[go: up one dir, main page]

JP2758038B2 - Single crystal manufacturing equipment - Google Patents

Single crystal manufacturing equipment

Info

Publication number
JP2758038B2
JP2758038B2 JP1215943A JP21594389A JP2758038B2 JP 2758038 B2 JP2758038 B2 JP 2758038B2 JP 1215943 A JP1215943 A JP 1215943A JP 21594389 A JP21594389 A JP 21594389A JP 2758038 B2 JP2758038 B2 JP 2758038B2
Authority
JP
Japan
Prior art keywords
crystal
single crystal
crystal growth
heating element
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1215943A
Other languages
Japanese (ja)
Other versions
JPH0380181A (en
Inventor
築 片野
文夫 折戸
祐作 樋口
紳一郎 川端
文和 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP1215943A priority Critical patent/JP2758038B2/en
Publication of JPH0380181A publication Critical patent/JPH0380181A/en
Application granted granted Critical
Publication of JP2758038B2 publication Critical patent/JP2758038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は単結晶成長装置に係り、特にるつぼ内で融液
をそのまま固化させ単結晶を得る結晶成長法、例えば、
垂直ブリッジマン法において、良質な単結晶を得るため
の温度環境を精度良く形成することを可能とする単結晶
成長装置に関する。
Description: TECHNICAL FIELD The present invention relates to a single crystal growing apparatus, and particularly to a crystal growing method for solidifying a melt as it is in a crucible to obtain a single crystal, for example,
The present invention relates to a single crystal growth apparatus capable of accurately forming a temperature environment for obtaining a high quality single crystal in a vertical Bridgman method.

〔従来の技術〕[Conventional technology]

電界効果トランジスタ、ショットキーバリアダイオー
ド、集積回路(IC)等の各種半導体素子類の基板として
用いられる半導体単結晶の製造法としては融液からの結
晶成長法が主力である。融液からの結晶成長法において
は結晶成長面(固液界面)の形状を結晶成長の開始時か
ら終了時まで精密に制御することが要求される。
As a method for producing a semiconductor single crystal used as a substrate for various semiconductor elements such as a field effect transistor, a Schottky barrier diode, and an integrated circuit (IC), a crystal growth method from a melt is a mainstay. In the crystal growth method from the melt, it is required to precisely control the shape of the crystal growth surface (solid-liquid interface) from the start to the end of the crystal growth.

融液からの結晶成長法の1つである引上法ではるつぼ
の回転速度や結晶の回転速度の制御、引上速度の制御等
により結晶成長面の制御を行なっている。
In the pulling method, which is one of the methods for growing crystals from the melt, the crystal growth surface is controlled by controlling the rotation speed of the crucible, the rotation speed of the crystal, and the pulling speed.

他の結晶成長法としては、るつぼ内で融液をそのまま
固化させ、単結晶を得る垂直ボート成長法が有力であ
る。垂直ボート成長法には垂直ブリッジマン法(VB法)
及び温度勾配凝固法(VGF法)がある。前者のVB法は主
ヒーターと、るつぼとの相対的位置を機械的に変化させ
て単結晶を成長させる方法であり、後者のVGF法はヒー
ターと、るつぼの位置関係を変化させずにヒーターの温
度分布を変化させて単結晶を成長させる方法である。こ
の垂直ブリッジマン法あるいはVGF法は大口径円形ウエ
ハの製造に適している。しかしながらこのボート法は、
成長中の結晶を回転させながら融液から引上げ、固化さ
せるという引上法と比べ、静的な状態変化を特徴とする
ため、上記回転速度の制御等による結晶成長面の制御は
不可能であり、ホットゾーン構造の工夫により結晶成長
面の制御を行なっていた。
As another crystal growth method, a vertical boat growth method in which a melt is solidified in a crucible as it is to obtain a single crystal is effective. Vertical bridgeman method (VB method) for vertical boat growth method
And a temperature gradient solidification method (VGF method). The former VB method is a method of growing a single crystal by mechanically changing the relative position of the main heater and the crucible, while the latter VGF method is a method of heating the heater without changing the positional relationship between the heater and the crucible. This is a method of growing a single crystal by changing the temperature distribution. This vertical Bridgman method or VGF method is suitable for producing large-diameter circular wafers. However, this boat method
Compared to the pulling method of pulling the growing crystal out of the melt while rotating it and solidifying it, it is characterized by a static state change, so it is impossible to control the crystal growth surface by controlling the rotation speed or the like. In addition, the crystal growth surface is controlled by devising a hot zone structure.

