JPS5848845A - Measuring method of sulfuric ion density - Google Patents
Measuring method of sulfuric ion densityInfo
- Publication number
- JPS5848845A JPS5848845A JP56145581A JP14558181A JPS5848845A JP S5848845 A JPS5848845 A JP S5848845A JP 56145581 A JP56145581 A JP 56145581A JP 14558181 A JP14558181 A JP 14558181A JP S5848845 A JPS5848845 A JP S5848845A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- liquid
- hydrogen sulfide
- electrode
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 19
- 239000007788 liquid Substances 0.000 claims description 59
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 49
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 49
- 229910052717 sulfur Inorganic materials 0.000 claims description 34
- 239000011593 sulfur Substances 0.000 claims description 34
- -1 sulfur ions Chemical class 0.000 claims description 33
- 239000007789 gas Substances 0.000 claims description 27
- 238000005273 aeration Methods 0.000 claims description 24
- 230000002378 acidificating effect Effects 0.000 claims description 3
- 238000007664 blowing Methods 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 3
- 238000000691 measurement method Methods 0.000 claims 1
- 239000002253 acid Substances 0.000 description 12
- 238000004140 cleaning Methods 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000010842 industrial wastewater Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910052946 acanthite Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- GTKRFUAGOKINCA-UHFFFAOYSA-M chlorosilver;silver Chemical compound [Ag].[Ag]Cl GTKRFUAGOKINCA-UHFFFAOYSA-M 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003230 hygroscopic agent Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 235000002020 sage Nutrition 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- XUARKZBEFFVFRG-UHFFFAOYSA-N silver sulfide Chemical compound [S-2].[Ag+].[Ag+] XUARKZBEFFVFRG-UHFFFAOYSA-N 0.000 description 1
- 229940056910 silver sulfide Drugs 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は被測定液中の硫黄イオン(S )濃度の測定方
法に関し、更に詳述すれば被測定法中の硫(1)
黄イオンを硫化水素として気相中に移行させ、この気相
中の硫化水素の濃度を直接硫化水素検出器で測定するこ
とによシ、被測定液と検出器との接触をなくシ、被測定
液による検出器の汚染環を防止した被測定液中の硫黄イ
オン濃度の測定方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the concentration of sulfur ions (S) in a liquid to be measured, and more specifically, to a method for measuring the concentration of sulfur ions (S) in a liquid to be measured. By directly measuring the concentration of hydrogen sulfide in the gas phase with a hydrogen sulfide detector, contact between the liquid to be measured and the detector is eliminated, and contamination of the detector by the liquid to be measured is prevented. The present invention relates to a method for measuring sulfur ion concentration in a liquid to be measured.
人口の都市への集中化や産業の発達により、環境水質や
工場排水の水質が悪化し、その溶存硫化水素濃度が増加
している。硫化水素は悪臭の原因物質であυ、この濃度
を連続的に測定することは水質汚濁に対する意味で重要
なことである。Due to the concentration of population in cities and the development of industry, the quality of environmental water and industrial wastewater is deteriorating, and the concentration of dissolved hydrogen sulfide is increasing. Hydrogen sulfide is a substance that causes bad odors, and continuous measurement of its concentration is important in terms of water pollution.
