JPS5841796A - Apparatus for preparation of semiconductor single crystal - Google Patents
Apparatus for preparation of semiconductor single crystalInfo
- Publication number
- JPS5841796A JPS5841796A JP14032581A JP14032581A JPS5841796A JP S5841796 A JPS5841796 A JP S5841796A JP 14032581 A JP14032581 A JP 14032581A JP 14032581 A JP14032581 A JP 14032581A JP S5841796 A JPS5841796 A JP S5841796A
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- single crystal
- ring
- temperature
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 44
- 239000004065 semiconductor Substances 0.000 title claims abstract description 13
- 238000002360 preparation method Methods 0.000 title abstract 2
- 239000007788 liquid Substances 0.000 claims abstract description 16
- 239000002994 raw material Substances 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 11
- 239000002775 capsule Substances 0.000 claims abstract description 10
- 150000001875 compounds Chemical class 0.000 claims abstract description 9
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000009826 distribution Methods 0.000 abstract description 27
- 230000012010 growth Effects 0.000 abstract description 14
- 239000010453 quartz Substances 0.000 abstract description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 14
- 230000017525 heat dissipation Effects 0.000 abstract description 6
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000000155 melt Substances 0.000 description 13
- 230000007423 decrease Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000004033 diameter control Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000218033 Hibiscus Species 0.000 description 1
- 235000005206 Hibiscus Nutrition 0.000 description 1
- 235000007185 Hibiscus lunariifolius Nutrition 0.000 description 1
- 206010024229 Leprosy Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000021332 multicellular organism growth Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B27/00—Single-crystal growth under a protective fluid
- C30B27/02—Single-crystal growth under a protective fluid by pulling from a melt
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
GaP、GaAs、InPなどの高い分解圧を有する化
合物半導体単結晶を液体カプセル引上げ法により製造す
る装置に係り、特に形状の制御された大型単結晶を再現
性よく成長せしめることのできGap、GaAs 、
InPなどの高分解圧化合物半導体単結晶製造する方法
として液体カプセル引上げ法が知られている。この方法
を一1図の原理図を用−て説明する。すなわち田力容鶴
aυ内部のルツボ保持容器03に保持された石英ルツボ
a3内に収容した原料融液Iおよび液体カプセル剤であ
るB2O3(151fdカー・K/ヒータ08によ9加
熱融解され、原料融液Iの液面は8203 (19で覆
われる。圧力容器0υ内部はあらかじめ真空置換を行な
ったのちN2等の不活性ガスを導入する。原料融解時【
は高圧容器OD内を所定の圧力に保ち、原料の分解、蒸
発を防ぐ。この状態で種結晶りnを8203 @OJを
通してrポ料融液に浸漬して回転しながら徐々に引上げ
単結晶θgを作成する。[Detailed Description of the Invention] This invention relates to an apparatus for manufacturing a compound semiconductor single crystal having a high decomposition pressure such as GaP, GaAs, InP, etc. by a liquid capsule pulling method, and is particularly capable of growing a large-sized single crystal with a controlled shape with good reproducibility. Kotonodeki Gap, GaAs,
A liquid capsule pulling method is known as a method for producing single crystals of high decomposition pressure compound semiconductors such as InP. This method will be explained using the principle diagram shown in FIG. That is, the raw material melt I and the liquid capsule B2O3 (151fd car K/heated and melted by heater 08 for 9 minutes, The liquid level of liquid I is covered by 8203 (19).The inside of the pressure vessel 0υ is vacuum replaced in advance, and then an inert gas such as N2 is introduced.When melting the raw material [
maintains the pressure inside the high-pressure container OD at a predetermined pressure to prevent decomposition and evaporation of the raw material. In this state, the seed crystal n is immersed in the rporium melt through 8203@OJ and gradually pulled up while rotating to form a single crystal θg.
