members according to an embodiment of the present invention, Fig. 2 is a sectional view showing the relationship between the 20 members, the frame girder, and the slab, and Fig. 3 is a plan view showing the arrangement of 20 members according to an embodiment of the present invention. A cross-sectional view, FIG. 4 is a moment diagram of the 20 members before and after removal of the temporary support material, and FIG. 5 is a plan view showing the arrangement of the other 20 members. 1.1a, lb...20 members, 2...
Frame girder, 3...- Slab, 4,4a...-
Temporary construction support material, 5... Steel frame, 6... Steel bar, 7, 7a... 20 members, 8... Column position.
Claims (1)
両端部近くを、仮架設支持材により、所定の状態に支持
する第1工程と、当該プレキャストコンクリート小梁部
材の中央部に大梁を架構して、前記プレキャストコンク
リート小梁部材と二体的なコンクリートスラブを設ける
第2工程と、前記一体化したコンクリートスラブの硬化
後前記第1工程における仮架設支持材を撤去する第3工
程とを結合することを特徴としたプレキャストコンクリ
ート小梁部材と大梁との組立架構工法。 2 各プレキャストコンクリート小梁部材の両端部又は
両端部近くを、仮架設支持材により、所定の状態に支持
すると共に、他の隣接プレキャストコンクリート小梁部
材端と相互対向端を接合する第1工程と、当該プレキャ
ストコンクリート小梁部材の中央部に大梁を架構して、
前記プレキャストコンクリート小梁部材と一体的なコン
クリートスラブを設ける第2工程と、前記一体化したコ
ンクリートスラブの硬化後前記第1工程における仮架設
支持材を撤去する第3工程とを結合することを特徴とし
たプレキャストコンクリート小梁部材と大梁との組立架
構工法。[Claims] 1. A first step of supporting both ends or near both ends of each precast concrete small beam member in a predetermined state using temporary construction support materials, and a large beam placed in the center of the precast concrete small beam member. a second step of constructing a concrete slab and providing a two-body concrete slab with the precast concrete beam member, and a third step of removing the temporary support material in the first step after the integrated concrete slab has hardened. An assembly construction method for precast concrete small beam members and girders, which is characterized by joining. 2. A first step in which both ends or near both ends of each precast concrete beam member are supported in a predetermined state by temporary construction supports, and the mutually opposing ends are joined to the ends of other adjacent precast concrete beam members. , a large beam is constructed in the center of the precast concrete small beam member,
A second step of providing a concrete slab integrated with the precast concrete beam member and a third step of removing the temporary support material in the first step after the integrated concrete slab hardens are combined. This is a construction method for assembling precast concrete small beam members and large beams.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13193575A JPS5851099B2 (en) | 1975-11-01 | 1975-11-01 | Pre-cast concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13193575A JPS5851099B2 (en) | 1975-11-01 | 1975-11-01 | Pre-cast concrete |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5256712A JPS5256712A (en) | 1977-05-10 |
JPS5851099B2 true JPS5851099B2 (en) | 1983-11-14 |
Family
ID=15069640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13193575A Expired JPS5851099B2 (en) | 1975-11-01 | 1975-11-01 | Pre-cast concrete |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5851099B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61190499U (en) * | 1985-05-21 | 1986-11-27 |
-
1975
- 1975-11-01 JP JP13193575A patent/JPS5851099B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61190499U (en) * | 1985-05-21 | 1986-11-27 |
Also Published As
Publication number | Publication date |
---|---|
JPS5256712A (en) | 1977-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2522714B2 (en) | Construction method of building frame | |
JP3069753B2 (en) | Construction method of framed reinforced concrete structure | |
JP2927402B2 (en) | Column-beam joint structure of concrete building | |
JPH0520817Y2 (en) | ||
JPS5851099B2 (en) | Pre-cast concrete | |
JP2884440B2 (en) | Formwork for construction of concrete prism and construction method of column using it | |
JP3317057B2 (en) | Construction method of earthquake-resistant tube frame and frame structure of high-rise office building | |
JPH042743B2 (en) | ||
JP2797023B2 (en) | Construction method of beam | |
JPH0334963Y2 (en) | ||
JP2000087313A (en) | Composite floor slab bridge and its erection method | |
JPS6198870A (en) | Construction method of precast reinforced concrete earthquake-proof wall | |
JPS5925931Y2 (en) | Composite girder using π-shaped steel | |
JP2713139B2 (en) | Floor method using steel assembly as beam form | |
JP3312945B2 (en) | Construction method of concrete structure | |
JPH0213694B2 (en) | ||
JPH04194169A (en) | Arch concrete execution form shoring | |
JPS6232303B2 (en) | ||
JPH0781355B2 (en) | Construction method of joist slab using precast concrete girder | |
CN111519758A (en) | Assembled beam column node | |
JPS645134B2 (en) | ||
JPH02282538A (en) | Construction method of reinforced concrete-made building frame | |
JPH0460183B2 (en) | ||
JP3114024B2 (en) | Frame joint structure | |
JPH1113015A (en) | Arch slab type viaduct, and its execution method |