第4図にその一例を示す(W.A.Gault et.al.J.C.G 74
(1986)491〜506頁)。第4図においてるつぼ3a内に融
液10を作製し、るつぼ底部に収容した種結晶9より上方
に向かって周期律表IIIb族およびVb族元素からなる無機
化合物半導体(以下「III−V族化合物半導体」とい
う)単結晶を固化させる(結晶10)結晶成長方法(例え
ば垂直ブリッジマン法等)において、るつぼ3aを保持す
るサセプター4aに溝12を形成し、サセプター4a近傍の熱
環境および熱流の制御を試みた例である。第5図
(a),(b)中の矢印はそれぞれ結晶成長の初期およ
び後期の熱流を示したものである。溝12を設けたサセプ
ター4aを用いることにより、結晶成長の初期において結
晶からの熱の散逸を制御することができる。すなわち、
サセプターに断熱部となる溝を設けることによりサセプ
ターを通る熱流のうち横方向への熱流を抑制し、結晶の
横方向への熱流を制御し得る。しかしながら、溝を設け
たこのようなサセプターで熱流を制御する方法では、そ
の効果は当然サセプター近傍にかぎられ、サセプターか
ら離れた場所では著しく小さくなる。第5図(b)に示
すように、サセプターから離れた、結晶成長の後期にお
いては、第5図(a)と比べ溝を設けたサセプターの効
果はほとんど無く、横方向にも大きな熱流が存在し、結
晶成長の初期と後期で結晶成長面を通る熱流に大きな差
異が生じている。
Fig. 4 shows an example (WAGault et.al. JCG 74
(1986) 491-506). In FIG. 4, a melt 10 is prepared in a crucible 3a, and an inorganic compound semiconductor (hereinafter, referred to as a “III-V compound”) composed of a group IIIb and group Vb element of the periodic table upward from the seed crystal 9 accommodated in the bottom of the crucible. In a crystal growth method (for example, a vertical Bridgman method) for solidifying a single crystal (referred to as a “semiconductor”) (eg, a vertical Bridgman method), a groove 12 is formed in a susceptor 4a holding a crucible 3a, and the thermal environment and heat flow near the susceptor 4a are controlled. This is an example of trying. The arrows in FIGS. 5 (a) and 5 (b) indicate the heat flow at the beginning and the end of the crystal growth, respectively. By using the susceptor 4a provided with the groove 12, the dissipation of heat from the crystal can be controlled in the early stage of crystal growth. That is,
By providing the susceptor with a groove serving as a heat insulating portion, the heat flow in the horizontal direction among the heat flows passing through the susceptor can be suppressed, and the heat flow in the horizontal direction of the crystal can be controlled. However, in the method of controlling the heat flow with such a susceptor provided with a groove, the effect is naturally limited only in the vicinity of the susceptor, and becomes extremely small in a place away from the susceptor. As shown in FIG. 5 (b), in the latter stage of the crystal growth away from the susceptor, the effect of the grooved susceptor has almost no effect compared to FIG. 5 (a), and a large heat flow exists in the lateral direction. However, there is a large difference in the heat flow through the crystal growth surface between the initial stage and the late stage of the crystal growth.

ところで、融液からの結晶成長において、結晶成長面
の形状は結晶成長面近傍の熱流に大きく依存しており、
結晶成長面の形状を制御するためには、結晶成長全体に
わたって熱流も制御することが必要である。
By the way, in crystal growth from the melt, the shape of the crystal growth surface greatly depends on the heat flow near the crystal growth surface,
In order to control the shape of the crystal growth surface, it is necessary to control the heat flow throughout the entire crystal growth.

上記方法による結晶成長では結晶成長後期における熱
流の制御が困難であり、結晶の品質向上のため結晶成長
全体にわたった熱流の制御方法が強く望まれている。
In the crystal growth by the above method, it is difficult to control the heat flow in the latter stage of the crystal growth, and a method of controlling the heat flow over the entire crystal growth is strongly desired for improving the quality of the crystal.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

融液からの結晶成長においては、結晶の成長面を結晶
成長全体にわたって精密に制御することが、均一で高品
質な結晶を得るために不可欠であり、そのためには結晶
を通る熱流、特に結晶成長面(固液界面)近傍を通る熱
流を精密に制御することが必要である。
In crystal growth from the melt, precise control of the crystal growth surface over the entire crystal growth is essential for obtaining uniform and high-quality crystals, and for this purpose, heat flow through the crystal, especially crystal growth It is necessary to precisely control the heat flow passing near the surface (solid-liquid interface).

しかしながら従来の方法では上記問題点を解決するの
は困難であった。
However, it has been difficult to solve the above problem by the conventional method.