ところで、こめような液体カプセルを用いた高圧下引上
げでは熱環境は厳しく複雑になる丸め結晶成長が雌しく
、安一定した製造技術の開発が望まれている6例えばG
aPは融点(1467℃)でPの分解圧が約35気圧と
高く、通常50気圧以上の加圧下で引上げられる。この
ため不活性ガスの激しい熱対流がおこりルツボおよびB
2O3上面からの熱放散が大きくなる。加えてB2O3
は粘性が高ぐかつ熱伝導度が小さい九めB2O3中の温
度勾配は急峻となる一方で、 B2O3被覆下のGaP
融液内の温度勾配は小さくなる。B2O3中の大きな温
度勾配は成長結晶に大きな熱歪を与える結果、クラック
の発生や結晶欠陥が増大する。ヒータ等の構造を工夫し
てB2O3の温度勾配を低減することが考えられるが、
高圧容器内での有効空間の制限や高温高圧強度の維持の
問題がある。一般にはルツボをヒータの下方に位置せし
めるとか、ルツボ壁を高くするとかの手段でルツボ内保
温性を保つことが行なわれているが、前者ではルツボ底
部温度が低くなり、ルツボ底部からの融液の固化な゛ど
により結晶成長はfit t、 < hる。また後者で
はルツボ上部からの熱放散が大きくなり、原料融液内の
温度分布1寸外周部のほうが中央部の温度よりも低くな
るという不均一な分布になり易い、第2図(a)はその
温度分布例〒ある。By the way, when pulling under high pressure using a large liquid capsule, the thermal environment is harsh and complex, and the growth of rounded crystals is inevitable, so the development of a stable manufacturing technology is desired6.
aP has a melting point (1467° C.) and a high P decomposition pressure of about 35 atm, and is usually pulled under pressure of 50 atm or more. This causes intense thermal convection of the inert gas, causing crucible and B
Heat dissipation from the top surface of 2O3 increases. In addition, B2O3
GaP under the B2O3 coating has a high viscosity and low thermal conductivity, and the temperature gradient in B2O3 is steep.
The temperature gradient within the melt becomes smaller. A large temperature gradient in B2O3 gives a large thermal strain to the growing crystal, resulting in an increase in the occurrence of cracks and crystal defects. It is possible to reduce the temperature gradient of B2O3 by modifying the structure of the heater etc.
There are problems with the limitation of effective space within the high-pressure vessel and the maintenance of high-temperature and high-pressure strength. Generally, heat retention inside the crucible is maintained by placing the crucible below the heater or by raising the crucible wall, but in the former case, the temperature at the bottom of the crucible becomes low, and the melt from the bottom of the crucible drops. Due to solidification, etc., crystal growth is accelerated. In addition, in the latter case, heat dissipation from the top of the crucible becomes large, and the temperature distribution within the raw material melt tends to be uneven, with the temperature at the 1-inch outer periphery being lower than the temperature at the center, as shown in Figure 2 (a). There is an example of the temperature distribution.
このような状態で結晶を成長させた場合、次のような不
都合が生じる。すなわち種結晶付けから成長結晶が所定
の大きさになる迄のいわゆるヘッド部の成長はB2O3
中で進行するため成長結晶からの熱放散が不十分で、ヘ
ッド部を成長させるためには融液を大巾に冷却しなけれ
ばならない、ところが融液の大巾な冷却によって外囲部
に結晶が晶出浮遊する。これが成長結晶につながって単
結晶成長は阻害され乙、あるいけまたヘッド部を所定の
大きさに成長させようとしてもあるところまで径が広が
ると、成長は停止し、つづいて径の減少かしこる。融液
の冷却速度を大きくしてこの減少を押えた場合、ヘッド
部の成長が終ると、成長結晶が8203上に露呈してく
るため、今度は急激に熱放散が良くなって急成長がおこ
る。ヘッド部の成長で外囲部が過冷却になっているので
、この急成長・寸−man速され直径の制御は非常に困
難【なる。When crystals are grown under such conditions, the following disadvantages occur. In other words, the growth of the so-called head portion from seed crystal attachment until the growing crystal reaches a predetermined size is B2O3.