従来、被測定液中の硫化水素もしくは硫黄イオン(S2
−)濃度の測定方法としてはメチレンブルー法及び硫黄
イオン電極法が知られているが、自動分析を目的として
装置化する場合には、取扱いの簡便さから硫黄イオン電
極をセンサーとして用いたイオン電極法が広く採用され
て込る。この方法は、pi(を所定の強アルカリ性にし
た被測定液中に硫黄イオン電極と比較電極を浸漬して硫
黄イオン濃度を直接測定するものであるが、長期間の連
続(2)
運転を確保するために釉々の付帯装置を設ける必要があ
シ、このためシステム全体が大型化、複雑化し、各種ト
ラブルの発生、製造コストの増加を招来している。例え
ば被測定液は通常汚泥、油、界面活性剤その他の物質で
汚れ−(1/する場合が多いので、′r1極部がこれら
により汚染され易く、長期間の連続411]定を行なう
場合には、予め被測定液中の汚濁物を除去するP紙のフ
ィルターが不可欠なものである。しかし、被測定液の汚
染が著しい場合等にはフィルターが目詰まυを起して被
d11]定液が611]定部に送られず、欠測となる場
合がある。またフィルターで沖過しても被測定液中の汚
濁物を完全に除去し得す、電極部のよごれによりその応
答時間が長くなったり、指示誤差が大きく々っだりする
ため、定期的に電極を洗浄する自動洗浄装置を備える必
要がある。この自動洗浄装置は酸等の薬剤で洗浄する方
式のものと機械的に汚染された電極膜を研磨する方式の
ものとがあるが、前者の!場合には洗浄に使用した塩酸
、硝酸等の後処理の問題が残9、更に酸で洗浄した後の
水洗に水道水を用いると、酸の影響で水道水から塩素ガ
スが発生し、これが電極の感応素子を変質させてメータ
ーの指示誤差の原因となるため水道水は使用し得す、純
水を常時用意してお−てこれにょシミ極を洗浄する必要
があジ、その保守が大変である。Conventionally, hydrogen sulfide or sulfur ions (S2
-) The methylene blue method and the sulfur ion electrode method are known as methods for measuring concentration, but if the device is to be used for automatic analysis, the ion electrode method uses a sulfur ion electrode as a sensor due to its ease of handling. has been widely adopted. This method directly measures the sulfur ion concentration by immersing a sulfur ion electrode and a reference electrode in a sample solution made of a predetermined strongly alkaline PI (2), which ensures long-term continuous operation (2). In order to do this, it is necessary to install auxiliary equipment such as glaze, which makes the entire system larger and more complex, leading to various troubles and increased manufacturing costs.For example, the liquid to be measured is usually sludge or oil. , surfactants and other substances, the 'r1 pole part is likely to be contaminated by these substances, and when conducting long-term continuous measurements, it is necessary to check the contamination in the liquid to be measured in advance. A P paper filter is essential to remove substances. However, if the liquid to be measured is extremely contaminated, the filter may become clogged and the liquid to be measured may be sent to the constant part 611). In addition, even if the filter is used to remove contaminants from the liquid to be measured, the response time may become longer due to dirt on the electrode, and the reading error may become large. Since the electrodes get dirty, it is necessary to have an automatic cleaning device that cleans the electrodes periodically.This automatic cleaning device uses a method that cleans with chemicals such as acid, and a method that mechanically polishes the contaminated electrode film. However, in the former case, there remains the problem of after-treatment of hydrochloric acid, nitric acid, etc. used for cleaning. Water generates chlorine gas, which alters the sensitive elements of the electrodes and causes reading errors on the meter, so tap water cannot be used. Always have pure water available to clean the stained electrodes. However, maintenance is difficult.
また、後者の機械的研磨による洗浄の場合には、電極膜
を研磨すると一定の硫黄イ」ン濃度に対する電極電位が
変動して測定誤差の原因となるため、研磨毎に自動的に
校正する必要があるが、これは装置の複雑化を招くもの
である。更に、被測定液が油分や界面活性剤を含んでb
る場合には、硫黄イオン電極自体が機能しなくなるので
、これらの被測定液に対しては硫黄イオン電極法の適用
は国数である。また更に、硫黄イオン電極は基阜’it
極として比較電極を必要とするが、この比較電極の液絡
部の汚染に基づく液間電位の発生によって611」定誤
差が生じる問題がある。In addition, in the latter case of cleaning by mechanical polishing, polishing the electrode film causes the electrode potential for a constant sulfur ion concentration to fluctuate, causing measurement errors, so it is necessary to automatically calibrate each polishing. However, this increases the complexity of the device. Furthermore, if the liquid to be measured contains oil or surfactant,
In these cases, the sulfur ion electrode itself ceases to function, so the sulfur ion electrode method is applicable to these liquids in many countries. Furthermore, the sulfur ion electrode is
Although a comparison electrode is required as a pole, there is a problem in that a 611'' error occurs due to the generation of a liquid junction potential due to contamination of the liquid junction of this comparison electrode.