本発明は均一で高品質な単結晶を製造するための単結
晶製造装置を提供することを目的とする。
An object of the present invention is to provide a single crystal manufacturing apparatus for manufacturing a uniform and high quality single crystal.

〔課題を解決するための手段〕[Means for solving the problem]

上記課題は、本発明によれば垂直に配置されたるつぼ
の底部に種結晶を収容し、その上方に原料を充填し該原
料を加熱・溶融し、この融液を固化させ単結晶を得る垂
直ブリッジマン法あるいはVGF法を実施するための単結
晶製造装置において、前記原料を加熱・溶融する主発熱
体の内側に該主発熱体に対し独立して発熱量を制御する
ことが可能な補助発熱体を前記原料融液と結晶の界面の
やや下になるように配置し、前記補助発熱体の発熱部と
結晶面との相対的な位置関係を制御することにより結晶
成長開始から終了時まで結晶成長面(固液界面)の形状
を制御する単結晶製造装置、である。
The object of the present invention is to provide a vertically arranged crucible according to the present invention in which a seed crystal is accommodated at the bottom of the crucible, a raw material is filled above the raw material, the raw material is heated and melted, and the melt is solidified to obtain a single crystal. In a single crystal manufacturing apparatus for carrying out the Bridgman method or the VGF method, an auxiliary heat source capable of controlling the amount of heat generated independently of the main heating element inside the main heating element for heating and melting the raw material. The crystal is arranged from the start to the end of crystal growth by arranging the body slightly below the interface between the raw material melt and the crystal and controlling the relative positional relationship between the heat generating portion of the auxiliary heating element and the crystal plane. This is a single crystal manufacturing apparatus for controlling the shape of a growth surface (solid-liquid interface).

〔作用〕[Action]

本発明によればるつぼの周囲に主発熱体の他に補助発
熱体を設けることによって結晶体内の熱流を制御するこ
とができるため歪の少ない単結晶を得ることができる。
According to the present invention, by providing an auxiliary heating element in addition to the main heating element around the crucible, the heat flow in the crystal can be controlled, so that a single crystal with less distortion can be obtained.

〔実施例〕〔Example〕

以下本発明の実施例を図面に基づいて詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の1実施例を示す垂直ブリッジマン法
の単結晶製造装置の縦断面模式図であり、第2図は本発
明に係る結晶成長中の熱流を説明するための模式図であ
る。
FIG. 1 is a schematic vertical cross-sectional view of a vertical Bridgman method single crystal manufacturing apparatus showing one embodiment of the present invention, and FIG. 2 is a schematic view for explaining a heat flow during crystal growth according to the present invention. is there.

第1図に示すように本発明の単結晶製造装置は公知の
垂直ブリッジマン法にほゞ類似しているが、るつぼ内の
原料を溶融する発熱体の内側にるつぼにより近接した補
助発熱体を設ける点が異なっている。
As shown in FIG. 1, the single crystal manufacturing apparatus of the present invention is almost similar to a known vertical Bridgman method, but an auxiliary heating element closer to the crucible is provided inside the heating element for melting the raw material in the crucible. The point of provision is different.

本発明の単結晶装置はグラファイトフェルト等の保温
材2を有する気密容器1内に等方性グラファイト製のサ
セプター4内に外径800mm、高さ150mmの石英製のるつぼ
3を載置し、支持軸7によりサセプター4と共にるつぼ
3を上下させる。るつぼ側辺には従来の主発熱体5の他
に補助発熱体6を設けた。
The single crystal apparatus of the present invention mounts and supports a quartz crucible 3 having an outer diameter of 800 mm and a height of 150 mm in an isotropic graphite susceptor 4 in an airtight container 1 having a heat insulating material 2 such as graphite felt. The crucible 3 is moved up and down together with the susceptor 4 by the shaft 7. An auxiliary heating element 6 was provided on the side of the crucible in addition to the conventional main heating element 5.

発熱体は等方性グラファイト製で主発熱体5の高さは
20cm、補助発熱体6の高さは4cmのものを使用した。
The heating element is made of isotropic graphite, and the height of the main heating element 5 is
The auxiliary heating element 6 having a height of 20 cm and a height of 4 cm was used.

上記ホットゾーンに外径80mm、高さ150mmの石英製の
るつぼを用いて結晶成長を行なった。原料は高純度のGa
As多結晶1.5kg,B2O3300gを用いた。
Crystal growth was performed using a quartz crucible having an outer diameter of 80 mm and a height of 150 mm in the hot zone. The raw material is high-purity Ga
1.5 kg of As polycrystal and 300 g of B 2 O 3 were used.