Because the process proceeds inside the growing crystal, heat dissipation from the growing crystal is insufficient, and in order to grow the head part, the melt must be cooled widely. crystallizes and floats. This leads to growing crystals and inhibits single crystal growth.Also, even if you try to grow the head part to a predetermined size, when the diameter expands to a certain point, growth stops and the diameter continues to decrease. . If this decrease is suppressed by increasing the cooling rate of the melt, the growing crystal will be exposed on 8203 after the growth of the head part has finished, and this time heat dissipation will suddenly improve and rapid growth will occur. . Since the outer envelope is supercooled due to the growth of the head, it is extremely difficult to control the diameter due to this rapid growth.
一度大きく変動した直径を一定に戻すことは難かしiハ
。大容睦チャージ化や大直径化する場合には、温度分布
条件制御や加熱条件制御がよ抄困難になるため上述した
問題は増々顕著になる。It is difficult to return to a constant diameter once it has fluctuated greatly. In the case of increasing the size of the charge or the diameter, the above-mentioned problems become more and more noticeable because it becomes difficult to control temperature distribution conditions and heating conditions.
したがって形状の制御された大型単結晶を再現性よく成
長せしめる丸めには、温度分布条件制御すなわち底部か
らの融液の固化が生じない十分に高いルツボ位置におい
て8203中の温度勾配の低減と、融液内温度分布の適
正化を図かる必要がある。Therefore, rounding that enables the reproducible growth of large single crystals with a controlled shape requires controlling the temperature distribution conditions, that is, reducing the temperature gradient in the 8203 at a sufficiently high crucible position to prevent solidification of the melt from the bottom. It is necessary to optimize the temperature distribution inside the liquid.
融液的温度分布適正化は第1に外囲部の温度を中央部よ
りも高くするととであり、第2には分布特性の制御化で
ある。The first step in optimizing the temperature distribution of the melt is to make the temperature of the outer part higher than that in the center, and the second step is to control the distribution characteristics.
本発明は上記事情にもとづいてなされたものであり、形
状の制御された化合物半導体の大型単結晶を再現性よく
成長せしめるために必要な@度分布条件を容易に制御し
得る半導体単結晶の製造装置を掃供するものである。The present invention has been made based on the above circumstances, and is directed to the production of a semiconductor single crystal in which the degree distribution conditions necessary for growing a large compound semiconductor single crystal with a controlled shape with good reproducibility can be easily controlled. This is to clean the equipment.
すなわち、この発明は液体カプセル引上げ法にtり高分
解圧化合物半導体単債晶を成長させる(あたり、上記原
料融液を収納するルツボの上端に外囲部をふえするリン
グを設け、かつリング上表面をルツボ保持容器の上端よ
りも下方に位置せしめることを特徴としている。That is, this invention grows a single bond crystal of a high-decomposition-pressure compound semiconductor using a liquid capsule pulling method (in this case, a ring is provided at the upper end of the crucible for storing the raw material melt, and the outer circumference is increased, and It is characterized in that the surface is located below the upper end of the crucible holding container.