更に、被測定液中の硫黄イオン(s 2勺濃度はpl(
によシ変動するものであり、また硫黄イオン電極は硫黄
イオン(s 2− )にしか応答しないものであるから
、被測定液のpl(は常に一定に保たれてbる必狭がお
り、その制御が繁雑である上、わIC黄イオン71」;
極の検世線の直線領域もせまい等の問題がある。Furthermore, the concentration of sulfur ions (s) in the liquid to be measured is pl(
Also, since the sulfur ion electrode only responds to sulfur ions (s 2- ), the PL of the liquid to be measured must always be kept constant. In addition to its complicated control, IC yellow ion 71';
There are also problems such as the linear area of the polar cross-section line being narrow.
本発明は上記事情を改善するためになされたもので、仙
C黄イオンを含有する被測定液に酸性又は中性の条件下
で曝気がスを吹き込んで曝気することにより、被測定液
中の硫黄イオンを硫化水素として曝気がス中に移行させ
、次いで得られた硫化水素含有ガス中の硫化水素の濃度
を隔膜型値化水素電極等による硫化水素検出器で気相中
において直接測定する方法によシ、被測定液と硫化水素
検出器との接触による検出器の汚染を確実に防止し、長
期に亘り硫黄イオン濃度を精度良く、l〜かも高感度で
測定する、硫黄イオン濃度測定方法を提供することを目
的とするものである。The present invention has been made to improve the above-mentioned situation, and by aerating the liquid to be measured containing Sen C yellow ions by blowing aeration gas into the liquid to be measured under acidic or neutral conditions. A method in which sulfur ions are converted into hydrogen sulfide and aeration is transferred into the gas, and then the concentration of hydrogen sulfide in the obtained hydrogen sulfide-containing gas is directly measured in the gas phase using a hydrogen sulfide detector using a diaphragm type hydrogen sulfide electrode, etc. A method for measuring sulfur ion concentration that reliably prevents contamination of the detector due to contact between the liquid to be measured and the hydrogen sulfide detector, and measures sulfur ion concentration with high precision and high sensitivity over a long period of time. The purpose is to provide the following.
以下、第1図乃至第3図を用いて本発明の一実施例につ
き説明する。Hereinafter, one embodiment of the present invention will be described using FIGS. 1 to 3.
第1図は本発明の実施に使用する硫黄イオン濃度測定装
置の一例を示すもので、この装置においては被測定成分
である硫黄イオン(S )、硫化水(5)
素(H□S)等を含有する生活廃水、工場排水、河川水
等の被測定液1は試料ポンプ2によシ所定速度で吸引さ
れてパイプを螺旋コイル状に形成してなる混合器3に送
られる。4は酸タンクで、この中に収容されている酸水
溶液は酸供給ポンプ5によシ前記ポンプ2と混合器30
間において被i1+lI定液中に混合される。この被測
定液と酸水溶液との混合物は前記混合器3中を通過する
際に均一に混合されてそのpi−1が8以下、特に好ま
しくは7〜4にされ、これによシ被測定液中の硫黄イオ
ンが硫化水素になる。Figure 1 shows an example of a sulfur ion concentration measuring device used in carrying out the present invention. In this device, the components to be measured are sulfur ions (S), water sulfide (5), element (H□S), etc. A liquid to be measured 1, such as domestic wastewater, industrial wastewater, river water, etc., containing . Reference numeral 4 denotes an acid tank, and the acid aqueous solution contained therein is transferred to the acid supply pump 5 between the pump 2 and the mixer 30.
In the meantime, it is mixed into the i1+lI constant solution. The mixture of the liquid to be measured and the acid aqueous solution is uniformly mixed when passing through the mixer 3, and its pi-1 is set to 8 or less, particularly preferably from 7 to 4. The sulfur ions inside turn into hydrogen sulfide.
酸水溶液としては、塩酸、硫酸等の0.5〜2モル水溶
液が好ましい。As the acid aqueous solution, a 0.5 to 2 molar aqueous solution of hydrochloric acid, sulfuric acid, etc. is preferable.
前記混合器3を通過した被測定液は、次いでノe−ゾ部
6に送られ、ここで曝気がスが吹き込まれて被測定液中
の硫化水素が曝気がス中に移行させられる。The liquid to be measured that has passed through the mixer 3 is then sent to the nozzle section 6, where aeration gas is blown into the liquid to transfer hydrogen sulfide in the liquid to be measured into the aeration gas.
この・ぐ−ジ部6の・や−ジ管主体7は有底円筒状に形
成されておシ、その下部側壁にはpHを調整した被測定
液の流入部8が、また中間部側壁には流(6)
山部9が設けられて因る。前記混合器3全通過し、、I
−1を8以下に調節された被測定液は流入部8がら・セ
ージ管主体7内に入り、主体7内を上昇して流出部9に
至り、ここから外部に排出されることにより、層面が流
出部9以上にならないようになりている。なお、?Ir
、出部9外部9出した壱に測定液に1排水処3’ll槽
(図示せず)等に送られる。The main body 7 of the gage section 6 is formed into a cylindrical shape with a bottom, and an inflow section 8 for the pH-adjusted liquid to be measured is formed on the lower side wall thereof, and an inflow section 8 for the pH-adjusted liquid to be measured is formed on the side wall of the intermediate portion. Flow (6) This is due to the presence of a mountain portion 9. The mixer 3 completely passes through, I
The liquid to be measured, which has been adjusted to -1 to 8 or less, enters the inflow part 8 and the sage tube main body 7, rises inside the main body 7, reaches the outflow part 9, and is discharged from there to the outside, thereby reducing the layer surface. is designed so that it does not exceed 9 at the outflow portion. In addition,? Ir
The measuring liquid from the outlet 9 is sent to a wastewater treatment tank (not shown) or the like.
AIl *i: バージ管主体7」二部側壁にはアーム
IOKより送気力ポン:7″11が取付けられている。AIl *i: An air supply pump: 7" 11 is attached to the side wall of the main body 7" of the barge pipe from the arm IOK.
このポン7’llの空気吐出部には主体7の側壁を汀通
して気密に挿入されると共に、その先端側を前記被測定
液中に浸漬させだ送気・母イゾ12の後端部が連結され
ており、このボン7’llを作動させると曝気がスであ
る空気が連続的に被測定液中に送られて′$測定液を曝
気し、被測定液中の硫化水素を曝気ガス中に定量的に移
行さぜる。即ち、第2図はこの状態を示すもので、この
グラフにおいては、被測定液のpi(が8以下、%、ρ
動、下で被測定液中の硫化水素が気相中に定量的に移行
しており、Pl]が8を越えるに従かい気相中への硫化
水素の移行量が急激に減少して因ることを示して込る。The air discharge part of this pump 7'll is inserted airtightly through the side wall of the main body 7, and the rear end of the air supply/mother inlet 12 is inserted into the air discharge part of the main body 7 by immersing its tip side in the liquid to be measured. When this bong is operated, air is continuously sent into the liquid to be measured, aerating the liquid to be measured, and hydrogen sulfide in the liquid to be measured is transferred to the aeration gas. Quantitatively transfer to the inside. That is, FIG. 2 shows this state, and in this graph, pi (of the liquid to be measured is 8 or less, %, ρ
Hydrogen sulfide in the liquid to be measured quantitatively migrates into the gas phase under dynamic conditions, and as Pl] exceeds 8, the amount of hydrogen sulfide transferred into the gas phase decreases rapidly. Indicate that.
次いで、硫化水素を含んだ1城気がスは主体7内を上昇
し、生体7上部にお因で主体7内に挿入された隔膜型硫
化水素電極13′等の硫化水素検出器13と接触して、
気相中で直接曝気がス中の硫化水素濃度が測定され、硫
化水素濃度に比例した電気信号が電気部14に送られ、
記録針15にょシ記録されるが、この硫化水素濃度は被
測定液中の硫黄イオン濃度に比例するものである。Next, the gas containing hydrogen sulfide rises inside the main body 7 and comes into contact with the hydrogen sulfide detector 13 such as a diaphragm-type hydrogen sulfide electrode 13' inserted into the main body 7 due to the upper part of the living body 7. do,
The hydrogen sulfide concentration in the aeration gas is directly measured in the gas phase, and an electrical signal proportional to the hydrogen sulfide concentration is sent to the electrical section 14.
The hydrogen sulfide concentration recorded by the recording needle 15 is proportional to the sulfur ion concentration in the liquid to be measured.
前記隔膜型硫化水素電極13′は第3図に示すようにテ
フロン等の硫化水素透過性膜16内に内部液17を満す
と共に、硫化銀電極18及び銀−塩化銀電極19を配設
した公知の隔膜型硫化水素電極が好適に使用できるが、
隔膜と電極間の内部液に吸湿性のグリセリン、エチレン
グリコール等ヲ入れたもの、特に上部内部液にグリセリ
ン、エチレングリコール尋の吸湿剤及び粘度を低下させ
るだめの界面活性剤を配合した隔膜型硫化水素電極が好
ましい。As shown in FIG. 3, the diaphragm type hydrogen sulfide electrode 13' has a hydrogen sulfide permeable membrane 16 made of Teflon or the like filled with an internal liquid 17, and a silver sulfide electrode 18 and a silver-silver chloride electrode 19 arranged therein. A known diaphragm-type hydrogen sulfide electrode can be suitably used, but
A diaphragm-type sulfide containing hygroscopic glycerin, ethylene glycol, etc. in the internal liquid between the diaphragm and the electrode, especially a hygroscopic agent such as glycerin or ethylene glycol in the upper internal liquid, and a surfactant to reduce viscosity. Hydrogen electrodes are preferred.
なお、20は電極13′の像化水素濃度検出部13mよ
りも上方において主体7の側壁に穿設された排気孔で、
前記曝気ガスは硫化水素濃度を測定された後、この排気
孔から系外に放出される。In addition, 20 is an exhaust hole bored in the side wall of the main body 7 above the imaged hydrogen concentration detection part 13m of the electrode 13'.
After the hydrogen sulfide concentration of the aeration gas is measured, it is discharged from the system through this exhaust hole.
本実施例においては、被測定液に酸を加えてp)Iを調
節し、これを曝気することによシ被測定液中の硫黄イオ
ンを硫化水素にした後、曝気がス中にこれを移行させ、
硫化水素検出器で曝気ガス中の硫化水素濃度を測定する
ようにしたので、検出器は被測定液と[a接接触してい
ない。従って、検出器13が被測定液により汚染される
ことがないので、従来法に不可欠な一紙フイルターによ
るp過装置、酸洗浄あえ)いは機械的な研磨等による電
極洗浄装置及び洗浄後に使用する標準液による校正装置
、及びこれらをコントロールする制御部等が不用となり
、装置が簡略化され、製造し易く々る上、製造コストも
大幅に減少する。また、隔膜型硫化水素電極を使用する
場合には、これは複合電極であって比較11)、極がい
らないため比較電極の汚れ、保守等を考慮する必要がな
く更に電極が汚染されないから、長期間の無保守連続運
転が口]能と(9)
なる。また、前記内部液にグリセリン及び活性剤を含有
する隔膜型硫化水素電極を使用した場合には、特に測定
ブ゛−夕が安定に得られて好゛ましb0更に、被測定液
に曝気ガスを吹込み被測定液中の硫化水素を曝気がス中
に移行させることによシ下表の実測例に示すように硫化
水素を濃縮することができ、このため従来法と比較して
約30倍はど高感度となる。In this example, an acid is added to the liquid to be measured to adjust p)I, and this is aerated to convert sulfur ions in the liquid to be measured into hydrogen sulfide. to migrate;
Since the hydrogen sulfide detector measures the hydrogen sulfide concentration in the aeration gas, the detector is not in direct contact with the liquid to be measured. Therefore, since the detector 13 is not contaminated by the liquid to be measured, it is possible to use a p-filtration device using a one-paper filter, an electrode cleaning device using mechanical polishing, or an electrode cleaning device using mechanical polishing, which is indispensable in the conventional method. This eliminates the need for a calibration device using a standard solution and a control unit for controlling these, which simplifies the device, makes it easier to manufacture, and significantly reduces manufacturing costs. In addition, when using a diaphragm type hydrogen sulfide electrode, since it is a composite electrode and does not require a electrode, there is no need to consider soiling or maintenance of the reference electrode, and the electrode is not contaminated, so it can be used for a long time. Continuous operation without maintenance for a period of time becomes effective (9). In addition, when a diaphragm-type hydrogen sulfide electrode containing glycerin and an activator is used in the internal liquid, it is particularly preferable to obtain a stable measurement source. By transferring the hydrogen sulfide in the injected liquid to be measured into the aeration gas, hydrogen sulfide can be concentrated as shown in the actual measurement example in the table below, which is approximately 30 times more concentrated than the conventional method. It becomes highly sensitive.
曝気による硫化水素の濃縮状態実測例
壕だ、気相中において硫化水素a度を測定することによ
り、倹1’+t mAの面線領域が広くなる(定量範囲
本実施例f1.01〜30000mg/l、従来法3〜
3000mg/l)。Actual measurement example of the concentration state of hydrogen sulfide by aeration By measuring hydrogen sulfide a degree in the gas phase, the surface line area of 1'+t mA becomes wider (quantification range of this example f1.01 to 30000 mg/ l, conventional method 3~
3000mg/l).
更に、本実施例においてはアーム10により送気7亡ン
プ11を主体7に固定しているので、ポンプ11の振動
が適1ルに隔膜型硫化水素電極の感応素子付近の内部液
に伝わり、これを常に新しくすることに有効で、電極の
尾;答の迅速性及び内現件の向上に役立っている。Furthermore, in this embodiment, since the air supply pump 11 is fixed to the main body 7 by the arm 10, the vibration of the pump 11 is properly transmitted to the internal liquid near the sensing element of the diaphragm-type hydrogen sulfide electrode. This is effective in constantly updating the electrode tail; it is useful for improving the speed of response and the actual situation.
第4図は本発明の実施に使用する硫黄イオン濃度測定装
置の曲の例を示すもので、この装置はその下部■11[
を)9[望の被測定液中に適宜浸漬して硫黄イオン濃度
を測定する検知器型のものである。この装置はA’−)
管生体7の下端が開口しており、ここから被測定液が主
体7内に7At、入すると共に、アーム10により主体
7に取伺けられた酸供給ポンノ5の供給する酸により、
、+−iが8以下tC調節さ91、次いでl曝気さtL
るもので、その曲の構l或は前記゛実施例と同様である
ので同一部分に同一参照符号を付してその説明を省略す
る。Figure 4 shows an example of a song for the sulfur ion concentration measuring device used in the practice of the present invention.
) 9 [This is a detector type that measures the sulfur ion concentration by immersing it in the desired liquid to be measured. This device is A'-)
The lower end of the tube body 7 is open, and from there the liquid to be measured enters the main body 7 at a rate of 7 At, and the acid supplied by the acid supply pump 5, which is taken into the main body 7 by the arm 10, causes
, +-i below 8 tC adjusted 91, then l aeration tL
Since the structure of the song is the same as that of the previous embodiment, the same reference numerals will be given to the same parts and the explanation thereof will be omitted.
・f−ノ管主体7内の容#tは比較的少ないため、上記
簡単な方法により被測定液のトド■を8以下とすること
ができ、この装置は簡便に使用できるものである。- Since the volume #t in the main body 7 of the f-tube is relatively small, the number #t of the liquid to be measured can be reduced to 8 or less by the above-mentioned simple method, and this device is easy to use.
捷だ、被測定液の(J(が8以下でpi(の調節をする
必要がない場合には、酸供給ボンf 5 、酸タンク4
を装備する必要がなく、更に簡単な構造となる。If the (J() of the liquid to be measured is 8 or less and there is no need to adjust the pi(), use the acid supply bottle f5 and the acid tank 4.
There is no need to equip it, resulting in an even simpler structure.
なお、上記実施例においては曝気ガスとして空気を用い
たがこnに限られず、窒素等をrWンベから供給するよ
うにしてもよく、また]]P−ノ管鉢主体有底円筒状に
形成し、この上部に電極12を配設したが、電極部を曝
気部と別個に分離させ、曝気部で得た硫化水素を官有す
る曝気ガスをパイゾ等を介して電極部まで送り、曝気部
と異なる場所で硫化水素濃度を測定するようにしても良
く、その他本発明の要旨を逸脱しない範囲で糧々変形し
て差支えない。Although air is used as the aeration gas in the above embodiments, the aeration gas is not limited to this, and nitrogen or the like may be supplied from an rW tank. The electrode 12 was placed on top of this, but the electrode part was separated from the aeration part, and the aeration gas containing hydrogen sulfide obtained in the aeration part was sent to the electrode part through a piezo etc., and the electrode part was separated from the aeration part. The hydrogen sulfide concentration may be measured at different locations, and other modifications may be made without departing from the gist of the present invention.
而して、本発明は中性又は酸性にすることにより硫黄イ
オンを硫化水素とした被測定液を曝気ガスで曝気して、
前記硫化水素を曝気ガス中に移行さぜ、次いで得られた
硫1ヒ水素を官有する曝気ガス中の硫化水素濃度を測定
することにより、被測定液中の硫黄イオン濃度を間接的
に測定するものであるが、この場合検出器と被測定液は
直接接触(−でいないので、これにより検出器が汚染さ
れることなく、長期間感度が変ることなく安定に作動す
る上、例えば含油廃水や活性剤を含む廃水の場合のよう
に従来法では測定できない被測定液にも何ら前処理をす
ることなく適用し得る。更に、被測定液と検出器とが直
接接触することがないので、従来装置のようにp紙フィ
ルターによる沖過装置、電極洗浄装盲、校正装置及びこ
れらをコントロールする制御装置等が不用となり装置が
簡略化され、製造コストも大幅に低減する。−また、定
常範囲に関しても従来法と比較して広い面線領域を有し
ている等の%艮を有する。Therefore, in the present invention, the liquid to be measured is made neutral or acidic so that the sulfur ions are changed to hydrogen sulfide, and the liquid to be measured is aerated with an aeration gas.
The sulfur ion concentration in the liquid to be measured is indirectly measured by transferring the hydrogen sulfide into the aeration gas and then measuring the concentration of hydrogen sulfide in the aeration gas containing the obtained sulfur 1 arsenic. However, in this case, the detector and the liquid to be measured are not in direct contact (-), so the detector will not be contaminated and will operate stably for a long period of time without any change in sensitivity. It can be applied to liquids to be measured that cannot be measured using conventional methods, such as wastewater containing activators, without any pretreatment.Furthermore, since there is no direct contact between the liquid to be measured and the detector, The device is simplified and the manufacturing cost is greatly reduced because the overpass device using a P paper filter, the electrode cleaning device blind, the calibration device, and the control device that controls these are unnecessary. The method also has some disadvantages such as a wider area of surface lines compared to the conventional method.
第1図は本発明の実施に使用する硫黄イオン濃度測定装
置の一例を示すブロック図、第2図は同装置を用いて画
定した被測定液の−1と1に極電位の(13)
関係を示すグラフ、第3図は同装置に使用する隔膜型硫
化水素電極の拡大部分断面側面図、第4図は本発明の実
施に使用する硫黄イオン濃度測定装置の他の例を示すブ
ロック図である。
1・・・被i11?1J定液、4・・・酸タンク、7・
・・パーツ管主体、11・・・送気ポンプ、12・・・
送気ノ!イゾ、13・・・硫化水素検出器・
出願人 電気化学計器株式会社
代理人 弁理士 高 畑 端 世
升埋士 小 島 隆 司
(14)FIG. 1 is a block diagram showing an example of a sulfur ion concentration measuring device used in the practice of the present invention, and FIG. 2 is a (13) relationship between the polar potentials of -1 and 1 of the liquid to be measured defined using the same device. 3 is an enlarged partial cross-sectional side view of a diaphragm-type hydrogen sulfide electrode used in the device, and FIG. 4 is a block diagram showing another example of the sulfur ion concentration measuring device used in the implementation of the present invention. be. 1... Subject i11?1J constant solution, 4... Acid tank, 7.
・・Parts main body, 11 ・Air pump, 12 ・・
Air blowing! Izo, 13...Hydrogen sulfide detector・Applicant: Denki Kagaku Keiki Co., Ltd. Agent, Patent attorney: Hajime Takahata, Seishoji, Takashi Kojima (14)
Claims (1)
件下で曝気ガスを吹き込んで曝気することにより、被測
定液中の硫黄イオンを硫化水素として曝気ガス中に移行
させ、次いで得られた硫化水素含有曝気ガス中の硫化水
素の濃度を硫化水素検出器で測定することによシ被測定
液中の硫黄イオン濃度を間接的に測定することを特徴と
する硫黄イオン濃度測定方法。 2、曝気ガスが空気である特許請求の範囲第1項記載の
測定方法。 3、硫化水素検出器が隔膜型硫化水素電極である特許請
求の範囲第1項又は第2項記載の測定方法。[Claims] 1. By aerating the liquid to be measured containing sulfur ions by blowing aeration gas under acidic or neutral conditions, the sulfur ions in the liquid to be measured are transferred into the aeration gas as hydrogen sulfide. The sulfur ion method is characterized in that the sulfur ion concentration in the liquid to be measured is indirectly measured by measuring the concentration of hydrogen sulfide in the obtained hydrogen sulfide-containing aeration gas with a hydrogen sulfide detector. Concentration measurement method. 2. The measuring method according to claim 1, wherein the aeration gas is air. 3. The measuring method according to claim 1 or 2, wherein the hydrogen sulfide detector is a diaphragm-type hydrogen sulfide electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56145581A JPS5848845A (en) | 1981-09-17 | 1981-09-17 | Measuring method of sulfuric ion density |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56145581A JPS5848845A (en) | 1981-09-17 | 1981-09-17 | Measuring method of sulfuric ion density |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5848845A true JPS5848845A (en) | 1983-03-22 |
Family
ID=15388395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56145581A Pending JPS5848845A (en) | 1981-09-17 | 1981-09-17 | Measuring method of sulfuric ion density |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5848845A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60252262A (en) * | 1984-05-29 | 1985-12-12 | Agency Of Ind Science & Technol | Method for measuring hydrogen sulfide |
-
1981
- 1981-09-17 JP JP56145581A patent/JPS5848845A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60252262A (en) * | 1984-05-29 | 1985-12-12 | Agency Of Ind Science & Technol | Method for measuring hydrogen sulfide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9207204B2 (en) | Method and apparatus for determining information concerning presence of constituents of a liquid sample with oxygen demand | |
US5470484A (en) | Method and apparatus for controlling the feed of water treatment chemicals using a voltammetric sensor | |
US3948746A (en) | Dissolved oxygen probe | |
US2585811A (en) | Electrochemical method of automatically determining available chlorine in an aqueous liquid | |
JPS5848845A (en) | Measuring method of sulfuric ion density | |
JPH11118750A (en) | Reference electrode installation device | |
Briggs et al. | Developments in the use of the wide-bore dropping-mercury electrode for determining dissolved oxygen and oxygen in gases | |
Durst | Sources of error in ion-selective electrode potentiometry | |
US4441979A (en) | Nutating probe for gas analysis | |
US3523872A (en) | Gas analysis | |
JP3497806B2 (en) | Water quality monitoring device | |
JPS588744B2 (en) | Ammonia nitrogen analysis method in water | |
JPH0130421B2 (en) | ||
JP3333237B2 (en) | Galvanic cell type oxygen analyzer and method of controlling this analyzer | |
Thompson et al. | On-line sensors in industrial water analysis | |
Comer | pH and ion-selective electrodes | |
Morgan et al. | Determination of Oxygen Uptake Rate by Polarographic Method | |
KR0177196B1 (en) | Sensor for dissolved oxygen using ph-isfet | |
JPS6013254A (en) | Detection of contamination for flow through type analyzer | |
JP2003207481A (en) | Electrolyte measuring device | |
SU1481666A1 (en) | Method and apparatus for sodium ion concentration | |
JPH0134116Y2 (en) | ||
Ivaska | Electroanalysis. Potentiometric sensors in on-line applications | |
SU1087866A1 (en) | Electrochemical device for measuring concentration of gaseous fluoride compounds | |
JPS6154440A (en) | Hydrazine concentration meter |