原料融解後7気圧のアルゴン雰囲気で成長速度3mm/h
で3インチ径の結晶を成長させることができた。
Growth rate 3mm / h in argon atmosphere at 7 atm after raw material melting
With this, a crystal having a diameter of 3 inches could be grown.

第1図は結晶育成中の図であり、るつぼ内の下方から
種結晶(GaAs)8、結晶9及び原料融液10であり、そし
てその上に封止材11が配置されている。
FIG. 1 is a view of a crystal being grown, showing a seed crystal (GaAs) 8, a crystal 9, and a raw material melt 10 from below in the crucible, and a sealing material 11 is disposed thereon.

補助発熱体6は第2図により拡大して示したように原
料融液10と結晶9の界面(固液界面)Aのやゝ下になる
ように、結晶成長全体にわたってその位置を制御した。
The position of the auxiliary heating element 6 was controlled throughout the crystal growth so as to be slightly below the interface (solid-liquid interface) A between the raw material melt 10 and the crystal 9 as shown in an enlarged manner in FIG.

第3図は本発明に係る結晶成長での発熱体の発熱量の
変化を示す図であり、 結晶成長が進行すると固化した結晶からの放熱が大き
くなるため、側面からの放熱を打ち消すために、補助発
熱体の発熱量を増加させ、結晶成長面近傍の熱量を制御
し、安定して結晶成長を行うことができた。
FIG. 3 is a diagram showing a change in the calorific value of the heating element during the crystal growth according to the present invention. As the crystal growth progresses, the heat radiation from the solidified crystal becomes large. The amount of heat generated by the auxiliary heating element was increased, the amount of heat in the vicinity of the crystal growth surface was controlled, and crystal growth could be performed stably.

〔発明の効果〕〔The invention's effect〕

結晶性の評価として、(100)面内の転位密度を測定
した。
As an evaluation of crystallinity, the dislocation density in the (100) plane was measured.

以上説明したように本発明によれば、得られたGaAs結
晶は(100)面内のエッチピット密度(EPD)が結晶全体
にわたり2×104cm-2を超える領域が減少した。しかも
面内のEPDの平均値は約1×104cm-2であり、従来の引上
法によるGaAs単結晶の1/5以下となり、良好な特性を有
し、歩留りが高い半導体装置の製造に大きく寄与するこ
とが可能となる。
As described above, according to the present invention, in the obtained GaAs crystal, the region where the etch pit density (EPD) in the (100) plane exceeds 2 × 10 4 cm −2 over the entire crystal is reduced. Moreover, the average value of the in-plane EPD is about 1 × 10 4 cm -2, which is 1/5 or less of the GaAs single crystal by the conventional pulling method, and has excellent characteristics and a high yield of semiconductor devices. Can be greatly contributed to.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の1実施例を示す垂直ブリッジマン法の
単結晶製造装置の縦断面模式図であり、 第2図は本発明による結晶成長中の熱流を説明するため
の模式図であり、 第3図は本発明による結晶成長での発熱体の発熱量の変
化を示す図であり、 第4図は従来例を説明するための縦断面模式図であり、 第5図(a)及び(b)は従来のそれぞれ結晶成長の初
期及び後期の熱流を示す模式図である。 1…気密容器、2…保温材、3…るつぼ、4…サセプタ
ー、5…発熱体、6…補助発熱体、7…支持軸、8…種
結晶、9…結晶、10…原料融液、11…封止材、12…溝。
FIG. 1 is a schematic vertical cross-sectional view of a vertical Bridgman method single crystal manufacturing apparatus showing one embodiment of the present invention, and FIG. 2 is a schematic view for explaining a heat flow during crystal growth according to the present invention. FIG. 3 is a diagram showing a change in the calorific value of the heating element during the crystal growth according to the present invention. FIG. 4 is a schematic vertical sectional view for explaining a conventional example. (B) is a schematic diagram showing the heat flow in the initial stage and the late stage of the conventional crystal growth, respectively. DESCRIPTION OF SYMBOLS 1 ... Airtight container, 2 ... Heat insulation material, 3 ... Crucible, 4 ... Susceptor, 5 ... Heating element, 6 ... Auxiliary heating element, 7 ... Supporting shaft, 8 ... Seed crystal, 9 ... Crystal, 10 ... Raw material melt, 11 ... sealing material, 12 ... groove.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川端 紳一郎 茨城県牛久市東猯穴町1000番地 三菱モ ンサント化成株式会社筑波工場内 (72)発明者 矢島 文和 茨城県牛久市東猯穴町1000番地 三菱モ ンサント化成株式会社筑波工場内 (56)参考文献 特開 昭63−270379(JP,A) 特開 昭59−30795(JP,A) 実開 昭62−83877(JP,U) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinichiro Kawabata 1000, Higashikianacho, Ushiku City, Ibaraki Prefecture Inside the Tsukuba Plant, Mitsubishi Monsanto Kasei Co., Ltd. (56) References JP-A-63-270379 (JP, A) JP-A-59-30795 (JP, A) Jpn.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】垂直に配置されたるつぼの底部に種結晶を
収容し、その上方に原料を充填し、該原料を加熱・溶融
し、この融液を固化させ単結晶を得る垂直ボート成長法
を実施するための単結晶製造装置において、前記原料を
加熱・溶融する主発熱体の内側に該主発熱体に対し独立
して発熱量を制御することが可能な補助発熱体を前記原
料融液と結晶の界面のやや下になるように設置し、前記
補助発熱体の発熱部と結晶面との相対的な位置関係を制
御することにより結晶成長開始から終了時まで結晶成長
面(固液界面)の形状を制御することを特徴とする単結
晶製造装置。
1. A vertical boat growth method for accommodating a seed crystal at the bottom of a vertically arranged crucible, filling a raw material thereabove, heating and melting the raw material, and solidifying the melt to obtain a single crystal. In the single crystal production apparatus for performing the above, an auxiliary heating element capable of controlling the amount of heat generated independently of the main heating element is provided inside the main heating element for heating and melting the raw material. And a crystal growth surface (solid-liquid interface) from the start to the end of crystal growth by controlling the relative positional relationship between the heating part of the auxiliary heating element and the crystal surface. A) controlling the shape of the single crystal.
JP1215943A 1989-08-24 1989-08-24 Single crystal manufacturing equipment Expired - Fee Related JP2758038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1215943A JP2758038B2 (en) 1989-08-24 1989-08-24 Single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1215943A JP2758038B2 (en) 1989-08-24 1989-08-24 Single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH0380181A JPH0380181A (en) 1991-04-04
JP2758038B2 true JP2758038B2 (en) 1998-05-25