上記のようにルツボの上端に外囲部をふ九するリングを
設けもことによって、ルツボ上端およびVツボ内側面か
らの熱放散が抑制される効果が多きいため、融液内温度
は外周部で中央部で中央部℃りも安定して高くなると同
時にルツボ内が保温され乙、晴果、B2O3中の温度勾
配が低減し、クラックあ発生や転位の増大も抑えられる
。tたリング上表面をルツボ保持8器の上端よりも下方
に位置tしめる構成にすることで、ルツボ保持容器壁の
アフタ7−トシールド効果によや、上記効果が顕著にな
るとともに融液内温度分布特性は中央部で平坦で外周部
で大きな立上抄勾配をもったU字型に!にろ。この、よ
うなU字型温度分布特性においては成長結晶の肩口径す
なわち直胴部形成直径が加熱制御条件等には依存せず上
記リングの内径によって唄略定まる特−門゛もち、この
着果として直径制御の安定性。再現性が得られ今ように
なる。As mentioned above, by providing a ring at the upper end of the crucible that encloses the outer circumference, heat dissipation from the upper end of the crucible and the inner surface of the V-vitreous pot is largely suppressed, so that the temperature inside the melt decreases at the outer circumference. At the same time, the temperature in the center becomes stably high, and at the same time the inside of the crucible is kept warm, the temperature gradient in B2O3 is reduced, and the occurrence of cracks and increase in dislocations are also suppressed. By configuring the upper surface of the ring to be positioned below the upper end of the crucible holder 8, the after-shielding effect of the crucible holder wall becomes more pronounced, and the temperature inside the melt decreases. The distribution characteristics are flat in the center and U-shaped with a large rising slope at the outer periphery! Niro. In this U-shaped temperature distribution characteristic, there is a characteristic that the shoulder diameter of the growing crystal, that is, the diameter of the straight body formed, is determined by the inner diameter of the ring without depending on the heating control conditions. As diameter control stability. Reproducibility is obtained and now it looks like this.
以下に本発明を図面を参照して詳細に説明する。The present invention will be explained in detail below with reference to the drawings.
この説明に当り従来の具体的な例、実施例1、実癩例2
の順に説明する。For this explanation, specific conventional examples, Example 1, Leprosy Example 2
I will explain in this order.
600gr f) GaP多結晶をチャージして直径4
51m+の単結晶を引上げるのに用いていた内径1.Q
QllI、高さg5inの石英ルツボにIIcgのGa
P多結晶をチャージしたところ、原料融液内の温度分布
は第2図Q))のような6(IQgrチャージ引上げと
は大きく異なった外囲部のシチうが中央部の温度より低
い第2図fa)のような分布となり、前述し九ルツボ内
外周部からの結晶晶出や直径の急変化が生じ正常な引上
げが不可能であった。B2O3中のたて方向の温度勾配
も600gr←ヤージの項番の〜150℃/amより屯
大きな200′0/1以上にな抄、引上げた結晶にはす
べてクラックが入っていた。600gr f) Charge GaP polycrystal to diameter 4
The inner diameter used to pull the 51m+ single crystal was 1. Q
QllI, IIcg of Ga in a quartz crucible with height g5in
When the P polycrystal was charged, the temperature distribution in the raw material melt was as shown in Figure 2 (Q)). The distribution was as shown in Figure fa), and as mentioned above, crystals crystallized from the inner and outer peripheries of the crucible and sudden changes in diameter occurred, making normal pulling impossible. The temperature gradient in the longitudinal direction in B2O3 was also 200'0/1 or more, which was ton greater than the ~150°C/am of 600gr←yage, and all of the crystals that were cut and pulled had cracks.
□ ルツボ支え軸(第1図の(9))を下方に柊動させ
ることによって、ルツボおよ゛びルツボ保持容器を下方
に位置せしめ、第2図(b)のような原料融液内の温度
分布を実現させて引上げを行ったが、チャージ量の約3
01引上げ九ところでルツボ底部から融液の固化が生じ
、引上げの継続は不可能になった@
そこで次にルツボ位置を下げずにルツボあるいはまたル
ツボ保持容器を長尺化したところ% 8203中のたて
方向の温度勾配を150 ’O以下に低減化することは
でき九が、第2図(a)のような原料融液分布特性は第
2図(b)のように改善されないばかシか外1部のtl
うがますます中央部の温度より低い異常分布が顕著にな
った。□ By moving the crucible support shaft ((9) in Figure 1) downward, the crucible and the crucible holding container are positioned downward, and the crucible and the crucible holding container are moved downward, and the crucible in the raw material melt as shown in Figure 2 (b) is moved downward. Although the temperature distribution was achieved and the increase was carried out, about 3 of the charge amount
01 At the 9th point of pulling, the melt solidified from the bottom of the crucible, making it impossible to continue pulling. Although it is possible to reduce the temperature gradient in the direction of 1 part tl
The abnormal distribution of temperature lower than that of the central part became more and more noticeable.
