JPS5844221B2 - Test method for field effect semiconductor devices - Google Patents
Test method for field effect semiconductor devicesInfo
- Publication number
- JPS5844221B2 JPS5844221B2 JP3629177A JP3629177A JPS5844221B2 JP S5844221 B2 JPS5844221 B2 JP S5844221B2 JP 3629177 A JP3629177 A JP 3629177A JP 3629177 A JP3629177 A JP 3629177A JP S5844221 B2 JPS5844221 B2 JP S5844221B2
- Authority
- JP
- Japan
- Prior art keywords
- terminal
- source
- drain
- effect semiconductor
- fet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 title claims description 5
- 230000005669 field effect Effects 0.000 title claims description 4
- 238000010998 test method Methods 0.000 title 1
- 238000012360 testing method Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 3
- 230000010355 oscillation Effects 0.000 description 6
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
Landscapes
- Testing Of Individual Semiconductor Devices (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Junction Field-Effect Transistors (AREA)
Description
【発明の詳細な説明】
不発明は、電界効果型半導体装置(以下FETとする)
に直流を流して寿命や特性を試験する場合に適用して好
適な方法に関する。[Detailed description of the invention] The non-invention is a field effect semiconductor device (hereinafter referred to as FET)
This invention relates to a method suitable for testing the lifespan and characteristics of a material by passing a direct current through it.
一般に、FETは第1図に示す様にソース端子を共通端
子とする所謂ソース接地の状態で使用するように設計さ
れている。In general, FETs are designed to be used in a so-called source grounded state where the source terminal is a common terminal, as shown in FIG.
従って、直流通電寿命試験等、直流バイアスを印加する
だけの試験に於いてもnチャンネル型に於いてはソース
端子が負電位、ドレイン端子が正電位に、nチャンネル
型に於いてはソース端子が正電位、ドレイン端子が負電
位になる様にソース端子とドレイン端子間に直流電圧を
印加すると共にゲート端子とソース端子間に直流電圧を
印加する所謂ソース接地回路でバイアスを印加するよう
にしている。Therefore, even in a test that only applies a DC bias, such as a DC current life test, the source terminal of the n-channel type is at a negative potential and the drain terminal is at a positive potential, and the source terminal of the n-channel type is at a negative potential. A DC voltage is applied between the source terminal and the drain terminal so that the potential is positive and the drain terminal is negative, and a bias is applied using a so-called source common circuit that applies DC voltage between the gate terminal and the source terminal. .
ところで、近年、砒化ガリウム(GaAs)を用いたM
ES(メタル・セミコンダクタ)FETが高周波用のF
ETとして脚光を浴びているが、この種FETでは高周
波利得を著しく高く採っている関係で、低周波用FET
に比較すると入出力インピーダンスに関する不安定領域
が拡大され、その為、前記の如き試験に於いて直流バイ
アスを印加しただけで発振することが多い。By the way, in recent years, M using gallium arsenide (GaAs) has been developed.
ES (metal semiconductor) FET is F for high frequency.
Although it is attracting attention as an ET, this type of FET has a significantly high high frequency gain, so it is not suitable for low frequency FETs.
Compared to this, the unstable region regarding input/output impedance is expanded, and therefore, in the above-mentioned tests, oscillations often occur just by applying a DC bias.
このような発振を防止する為には、低周波から高周波に
至る広い周波数範囲に亘って入出力インピーダンスが不
安定領域に入らないようその入出力インピーダンスを調
整することが必要となる。In order to prevent such oscillations, it is necessary to adjust the input/output impedance so that it does not fall into an unstable region over a wide frequency range from low frequencies to high frequencies.
しかしながら、前記の如き試験に於いて入出力インピー
ダンスの調整を行なうことは甚だ困難である。However, it is extremely difficult to adjust the input/output impedance in the above-mentioned test.
即ち、その場合、個々の素子に対してインピーダンス調
整回路が必要となるから、通常、多数の素子を一括して
取り扱う前記の如き試験ではインピーダンス調整回路が
膨大なものになってしまう。That is, in that case, since an impedance adjustment circuit is required for each element, the impedance adjustment circuit becomes enormous in the above-mentioned test in which a large number of elements are usually handled at once.
また、若し一個の素子が発振した場合、同一電源を使用
している他の素子も発振を起す可能性が大きい。Further, if one element oscillates, there is a high possibility that other elements using the same power source will also oscillate.
本発明は、高周波利得を大きく採ったGaAs・MES
−FETであっても、入出力インピーダンス調整回路
を要することなく発振を抑制し、極めて安定な状態で前
記の如き直流通電の試験を行ない得るようにするもので
あり、以下これを詳細に説明する。The present invention is based on GaAs MES with large high frequency gain.
