KR0177196B1 - Sensor for dissolved oxygen using ph-isfet - Google Patents
Sensor for dissolved oxygen using ph-isfet Download PDFInfo
- Publication number
- KR0177196B1 KR0177196B1 KR1019940027533A KR19940027533A KR0177196B1 KR 0177196 B1 KR0177196 B1 KR 0177196B1 KR 1019940027533 A KR1019940027533 A KR 1019940027533A KR 19940027533 A KR19940027533 A KR 19940027533A KR 0177196 B1 KR0177196 B1 KR 0177196B1
- Authority
- KR
- South Korea
- Prior art keywords
- dissolved oxygen
- sensor
- ion
- working electrode
- oxygen sensor
- Prior art date
Links
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 239000001301 oxygen Substances 0.000 title claims abstract description 48
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 48
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 22
- 238000001139 pH measurement Methods 0.000 claims abstract description 13
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 11
- 230000005669 field effect Effects 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 108010093096 Immobilized Enzymes Proteins 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 235000012206 bottled water Nutrition 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
본 발명은 감이온 전계효과 트랜지스터 pH 센서를 이용한 새로운 용존산소센서에 관한 것으로, 감이온 전계효과 트랜지스터의 pH 센서의 pH 감지게이트 주위에 백금 등으로 작업전극을 형성하고 그 백금작업 전극에 용존산소의 환원전위를 인가하면 용존산소의 농도에 비례하는 OH-이온이 발생하여 pH 가 변화하므로 이 pH 변화에 의해 용존산소의 농도를 측정할 수 있도록 하여 기존의 산소센서보다 소형화가 가능하면서도 양호한 신호소음율을 갖는 새로운 용존산소센서를 제공할 수 있다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new dissolved oxygen sensor using a pH sensor of a ion ion field effect transistor, wherein a working electrode is formed around a pH sensing gate of a pH sensor of a ion ion field effect transistor using platinum or the like. When the reduction potential is applied, OH-ion is generated in proportion to the concentration of dissolved oxygen, and the pH changes. Therefore, the dissolved oxygen concentration can be measured by this pH change. A new dissolved oxygen sensor can be provided.
Description
제1도의 (a)는 본 발명의 실시예의 용존산소센서의 평면도이고,(A) of FIG. 1 is a plan view of the dissolved oxygen sensor of the embodiment of the present invention,
(b)는 (a)의 A-A' 선 단면도이며,(b) is sectional drawing along the line A-A 'of (a),
제2도는 본 발명의 용존산소센서의 회로도를 나타낸 도면이고,2 is a view showing a circuit diagram of the dissolved oxygen sensor of the present invention,
제3도는 본 발명의 실시예의 용존산소센서의 -0.6V 전압펄스의 인가 개시와 제거에 따른 시간응답을 나타낸 도면.3 is a view showing the time response according to the start and removal of the -0.6V voltage pulse of the dissolved oxygen sensor of the embodiment of the present invention.
제4도는 시판되는 생수(mineral water)에서 측정된 용존산소의 검정선도이다.4 is a calibration diagram of dissolved oxygen measured in commercial mineral water.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
1 : 소스(접점) 2 : 실리콘기판(접점)1: source (contact) 2: silicon substrate (contact)
3 : 백금작업전극(접점) 4 : 드레인(접점)3: platinum working electrode (contact) 4: drain (contact)
5 : pH 감지게이트 6 : pH 감지층(질화실리콘)5: pH sensing gate 6: pH sensing layer (silicon nitride)
7 : 이산화실리콘(SiO2)층 8 : 기준전극7 silicon dioxide (SiO 2) layer 8 reference electrode
본 발명은 감이온 전계효과 트랜지스터 pH 센서(이하, pH-ISFET)를 이용한 새로운 용존산소센서, 보다 상세하게는 pH-ISFET의 pH 감지게이트위에 형성된 백금이나, 금, 은 등으로된 작업전극에 용존산소의 환원 전위를 인가하면 용존산소의 농도에 비례하는 OH-이온이 발생하여 pH 가 변화하므로, 이 pH 변화에 의해 용존산소를 측정하는 새로운 용존산소센서에 관한 것이다.The present invention is a new dissolved oxygen sensor using a ion-sensing field effect transistor pH sensor (hereinafter referred to as pH-ISFET), more specifically dissolved in a working electrode made of platinum, gold, silver, etc. formed on the pH sensing gate of the pH-ISFET. The application of a reduction potential of oxygen generates OH- ions in proportion to the concentration of dissolved oxygen and thus changes the pH. Therefore, the present invention relates to a new dissolved oxygen sensor for measuring dissolved oxygen due to this pH change.