〔実施例1〕
600 grのGaP多結晶をチャージして直径45關
の単結晶を引上げるのに用いていた内11001^高さ
85關の石英ルツボ上面に第3図のように直径60龍の
中心孔を有するルツボ外局部をふたする石英リング(至
)を設けて1ic9のGaP多結晶を融解した場合、ル
ツボ位置を下げることなく第2図(b)のような外周部
の温度が中央部よりも高い正常な温度分布が実現1−1
かつB20ム中のたて方向の篇度勾配を159’Q/c
IrLL、(下にすることができた。また石英ルツボC
33p)るいはまたルツボ保持容器e11)を長尺化し
てB2O3中のたて方向の@度勾配を120°C/cI
IL以下に低減化しても第2図(b)のような正常な融
液内諷關分布を保っていた。この状態で引上げた結果、
ルツボ外囲部からの結晶の晶出がなくかつ急激な直径の
変動もなくほぼ50IIIの所望の大口径結晶をタラツ
クフリーで引上げることができた。[Example 1] A quartz crucible with a diameter of 60 mm was placed on the upper surface of a quartz crucible with a height of 11,001 ^ which was used to charge a 600 gr GaP polycrystal and pull a single crystal with a diameter of 45 mm as shown in Figure 3. If a 1ic9 GaP polycrystal is melted by providing a quartz ring to cover the outer part of the crucible with a central hole of Achieves normal temperature distribution higher than normal temperature distribution 1-1
And the vertical direction gradient in B20m is 159'Q/c.
IrLL, (could be lower.Also quartz crucible C
33p) Alternatively, make the crucible holding container e11) longer and increase the gradient in the vertical direction in B2O3 to 120°C/cI.
Even when it was reduced to below IL, the normal vertical distribution within the melt was maintained as shown in FIG. 2(b). As a result of lifting in this condition,
It was possible to pull a desired large-diameter crystal of approximately 50III without crystallization from the outer periphery of the crucible and without any sudden change in diameter without any tardage.
尚第3図において、(a)図はルツボの断面図、(b)
は石英リングの平面図である。In Figure 3, (a) is a cross-sectional view of the crucible, and (b) is a cross-sectional view of the crucible.
is a plan view of a quartz ring.
〔実施例2〕
第4図のtうに石英ルツボC31)の上端に設けたルツ
ボ外囲部をふたする石英リング(至)の上端をVツボ保
持容器e13の上端よりも下方に位置せしめたところ、
融液内の゛温度分布特性はv、5図のように中央部がよ
り平場1(外周部で大きな立上し勾配をもったU字型に
なった。この状態で引上げると□引上げ開始後ルツボ外
囲部からの結晶の晶出がなくかつ容易に肩口部すなわち
直胴部形成が行なわれる。[Example 2] The upper end of the quartz ring covering the crucible outer enclosure provided at the upper end of the quartz crucible C31 in Fig. 4 is positioned below the upper end of the V-vitreous holding container e13 ,
゛Temperature distribution characteristics in the melt are v, as shown in Figure 5, the central part is more flat 1 (the outer periphery has a large rise and becomes U-shaped with a slope. If you pull it in this state, □ Pulling will start. There is no crystallization from the outer surrounding area of the rear crucible, and the shoulder portion, that is, the straight body portion is easily formed.
この場合の肩口直径叶温度降下率等の加熱制御条件によ
らずに第5図の温度分布特性の外周部立上り起点間隔(
d) +C等しいところに納まった。直胴部成長のため
に融液温度の降下を続けても急激な直径の増大が起るこ
となしにしばらく結晶は肩口径と同じ直径で成長を続け
た。その後は適正な加熱制御条件によって容易に一定の
直径での引上げが可能になった。また石英リングの中心
孔を変えることによって融液内温度分布特性の外周部立
上シ起ald)を変えることができ、中心孔79mmの
石英す/グを用いることによって、従来内径tnomの
ルツボでは不可能であった直径62m、重t950gr
の大型単結晶を容易に引上げることができた。In this case, regardless of the heating control conditions such as the shoulder diameter and leaf temperature drop rate, the interval between the rise starting points at the outer periphery of the temperature distribution characteristics shown in Fig. 5 (
d) It ended up being equal to +C. Even if the melt temperature continued to decrease due to straight body growth, the crystal continued to grow at the same diameter as the shoulder diameter for a while without a rapid increase in diameter. After that, proper heating control conditions made it possible to easily pull the material to a constant diameter. In addition, by changing the center hole of the quartz ring, it is possible to change the temperature distribution characteristics in the melt (temperature distribution characteristics at the outer periphery), and by using a quartz ring with a center hole of 79 mm, it is possible to Diameter 62m, weight t950g which was impossible
It was possible to easily pull up large single crystals.
以−ト説明した如く本発明((よれば原料融液を収納す
るルツボ上端にルツボ外局部をふたするリングを設け、
かつリング上表面をルツボ保持容器の上端よりも下方に
位置せしめることによって形状の制御された大型単結晶
を再現性よく就成せしめるにTo要な温度分布条件を容
易に制御することができ、その工業−ヒの幼果1d大〜
い。更に本発明によシ従来困難でちった引上げ結晶の肩
口径の制御がほぼ自動的になされろため重鱗去等の所定
の直径制御法を有効に活用することかで話も。As explained above, the present invention (according to which a ring is provided at the upper end of the crucible for storing the raw material melt to cover the external part of the crucible,
In addition, by positioning the upper surface of the ring below the upper end of the crucible holding container, it is possible to easily control the temperature distribution conditions required to produce a large single crystal with a controlled shape with good reproducibility. Industry - Young fruit of Hibiscus 1d large ~
stomach. Furthermore, according to the present invention, the shoulder diameter of the pulled crystal, which has been difficult to control in the past, can be almost automatically controlled, so it is also possible to effectively utilize a predetermined diameter control method such as heavy scale removal.
尚上記実施例ではGaPを例にあげたが、GaAsおよ
びInP等の高分解モ化合物半導体単結晶を液体カプセ
ル引上法で製造する場合にも全く同様に適用できる。t
た同様にリング材質として石英を例にあげたが、他にカ
ーボン、アルミナ等を適宜選択できることは勿論である
。In the above embodiments, GaP was used as an example, but the present invention can be similarly applied to the production of high-resolution compound semiconductor single crystals such as GaAs and InP by the liquid capsule pulling method. t
Similarly, although quartz has been cited as an example of the ring material, it goes without saying that other materials such as carbon and alumina can be selected as appropriate.