- Even with FETs, oscillation is suppressed without requiring an input/output impedance adjustment circuit, and the above-mentioned DC current test can be performed in an extremely stable state.This will be explained in detail below. .
本発明では、FETに於いて、ソース端子を共通端子と
する所謂ソース接地としても、ドレイン端子を共通端子
とする所謂ドレイン接地としても、その動作原理は不変
である旨の知見が基本になっている。The present invention is based on the knowledge that the operating principle remains the same whether the FET is connected to a so-called source grounded FET, in which the source terminal is a common terminal, or to a so-called drain grounded FET, in which the drain terminal is a common terminal. There is.
さて、GaAs−MES−FETを等何回路で表わすと
第2図に見られる通りである。Now, the GaAs-MES-FET can be expressed as an equal circuit as shown in FIG.
第2図に於いて、Sはソース端子、Dはドレイン端子、
Gはゲート端子、C1〜C5は容量、L。In Figure 2, S is the source terminal, D is the drain terminal,
G is a gate terminal, C1 to C5 are capacitors, and L.
〜L3は内部リードのインダクタンスをそれぞれ示す。~L3 indicates the inductance of the internal lead, respectively.
尚、C3〜G5はパッケージの端子間容量である。Note that C3 to G5 are capacitances between terminals of the package.
このようなFETに於いては、ソース接地回路に於ける
高周波利得を向上する為、通常法の如き設計をしている
。Such FETs are designed in a conventional manner in order to improve the high frequency gain in the common source circuit.
。即ち
であり、入出方間容量C2,C5、接地端子Sに至るイ
ンダクタンスL1を極力小さくしているものである。. That is, the input and output capacitances C2 and C5 and the inductance L1 leading to the ground terminal S are made as small as possible.
本発明は、直流通電試験するに際し、第3図に示す如<
FETのドレイン端子りを共通端子として接地して、F
ETの動作原理を変更することなく利得の低下をはかり
、発振を防止している。In the present invention, when conducting a DC current test, as shown in FIG.
Ground the drain terminal of the FET as a common terminal, and
The gain is reduced and oscillation is prevented without changing the operating principle of the ET.
即ち、第2図の等何回路にてドレイン端子りを共通端子
として接地し、nチャンネル型に於いてはソース端子S
が正電位、ドレイン端子りが負電位に、pチャンネル型
に於いてはソース端子Sが負電位、ドレイン端子りが正
電位になる様にソース端子Sとドレイン端子り間に直流
電圧を印加すると共に、ゲート端子Gとドレイン端子り
間に直流電圧を印加して試験を行なう。That is, in the circuit shown in Figure 2, the drain terminal is grounded as a common terminal, and in the n-channel type, the source terminal S is grounded.
Apply a DC voltage between the source terminal S and the drain terminal so that the terminal S is at a positive potential, the drain terminal is at a negative potential, and in the case of a p-channel type, the source terminal S is at a negative potential and the drain terminal is at a positive potential. At the same time, a test is performed by applying a DC voltage between the gate terminal G and the drain terminal.
そのようにすると、入出方間容量として容量C3及びC
1が入ることになり、その値はソース接地の場合の10
倍以上に達する。In this case, the capacitance C3 and C
1 will be entered, and its value is 10 in the case of a common source.
reach more than double.
また、接地される端子に於けるインダクタンスはL2に
なるからソース接地の場合より大きくなる。Furthermore, since the inductance at the grounded terminal is L2, it is larger than in the case of the source being grounded.
これ等の結果、高周波利得は大幅に減少し、入出力イン
ピーダンスに於ける不安定領域は狭くなって発振は防止
される。As a result of these, the high frequency gain is significantly reduced, the unstable region in the input/output impedance is narrowed, and oscillation is prevented.
以上の説明で判るように、本発明に依れば、FETを試
験するに際し、単に直流バイアスのかけ方のみを変える
だけで、FETの動作原理に何等の影響も及ぼすことな
く高周波利得を低下させ、発振を防止することができる
ので、実際の回路の如く精密に制御された回路に適用し
なくても、また、入出力インピーダンス調整回路を付加
しなくても、多数のFETを一括して充分な試験を行な
うことができる。As can be seen from the above explanation, according to the present invention, when testing an FET, by simply changing the method of applying DC bias, the high frequency gain can be reduced without any effect on the operating principle of the FET. , it is possible to prevent oscillation, so it is possible to use a large number of FETs at once without applying it to a circuit that is precisely controlled like an actual circuit, or without adding an input/output impedance adjustment circuit. tests can be conducted.