의료진단이나, 환경관리 등의 여러분야에서 용존산소의 측정은 매우 중요하다. 현재까지 전류 측정 출력(amperometric output)을 제공하는 클라크(Clark)형 용존산소센서[M. Koudelka, Sensors and Actuators, 9(1986) 249-258]가 이 분야에서 널리 이용되고 있으며, 이 클라크형 센서 표면에 유기물질을 산화시키는 고정화 효소막을 부착함으로써 바이오 센서용 변환기(transducer)에도 응용되고 있다.The measurement of dissolved oxygen is very important for medical diagnosis and environmental management. To date, Clark-type dissolved oxygen sensors provide amperometric outputs [M. Koudelka, Sensors and Actuators, 9 (1986) 249-258] are widely used in this field, and are also applied to biosensor transducers by attaching immobilized enzyme membranes to oxidize organic materials on the surface of the Clark-type sensors. .
통상적인 전류 측정용 클라크형 센서는 작업전극(음극, 일반적으로 백금)이 기준전극(음극, 일반적으로 은/염화은)에 대하여 산소환원전위(일반적으로 -0.6V)로 유지될 때 작업전극상의 다음과 같은 반응에 의해 산소분자를 환원시킨다.Conventional current-measuring Clark type sensors have the following characteristics on the working electrode when the working electrode (cathode, typically platinum) is held at the oxygen reduction potential (typically -0.6 V) relative to the reference electrode (cathode, usually silver / silver chloride). Oxygen molecules are reduced by a reaction such as
측정 가능한 전류가 두전극 사이에 흘러서 용존산소의 농도와 관계가 있는 전류의 출력을 제공한다. 이 전류의 측정은 용존산소의 농도를 결정하게 해준다.A measurable current flows between the two electrodes to provide an output of current that is related to the concentration of dissolved oxygen. The measurement of this current allows the determination of the dissolved oxygen concentration.
빠른 응답과 온-라인(on-line) 측정을 위한 이들 화학적 센서의 소형화에 대한 관심이 증가하고 있으며 집적화 기술과 마이크로 기계가공기술을 사용함에 의해 그들을 소형화하기 위한 많은 노력이 기울여져 왔다. 스즈끼 등은 실리콘 기판을 엣칭하여 형성된 V형태의 홈안에 내부 전해질을 채우고 전해질층 위에 가스 투과막을 딥코팅(dip-coating)함으로써 소형 클라크형 산소센서를 일회용으로 만들었다(H.Suzuki, A.Sugama, N.Kojima, Sensors and Actustors, B2(1990) 297-303, H.Suzuki, N.Kojima, A.Sugama, F.Takei, K.Ikegami, Sensors and Actuators, B1(1990) 528-532). 검브레히트 등과 쯔카다 등은 폴리이미드로 만들어진 마이크로 풀에 내부 전해질과 가스투과막을 배치하려고 애써왔다(W.Gumbrecht, D.Peter, W.Schelter, W.Erhardt, J.Henke, J.Steil, U.Sykora, Sensors and Acturators B18-19(1994) 704-708, K.Tsukada, Y.Miyahara, Y.Shibata, H.Miyagi, Sensors and Actuators, B2(1990) 291-295). 아퀸트등은 평면 집적화 기술에 적합한 전체 조립공정을 만들기 위하여 감광성 고분자 가스 투과막과 내부 전해질 겔을 사용하였다(Ph. Arquint, A.vandenBerg, H.van der Schoot, N.F. de Rooji, H.Buhler, W.E.Morf, L.F.J.Durselen, Sensors and Acturators, B13-14(1993) 340-344).There is a growing interest in miniaturizing these chemical sensors for fast response and on-line measurements, and much effort has been made to miniaturize them by using integration and micromachining techniques. Suzuki et al. Made a small Clark type oxygen sensor disposable by filling an internal electrolyte in a V-shaped groove formed by etching a silicon substrate and dip-coating a gas permeable membrane on the electrolyte layer (H. Suzuki, A. Sugama, N.Kojima, Sensors and Actustors, B2 (1990) 297-303, H. Suzuki, N.Kojima, A.Sugama, F.Takei, K.Ikegami, Sensors and Actuators, B1 (1990) 528-532). Gumbrecht et al. And Tsukada have tried to place internal electrolytes and gas permeable membranes in micro-pools made of polyimide (W.Gumbrecht, D.Peter, W.Schelter, W.Erhardt, J.Henke, J.Steil, U). Sykora, Sensors and Acturators B18-19 (1994) 704-708, K. Tsukada, Y. Miyahara, Y. Shivata, H. Miyagi, Sensors and Actuators, B2 (1990) 291-295). Arquint et al. Used photosensitive polymer gas permeable membranes and internal electrolyte gels to produce a complete assembly process suitable for planar integration techniques (Ph.Arquint, A.vanden Berg, H.van der Schoot, NF de Rooji, H.Buhler, WEMorf, LFJ Durselen, Sensors and Acturators, B13-14 (1993) 340-344).
종래의 클라크형 산소센서를 소형화 함에 있어서 가스분자가 투과할 수 있는 얇은 고분자 가스 투과막 뿐만 아니라 음극과 양극사이의 내부 액체 전해질이 반드시 필요하기 때문에 어려움이 있으며 센서크기를 축소하는 것은 신호 전류량이 센서 크기와 비례하기 대문에 신호소음율(signal to noise ratio)이 낮아지는 난점이 있다.In miniaturizing the conventional Clark type oxygen sensor, it is difficult because not only a thin polymer gas permeable membrane through which gas molecules can permeate, but also an internal liquid electrolyte between the cathode and the anode is required. Due to its proportionality, there is a difficulty in lowering the signal to noise ratio.
이에 본 발명은 마이크로 클라크형 산소센서의 위와 같은 문제점을 해결하기 위하여 소형화가 가능하면서도 양호한 신호소음율을 갖는 새로운 용존산소센서를 제공하는 것을 그 목적으로 한다.Accordingly, an object of the present invention is to provide a new dissolved oxygen sensor capable of miniaturization and having a good signal noise rate in order to solve the above problems of the micro-crack type oxygen sensor.
본 발명은 전류측정센서(클라크형 산소센서)와 전위차 측정센서(pH-ISFET)의 조합원리를 이용하여 새로운 용존산소센서를 개발한 것으로서, pH-ISFET의 pH 감지 게이트 가까이에 위치한 백금등으로 된 작업전극은 용존산소를 환원시켜서 pH변화를 일으키며, pH-ISFET는 이 pH변화를 검출함으로써 용존산소의 농도를 측정할 수 있는 것이다. 이 pH-ISFET는 pH 감지게이트 근처의 백금등으로 된 작업전극 사용여부에 따라 pH 센서(사용하지 않는 경우)나 용존산소센서(사용하는 경우)로서 작용할 수 있는 특성이 있다.The present invention has developed a new dissolved oxygen sensor using a combination of a current measuring sensor (Clark type oxygen sensor) and a potential difference measuring sensor (pH-ISFET), which is made of a platinum lamp located near the pH sensing gate of the pH-ISFET. The working electrode reduces the dissolved oxygen to cause a pH change, and the pH-ISFET can measure the dissolved oxygen concentration by detecting this pH change. This pH-ISFET has the property of acting as a pH sensor (if not used) or a dissolved oxygen sensor (if used), depending on the use of a working electrode made of platinum or the like near the pH sensing gate.
이하, 본 발명의 실시예를 첨부도면에 의해 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with the accompanying drawings.
제1도는 pH-ISFET의 pH 감지게이트(5)를 둘러 싸고 있는 백금등으로 된 작업 전극(3)을 보여주는 본 발명의 실시예의 용존산소센서의 평면도 및 단면도이다. 이 pH-ISFET는 실리콘기판(2)에 형성된 소스접점(1)과 드레인 접점(4), 실리콘기판(2) 위에 증착된 이산화실리콘층(7), 질화실리콘(Si3N4)으로 된 pH감지층(6), 소스접점(1)과 드레인접점(4) 사이의 pH 감지게이트(5)를 포함하여 구성된다.1 is a plan view and a cross-sectional view of a dissolved oxygen sensor of an embodiment of the present invention showing a working electrode 3 made of platinum lamp surrounding a pH sensing gate 5 of a pH-ISFET. The pH-ISFET comprises a source contact 1 and a drain contact 4 formed on the silicon substrate 2, a pH sensing layer made of a silicon dioxide layer 7 deposited on the silicon substrate 2, and silicon nitride (Si3N4). 6) and a pH sensing gate 5 between the source contact 1 and the drain contact 4.
제2도는 본 발명의 실시예의 용존산소센서의 회로도를 개략적으로 나타낸다.2 schematically shows a circuit diagram of the dissolved oxygen sensor of the embodiment of the present invention.
통상의 전류측정용 클라크형 센서와 같은 방식으로, 백금등으로 된 작업전극(3)이 기준전극(8)(양극, 은/염화은)에 대하여 산소의 환원전위(일반적으로 -0.6V)를 가질 때 백금 등으로 된 작업전극(음극) 표면에서 산소가 다음과 같이 반응하여 환원된다.In the same manner as a conventional Clark type sensor for current measurement, the working electrode 3 made of platinum or the like has a reduction potential of oxygen (typically -0.6 V) relative to the reference electrode 8 (anode, silver / silver chloride). When oxygen is reacted on the surface of the working electrode (cathode) made of platinum or the like, it is reduced as follows.
[반응식 1]Scheme 1
두 전극 사이의 전류의 흐름과 수산기 이온 발생에 따른 pH 변화가 동시에 일어난다. 통상의 클라크형 산소센서는 전류의 흐름을 측정함으로써 용존산소의 농도를 결정하는 반면, 본 발명에서는 pH 변화가 중요하다. 산소환원에 기인하는 pH 변화는 pH 감지게이트 근처의 작은 국소 영역에서 발생한다. pH 센서로서 잘 알려진 pH-ISFET는 용존산소의 농도와 비례하는 pH 변화를 검출하는 것이다.The flow of current between the two electrodes and the pH change due to hydroxyl ion generation occur simultaneously. While the conventional Clark type oxygen sensor determines the concentration of dissolved oxygen by measuring the flow of current, the pH change is important in the present invention. The pH change due to oxygen reduction occurs in a small local area near the pH sensing gate. A pH-ISFET, well known as a pH sensor, detects pH changes that are proportional to the concentration of dissolved oxygen.
제3도는 본 발명의 실시예의 용존산소센서의 전형적인 시간응답을 나타낸 것으로서, 전압펄스 인가전의 평탄한 신호는 측정용액의 초기 pH를 나타낸다. 산소 환원에 따른 pH 감지게이트의 pH 변화에 상응하는 전압변동은 0.6V 전압펄스가 작업전극(3)에 인가될 때 발생하기 시작한다. 그 전압출력은 약 1분후에 안정상태에 도달하고 펄스가 제거되었을 때 초기 위치로 돌아간다. 제4도에서 볼 수 있듯이 시판되는 생수에서 0.5ppm~30ppm 정도의 용존산소농도를 본 발명에 의한 용존산소센서로서 검출할 수 있었다.3 shows a typical time response of the dissolved oxygen sensor of the embodiment of the present invention, where the flat signal before applying the voltage pulse indicates the initial pH of the measurement solution. The voltage change corresponding to the pH change of the pH sensing gate due to oxygen reduction starts to occur when a 0.6V voltage pulse is applied to the working electrode 3. The voltage output reaches a steady state after about one minute and returns to its initial position when the pulse is removed. As shown in FIG. 4, the dissolved oxygen concentration of about 0.5 ppm to 30 ppm in commercially available bottled water was detected as the dissolved oxygen sensor according to the present invention.
본 발명은 공지된 클라크형 산소센서의 문제점인 소형화의 어려움과 소형화에 따라 신호소음율이 저하하는 문제점을 극복할 수 있고, 더우기 본 발명은 pH 감지게이트 근처의 백금 등으로 된 작업전극이 사용되는지의 여부에 따라 pH 센서(사용않는 경우)나 용존산소센서(사용하는 경우)로서 사용될 수 있기 때문에 더욱 유용하다.The present invention can overcome the difficulty of miniaturization and the problem that the signal noise rate decreases with the miniaturization, which is a problem of the known oxygen-type oxygen sensor, and moreover, the present invention relates to whether a working electrode made of platinum or the like near the pH sensing gate is used. It is more useful because it can be used as a pH sensor (if not used) or a dissolved oxygen sensor (if used) depending on whether or not it is used.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940027533A KR0177196B1 (en) | 1994-10-26 | 1994-10-26 | Sensor for dissolved oxygen using ph-isfet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940027533A KR0177196B1 (en) | 1994-10-26 | 1994-10-26 | Sensor for dissolved oxygen using ph-isfet |
Publications (1)
Publication Number | Publication Date |
---|---|
KR0177196B1 true KR0177196B1 (en) | 1999-05-15 |
Family
ID=19396038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019940027533A KR0177196B1 (en) | 1994-10-26 | 1994-10-26 | Sensor for dissolved oxygen using ph-isfet |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR0177196B1 (en) |
-
1994
- 1994-10-26 KR KR1019940027533A patent/KR0177196B1/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5130009A (en) | Sensor device | |
JP3093274B2 (en) | Gas concentration measurement method and micromachining detection device for implementing the method | |
Suzuki et al. | An integrated three-electrode system with a micromachined liquid-junction Ag/AgCl reference electrode | |
US7323091B1 (en) | Multimode electrochemical sensing array | |
Poghossian et al. | Detecting both physical and (bio‐) chemical parameters by means of ISFET devices | |
Beyer et al. | Development and application of a new enzyme sensor type based on the EIS-capacitance structure for bioprocess control | |
US6021339A (en) | Urine testing apparatus capable of simply and accurately measuring a partial urine to indicate urinary glucose value of total urine | |
JP4390345B2 (en) | Uric acid measurement method using anodized diamond thin film electrode, uric acid measuring sensor and uric acid measuring apparatus using diamond thin film electrode and anodized diamond thin film electrode | |
US5385659A (en) | Reference electrode | |
US5489371A (en) | Sensor for electrochemical measurements | |
Eddowes et al. | Response of an enzyme-modified pH-sensitive ion-selective device; experimental study of a glucose oxidase-modified ion-sensitive field effect transistor in buffered and unbuffered aqueous solution | |
JP2000511640A (en) | Polarographic sensor | |
US4952300A (en) | Multiparameter analytical electrode structure and method of measurement | |
KR0177196B1 (en) | Sensor for dissolved oxygen using ph-isfet | |
Uhlig et al. | Miniaturised ion-selective sensor chip for potassium measurement in a biomedical application | |
US4798655A (en) | Multiparameter analytical electrode structure and method of measurement | |
JPH1096710A (en) | Measuring method for ion concentration | |
Zhou et al. | Microfabricated thin-film microelectrode for amperometric determination of CO2 in the gas phase | |
CA2593815A1 (en) | Amperometric sensor comprising counter electrode isolated from liquid electrolyte | |
JPH02501162A (en) | Electrochemical cell noise reduction method | |
JP2001281204A (en) | Diaphragm sensor | |
KR0168828B1 (en) | Semiconductor type dissolved gas sensor | |
GB2162997A (en) | A fluoride ion sensitive field effect transistor | |
Suzuki et al. | Performance characteristics of a urea microsensor employing a micromachined carbon dioxide electrode | |
CN217156396U (en) | Tectorial membrane multi-chamber water quality analysis sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19941026 |
|
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19941026 Comment text: Request for Examination of Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 19980114 Patent event code: PE09021S01D |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 19980429 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 19980929 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 19981117 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 19981117 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20010407 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20021115 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20031113 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20041118 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20051110 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20061110 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20061110 Start annual number: 9 End annual number: 9 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20081010 |