第1図は化合物半導体単皓晶を液体カプセル引トげ法に
よゆ製造する場合の装置の原理説明図、第2図は原料融
液内のルツボ直径方向の温度分布例でfa)は結晶成長
に不適当な温度分布例、(h)は結晶成長が可能な@硬
分布例、第3図および第4図は実権例1及び2を説明す
るだめの引上装置部分岑或図、第5図は本発明に関わる
原料融液内のルツボ直径方向の傾度分布を示す図である
。
31ニルツボ保持器、
32:石英ルツボ、
33:石英ルツボ外局部をふたするリング。
代理人 弁理士 則 近 憲 佑
(は7う為1 名 )
第1図
第2図
・1.、中冒悌促
、l 、□情転1.・’H−−噸Ij、+、
1112.Ir、ルイメ第3図
第4図
第5図Figure 1 is an explanatory diagram of the principle of the apparatus for producing compound semiconductor monocrystalline crystals by the liquid capsule drawing method. Figure 2 is an example of the temperature distribution in the crucible diameter direction within the raw material melt, and fa) is the crystal (h) is an example of a temperature distribution that is inappropriate for crystal growth; (h) is an example of @hard distribution that allows crystal growth; FIGS. FIG. 5 is a diagram showing the gradient distribution in the crucible diameter direction within the raw material melt related to the present invention. 31 Nil crucible holder, 32: Quartz crucible, 33: Ring covering the external part of the quartz crucible. Agent: Patent Attorney Noriyuki Chika (1 person for 7 days) Figure 1 Figure 2/1. , Medium adventure promotion
, l , □ Change of heart 1.・'H--噸Ij,+,
1112. Ir, Ruime Figure 3 Figure 4 Figure 5
Claims (1)
晶を成長させるにあたり、上記原料融液を収納するルツ
ボの上端にルツボ内外囲部をふえするリングを設け、か
つリング上表面をルツボ保持容器の上端よりも下方に位
置せしめることを特徴とする半導体単結晶の製造装置。When growing high decomposition pressure compound semiconductor crystals by the liquid capsule pulling method, a ring is provided at the upper end of the crucible that houses the raw material melt to increase the inner and outer surroundings of the crucible, and the upper surface of the ring is placed above the upper end of the crucible holding container. 1. A semiconductor single crystal manufacturing apparatus characterized in that the semiconductor single crystal is positioned below.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14032581A JPS5841796A (en) | 1981-09-08 | 1981-09-08 | Apparatus for preparation of semiconductor single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14032581A JPS5841796A (en) | 1981-09-08 | 1981-09-08 | Apparatus for preparation of semiconductor single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5841796A true JPS5841796A (en) | 1983-03-11 |
Family
ID=15266186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14032581A Pending JPS5841796A (en) | 1981-09-08 | 1981-09-08 | Apparatus for preparation of semiconductor single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5841796A (en) |
-
1981
- 1981-09-08 JP JP14032581A patent/JPS5841796A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6046998A (en) | Single crystal pulling method and device therefor | |
EP0992618B1 (en) | Method of manufacturing compound semiconductor single crystal | |
CN111809229B (en) | Preparation method and device of indium antimonide single crystal | |
JP3152971B2 (en) | Manufacturing method of high purity copper single crystal ingot | |
JP2690419B2 (en) | Single crystal growing method and apparatus | |
JPS5841796A (en) | Apparatus for preparation of semiconductor single crystal | |
JP2758038B2 (en) | Single crystal manufacturing equipment | |
JP2814796B2 (en) | Method and apparatus for producing single crystal | |
JPH11302094A (en) | Method for manufacturing compound semiconductor single crystal | |
JP2001080987A (en) | Compound semiconductor crystal manufacturing apparatus and manufacturing method using the same | |
JP2531875B2 (en) | Method for producing compound semiconductor single crystal | |
JP2855408B2 (en) | Single crystal growth equipment | |
JP4117813B2 (en) | Method for producing compound semiconductor single crystal | |
JPH11130579A (en) | Method and apparatus for producing compound semiconductor single crystal | |
JP2757865B2 (en) | Method for producing group III-V compound semiconductor single crystal | |
JPH06183884A (en) | Production of single crystal | |
JPS63319286A (en) | Method for growing single crystal | |
JPS60122791A (en) | Pulling up method of crystal under liquid sealing | |
JPH0475880B2 (en) | ||
JPH05178684A (en) | Production of semiconductor single crystal | |
JPS63285183A (en) | Production of compound semiconductor single crystal | |
JPH061692A (en) | Compound semiconductor single crystal manufacturing equipment | |
JPH0196093A (en) | Method for pulling single crystal | |
JPH0412081A (en) | Production of single crystal of compound of group iii-v | |
JP2005132717A (en) | Compound semiconductor single crystal and its manufacturing method |