第1図は従来の方法によるnチャンネル型FETのソー
ス接地に於けるバイアス回路、第2図はFETの等他回
路図、第3図は、本発明によるnチャンネル型FETを
ドレイン接地にした場合のバイアス回路をそれぞれ表わ
す。
図に於いて、Sはソース端子、Dはドレイン端子、Gは
ゲート端子、C1〜C3は容量、L1〜L3はインダク
タンスをそれぞれ示す。Figure 1 shows a conventional bias circuit for an n-channel FET with its source grounded, Figure 2 shows other circuit diagrams of the FET, and Figure 3 shows a bias circuit for an n-channel FET according to the present invention with its drain connected to ground. respectively represent the bias circuits. In the figure, S represents a source terminal, D represents a drain terminal, G represents a gate terminal, C1 to C3 represent capacitance, and L1 to L3 represent inductance.
Claims (1)
し、nチャンネル型に於いてはソース端子が正電位、ド
レイン端子が負電位に、nチャンネル型に於 はソー
ス端子が負電位、ドレイン端子が正電 なる様にソー
ス端子とドレイン端子間に直流 を印加すると共に、
ゲート端子ドレイン端子間に直流電圧を印加し、直流通
電寿命或いは特性等の試験:を行なうことを特徴とする
電界効果型半導体装置□の試験方法。1 The drain terminal of a field-effect semiconductor device is a common terminal, and for an n-channel type, the source terminal is at a positive potential and the drain terminal is at a negative potential; for an n-channel type, the source terminal is at a negative potential and the drain terminal is at a positive potential. Apply direct current between the source and drain terminals so that the voltage is
A method for testing a field-effect semiconductor device□, characterized by applying a DC voltage between a gate terminal and a drain terminal to test the DC current life, characteristics, etc.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3629177A JPS5844221B2 (en) | 1977-03-30 | 1977-03-30 | Test method for field effect semiconductor devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3629177A JPS5844221B2 (en) | 1977-03-30 | 1977-03-30 | Test method for field effect semiconductor devices |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS53120382A JPS53120382A (en) | 1978-10-20 |
JPS5844221B2 true JPS5844221B2 (en) | 1983-10-01 |
Family
ID=12465687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3629177A Expired JPS5844221B2 (en) | 1977-03-30 | 1977-03-30 | Test method for field effect semiconductor devices |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5844221B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7549493B1 (en) | 2006-02-28 | 2009-06-23 | Jones Daniel W | Wet belt supercharger drive for a motorcycle |
-
1977
- 1977-03-30 JP JP3629177A patent/JPS5844221B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7549493B1 (en) | 2006-02-28 | 2009-06-23 | Jones Daniel W | Wet belt supercharger drive for a motorcycle |
Also Published As
Publication number | Publication date |
---|---|
JPS53120382A (en) | 1978-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3676801A (en) | Stabilized complementary micro-power square wave oscillator | |
US4710730A (en) | Data clock oscillator having accurate duty cycle | |
US7183868B1 (en) | Triple inverter pierce oscillator circuit suitable for CMOS | |
US4599575A (en) | Broad-band differential amplifier with double reverse feed-back of common mode | |
Wei et al. | Advanced MOSFET model based on artificial neural network | |
US4315223A (en) | CMOS Operational amplifier with improved frequency compensation | |
Reynoso-Hernandez et al. | Output conductance frequency dispersion and low-frequency noise in HEMTs and MESFETs | |
US5025230A (en) | Oscillator circuit incorporated in a semiconductor circuit | |
CN114006610A (en) | Stabilizing circuit of frequency compensation circuit with self-adaptive load change | |
JPS5844221B2 (en) | Test method for field effect semiconductor devices | |
Steer et al. | High-frequency limits of millimeter-wave transistors | |
JPH0730342A (en) | Operational amplifier circuit | |
US5142241A (en) | Differential input circuit | |
JPH07162237A (en) | Oscillation circuit | |
JP2000165203A (en) | Active balun circuit | |
CN113131884A (en) | Operational amplifier and control circuit and method for improving testing speed of operational amplifier | |
JP2656683B2 (en) | Differential input circuit | |
Ongareau et al. | A non‐linear and distributed modelling procedure of fets | |
JP2000196365A (en) | High frequency isolation amplifier | |
JPH06232633A (en) | Three-terminal negative element oscillator | |
JP2001326531A (en) | Microwave / millimeter wave band oscillator | |
Jain et al. | A Ku-Band Power Amplifier MMIC For Space Application | |
JPH07106871A (en) | Operational amplifier circuit | |
KR950004280A (en) | Semiconductor Integrated Circuits Comprising Differential Amplifiers | |
KR20040038174A (en) | Digital audio amplifier capable of increasing self-oscillation frequency and reducing the number of component |