Family

ID=16680830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1215943A Expired - Fee Related JP2758038B2 (en) 1989-08-24 1989-08-24 Single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2758038B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513638B2 (en) * 2005-04-18 2010-07-28 住友電気工業株式会社 Compound semiconductor crystal manufacturing equipment
FR2979357B1 (en) * 2011-08-31 2015-04-24 Commissariat Energie Atomique SYSTEM FOR MANUFACTURING CRYSTALLINE MATERIAL USING DIRECT CRYSTALLIZATION WITH SIDE ADDITIONAL HEAT SOURCE
CN118064960B (en) * 2024-03-05 2024-08-30 安徽科瑞思创晶体材料有限责任公司 Continuous growth horizontal Bridgman furnace

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930795A (en) * 1982-08-10 1984-02-18 Sumitomo Electric Ind Ltd Single crystal pulling device
JPS6283877U (en) * 1985-10-30 1987-05-28
JPS63270379A (en) * 1987-04-28 1988-11-08 Furukawa Electric Co Ltd:The Production of compound semiconductor single crystal and apparatus therefor

Also Published As

Publication number Publication date
JPH0380181A (en) 1991-04-04

Similar Documents

Publication Publication Date Title
JP2008105896A (en) Method for producing SiC single crystal
JPS6046998A (en) Single crystal pulling method and device therefor
JP2008100854A (en) SiC single crystal manufacturing apparatus and manufacturing method
JPH076972A (en) Growth method and device of silicon single crystal
JP2758038B2 (en) Single crystal manufacturing equipment
JP3018738B2 (en) Single crystal manufacturing equipment
JP2690419B2 (en) Single crystal growing method and apparatus
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
JP3042168B2 (en) Single crystal manufacturing equipment
JP2977297B2 (en) Crystal manufacturing method
JPH03193689A (en) Production of compound semiconductor crystal
JP2814796B2 (en) Method and apparatus for producing single crystal
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
JPS5938184B2 (en) Manufacturing method of saphia single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JPH0380180A (en) Device for producing single crystal
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JPH06234590A (en) Method for producing compound semiconductor single crystal and device therefor
JPH0524964A (en) Production of compound semiconductor single crystal
JPH02229791A (en) Apparatus for producing compound semiconductor single crystal
JPH08104591A (en) Single crystal growth equipment
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JP2005200228A (en) Growth method for compound semiconductor single crystal
JP2004018319A (en) Compound semiconducting crystal growth apparatus
JP2004161559A (en) Apparatus for manufacturing compound semiconductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees