JPS5838672A - Detector for weld line - Google Patents
Detector for weld lineInfo
- Publication number
- JPS5838672A JPS5838672A JP13662581A JP13662581A JPS5838672A JP S5838672 A JPS5838672 A JP S5838672A JP 13662581 A JP13662581 A JP 13662581A JP 13662581 A JP13662581 A JP 13662581A JP S5838672 A JPS5838672 A JP S5838672A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- welding
- detector
- torch
- weld line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 claims abstract description 97
- 238000001514 detection method Methods 0.000 claims abstract description 39
- 238000006073 displacement reaction Methods 0.000 claims abstract description 6
- 230000007246 mechanism Effects 0.000 claims description 4
- 230000000593 degrading effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 11
- 239000011324 bead Substances 0.000 description 7
- 230000000007 visual effect Effects 0.000 description 7
- 230000004907 flux Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000523 sample Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 102220490510 DNA mismatch repair protein Mlh3_A41F_mutation Human genes 0.000 description 1
- 230000005355 Hall effect Effects 0.000 description 1
- 241001026509 Kata Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/12—Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
- B23K9/127—Means for tracking lines during arc welding or cutting
- B23K9/1272—Geometry oriented, e.g. beam optical trading
- B23K9/1276—Using non-contact, electric or magnetic means, e.g. inductive means
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Machine Tool Copy Controls (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、アーク溶接ロボットに用いる溶接線、即ち
溶接ギャップ(溶接すべき部品間の空Wl)を検出する
装置1c関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device 1c for detecting a welding line, that is, a welding gap (space Wl between parts to be welded) used in an arc welding robot.
先づ、アーク溶接ロボットで、一般に使用が検討されて
bるセンサーを2例紹介する。First, we will introduce two examples of sensors that are generally being considered for use in arc welding robots.
第1図は、市販されてb諷溶接線の磁界センサーの概略
構造を示したものである。この磁界センサーは、検出ヘ
ッド(2)とコントローラ(菫)で構成されてbる。検
出ヘッド(2)は、内部にコイルを3ヶ並べた構造とな
ってお〕、真中の送信用のコイル(3)から両側の受信
用のコイル(41へ低周波磁界+151 f発生させる
。もし、被検出物体(6)が送信用コイル(31と受信
用コイル(4)との間で。FIG. 1 shows the schematic structure of a commercially available magnetic field sensor for welding lines. This magnetic field sensor is composed of a detection head (2) and a controller (violet). The detection head (2) has a structure in which three coils are lined up inside, and a low frequency magnetic field of +151 f is generated from the transmitting coil (3) in the middle to the receiving coils (41) on both sides. , the detected object (6) is between the transmitting coil (31) and the receiving coil (4).
左右均一であると、低周波磁界缶)ハ左右で同一とな)
、バランス状態にあるが、溶接線(7)が送信用のコイ
ル(31の真下から左右どちらかにずれると″ご渦電流
損、磁気抵抗に変化が生じ、上述のバランス状態がくず
れる。この低周波磁界(5)の左右の差信号をコントロ
ー5(1)で解析し、IW接171 (71を検出しよ
うとするのがこの磁界センサーの原理である。しかしな
がら、この磁界センサーは、後述するような“溶接アー
クの自己磁界のため、センサーの倣い精度が著しく低下
することや、溶接線(7)が検出ヘッド部(2)の底面
寸法厳密に言えば、2つの受信用コイル(4)間距離の
約1/2よシ大きくずれると、溶接線+71の位置が検
出できなりなどの欠点がある。If the left and right sides are uniform, the low frequency magnetic field can be the same on the left and right sides.)
, is in a balanced state, but if the welding wire (7) shifts from directly below the transmitting coil (31 to the left or right), the eddy current loss and magnetic resistance will change, causing the above-mentioned balanced state to collapse. The principle of this magnetic field sensor is to analyze the left and right difference signals of the frequency magnetic field (5) with the controller 5 (1) and detect the IW contact 171 (71). "Due to the self-magnetic field of the welding arc, the tracking accuracy of the sensor will be significantly reduced, and the weld line (7) will be located between the two receiving coils (4) due to the bottom surface of the detection head (2). If there is a deviation of more than about 1/2 of the distance, there will be drawbacks such as the position of weld line +71 not being able to be detected.
次に、第2図は溶isを視覚的に検出しようとする。い
わゆる視覚センサーの代表例を示したものである。Next, Figure 2 attempts to visually detect lysis. This is a typical example of a so-called visual sensor.
通常、視覚センサーαIは、光源04.レンズae。Normally, the visual sensor αI is connected to the light source 04. lens ae.
面、走行ミラーa9.検出器nなどで構成され。Surface, running mirror a9. It consists of a detector n, etc.
1つの容器の中に納められてbる。M理汀、光源0番か
ら放出された光をコリメーテイングレンズasで集光し
、光スポットを走行ミラー四によって、被溶接物+6+
(D溶接線(7)を横断的に振り。It is stored in one container. The light emitted from light source No. 0 is focused by the collimating lens AS, and the light spot is focused by the traveling mirror 4 onto the object to be welded +6+
(Swipe D weld line (7) crosswise.
スポット化された光ビームの軌跡(11を光学レンズ(
2)を通して、検出器部で愛社ようとするものである。The trajectory of the spotted light beam (11 is the optical lens (
Through 2), we are trying to protect the company in the detector section.
検出器−からの信号処理は、検出器−外で行なわれるの
が一般的である。このような視覚センサーは人間の作業
機能に近−という意味で非常に汎用性のあるものである
。実際、アーク溶接の母材の継ぎ手形状に適用した場合
、央き合せ9重ね合せ、隅肉、開先などの溶接線の検出
がきれ込に行なえることが分っている。しかしながら、
継ぎ手形状のパターン認識も含めたこの種の視覚センサ
ー#i、実用化に際して、センサーが大き過ぎそこと、
コストが高くなることなどの難点をもっている。例えば
、光源aΦに発光ダイオードのような小形部品を使った
とじても、視覚センサー顛の大きさけ、−辺が約10国
の箱形となり、実際の溶接アークトーチに比べるとはる
かに大きなものとなり、このような寸法の視覚センサー
をアーク溶接ロボットに装着すると作業性が損なわれる
欠点がある。Signal processing from the detector is generally performed outside the detector. Such visual sensors are extremely versatile in the sense that they are close to human work functions. In fact, it has been found that when applied to the joint shape of base metals in arc welding, it is possible to accurately detect weld lines such as center alignment 9 overlapping, fillets, and grooves. however,
When putting this type of visual sensor #i, which also includes pattern recognition of joint shapes, into practical use, the sensor was too large and
It has disadvantages such as high cost. For example, even if a small component such as a light emitting diode is used as the light source aΦ, the size of the visual sensor is box-shaped with sides of about 10 mm, which is much larger than an actual welding arc torch. However, when a visual sensor with such dimensions is attached to an arc welding robot, there is a drawback that work efficiency is impaired.
この発明は1以上のような従来のセンサーの欠点の解消
を目的としてなされたもので、アーク電流によシ生じる
磁界分布が溶接線の存在する位置で大きく変化する現象
を磁界検出センサーでとらえ、溶接線の位置を検出する
ようにしたものである。This invention was made with the aim of eliminating the above drawbacks of conventional sensors, and uses a magnetic field detection sensor to detect the phenomenon in which the magnetic field distribution caused by arc current changes greatly depending on the position of the welding line. It is designed to detect the position of the weld line.
普ず、溶接アークにおける磁界発生の現象につ騒て説明
する。First, we will explain the phenomenon of magnetic field generation in the welding arc.
第3図に示すように、2枚の被溶接物(6)の突き合せ
溶接を例にとシ、溶接アークがX方向K。As shown in FIG. 3, taking as an example the butt welding of two objects to be welded (6), the welding arc is in the X direction K.
溶接ビードロを形成しながら1点@まで進んだ状態を考
える。この状態における溶接線σ)上におけるX方向の
磁界分布をガクメータで測定する。磁界分布の測定方法
として9例えば、溶接アークが点a4まで進んだ時、即
座に溶接アークを消し9点@に電極(図示省略)を接触
して通電し、ガウスメータのプローブasを溶接線(7
)に沿ってすげやく走行することによって、実際の溶接
アークが点@まて進んだ時とほぼ同じ状態での磁界分布
を求めることができる。Consider the state in which the welding bead has progressed to one point while forming a weld bead. In this state, the magnetic field distribution in the X direction on the weld line σ) is measured with a gakumeter. As a method for measuring the magnetic field distribution, for example, when the welding arc advances to point a4, immediately extinguish the welding arc, contact the electrode (not shown) at point 9, energize it, and place the probe as of the Gauss meter on the welding line (7).
), it is possible to obtain the magnetic field distribution in almost the same state as when the actual welding arc advances from a point.
1g4図は、被溶接物(6)としていずれも板厚がam
sの鋼材を使用し、溶接線(7)の空隙が約11IIB
以下で、溶接電流が約350ムの条件で、被溶接物(6
)の上面からの距離が約3m上方におけるy方向の磁界
強度をX軸に沿って測定した結果の1例を示したもので
ある。図で、X軸座標の原点は点@にある。第4図から
、未溶接側での磁界が強すこと、更に、点(財)から溶
接アーク゛の進行方向(未溶接側)10国曲方での磁界
強度が約300ガウスもあることなどがわかる。In Figure 1g4, the workpiece (6) to be welded has a plate thickness of am
s steel material is used, and the gap at the weld line (7) is approximately 11IIB.
In the following, the welding current is about 350 μm, and the workpiece to be welded (6
) shows an example of the results of measuring the magnetic field strength in the y direction along the x-axis at a distance of about 3 meters above the top surface of the device. In the figure, the origin of the X-axis coordinate is at the point @. From Figure 4, we can see that the magnetic field is stronger on the unwelded side, and that the magnetic field strength is about 300 Gauss in the direction of travel of the welding arc (unwelded side) from the point. Recognize.
このような溶接線())の上方における磁界の出現は、
被溶接物(6)の内S七溶接1! (?)の空隙部の磁
気抵抗の違−によるものと考えられる。The appearance of a magnetic field above the weld line ()) is
Among the objects to be welded (6), S7 welding 1! This is thought to be due to the difference in magnetic resistance of the air gap (?).
ここで2次のような疑問が生じるかも知れない。即ち、
第3図ては、2軸方向(溶接室INを流しているので、
第4図の結果ijg軸1わシの磁束を測定してbるので
けないか、或Fi溶接ビード■で一応磁気回路ができて
bるのに、その上方で漏れ磁界があるのけ理解しかねる
などの疑問である。これに対して9発明者等は次の様な
実験を試みた。第3図で、被溶接物(61t−溶接11
B (71という空隙のなし一枚の鋼材とし、同様の実
験、同様の磁界強度の測定を行なった。この磁界強度の
X方向の分布は館5図の破線のようになる。第5図で、
実線は第4図との差、即ち。A second question may arise here. That is,
In Figure 3, the flow is in two axial directions (welding chamber IN, so
As a result of Fig. 4, I measured the magnetic flux on the ijg axis 1, so I guess it's not possible, but I understand that there is a leakage magnetic field above it, even though a magnetic circuit is formed with the Fi weld bead. This is a question that may not be possible. In response to this, the nine inventors attempted the following experiment. In Fig. 3, the object to be welded (61t - welding 11
Similar experiments and measurements of the magnetic field strength were conducted using a single piece of steel material B (71) with no voids.The distribution of this magnetic field strength in the X direction is as shown by the broken line in Figure 5. ,
The solid line is the difference from FIG. 4, ie.
y方向の正味の漏れ磁界強度のX方向の分布を。The distribution of the net leakage field strength in the y direction in the x direction.
多くの実験データの平均値として表わしたものである。It is expressed as an average value of many experimental data.
ちなみに、溶接電流は約350Aである。By the way, the welding current is about 350A.
第5図の実!Iけ、はぼ予想通シ、即ち、溶接ビード(
2)側の漏れ磁界強度けはぼ0で、未溶接側にけはぼ一
定の漏れ磁界があるとけいえ、未溶接側に約90〜11
0ガウスのy方向の漏れ磁界があるとbう事実は、当面
する溶接a(ハ)の検出法に、非常に有力な武器を提示
して゛いるとbう意味において注目に値する。Figure 5 fruit! However, as expected, the weld bead (
If the leakage magnetic field strength on the 2) side is approximately 0, and there is a constant leakage magnetic field on the unwelded side, the strength on the unwelded side is approximately 90~11.
The fact that there is a leakage magnetic field in the y direction of 0 Gauss is noteworthy in the sense that it presents a very powerful weapon for the current detection method of weld a (c).
さて、上述のような一連の磁界測定において。Now, in a series of magnetic field measurements as described above.
発明者等は、また、第3図で2方向の磁界強度の1方向
の分布も測定した。第6図は溶接電流が約35OAの条
件で、被溶接物(61の上面近傍の2方向の磁界強度の
1方向の分布を実測した結果を示したものである。!S
図で1点@の近傍の磁界強fKかなシのばらつきはある
が、いずれも検出が容J!な磁界強度であるということ
をここで指摘しておきたbo
このような未溶接側の磁界発生は、被溶接物(6)の溶
接線Cγ)を検出しようとする。正にその空隙の真上の
限られた狭し範囲に見られる現象である。このような磁
界発生の現象は、第3図のような2枚の被溶接物(6)
の突き合せの場合の他。The inventors also measured the unidirectional distribution of magnetic field strength in two directions in FIG. Figure 6 shows the results of actually measuring the distribution of the magnetic field strength in two directions in the vicinity of the top surface of the workpiece to be welded (61) under the condition that the welding current is approximately 35OA.
Although there are variations in the strength of the magnetic field fK near one point in the figure, detection is possible in all cases! It has been pointed out here that the magnetic field strength is such that the magnetic field generated on the unwelded side attempts to detect the weld line Cγ) of the workpiece to be welded (6). This is a phenomenon that can be seen in a narrow area directly above the gap. This phenomenon of magnetic field generation occurs when two workpieces (6) are welded as shown in Figure 3.
Other than the case of matching.
重ね合せや隅肉、或は開先などの場合忙おいても、磁界
強[K多少の差Fiあれ、同様に生ずることを確認して
−る。It has been confirmed that even when overlapping, filleting, or beveling, the magnetic field strength [K, although there may be some difference Fi, occurs in the same way.
ここで1例として、第1図に2重ね合せ溶接の場合で、
−被溶接物の表面に対して45&の方向の漏れ磁界強度
のX方向の分布を示しておこう。As an example, Fig. 1 shows the case of two-lap welding,
- Let us show the distribution in the X direction of the leakage magnetic field strength in the direction 45 & with respect to the surface of the workpiece.
次に、溶接線の漏れ磁界を検出する具体的な実施例と、
これをアーク溶接ロボ□ットに適用した場合の制御方式
に関する実施例につ込て説明する。Next, a specific example of detecting a leakage magnetic field of a welding wire,
An example of a control system when this is applied to an arc welding robot will be explained in detail.
第8図は、この発明に係わる漏れ磁界による溶接線(7
)の検出装鐙の一実施例の斜視図で、汎用の消耗電極式
溶接機のトーチmに、トーチ(至)に対して回転自在の
結合機(至)を介して、磁界検出器(至)が*、6付け
られてbる。磁界検出器(至)の取シ付は位11u、)
−チのどの部分であってもよく、要は、トーチc11K
対して回転自在であること、場合によってはトーチ(至
)との間隔が伸縮自在であることなどが必要条件である
。また。FIG. 8 shows a welding line (7
) is a perspective view of an embodiment of a detection device for a conventional consumable electrode welding machine. ) is added with * and 6. The magnetic field detector (to) is installed at position 11u,)
- It can be any part of the torch, in short, the torch c11K
On the other hand, it is necessary to be able to rotate freely, and in some cases, the distance between the torch and the torch can be expanded and contracted. Also.
第8図の実施例では、被溶接物(6)の突き合せ部分の
溶接a(7)上を、ワイヤ電極aυと被溶接物(6)の
間にアーク(至)を発生させ、溶接ビードロを形成する
とともに、磁界検出器υで溶接a(至)上の漏れ磁界を
検出しながらX方向にノズル(至)が進行する@この場
合、漏れ磁界の検出が出来なくなるのけ、溶接電流が零
か、まfcは、磁界検出器(至)が溶接線(71上から
けずれた時であることを注意しておく。In the embodiment shown in FIG. 8, an arc is generated between the wire electrode aυ and the welding object (6) over the weld a (7) at the butt part of the welding object (6), and the welding bead is At the same time, the nozzle (to) advances in the X direction while detecting the leakage magnetic field on weld a (to) with the magnetic field detector υ. Note that zero or fc is when the magnetic field detector (to) is displaced from above the welding line (71).
ここで、漏れ磁界の有効な検出センサーに関する2つの
実施例K −) Iyて説明する。Two embodiments of effective leakage magnetic field detection sensors will now be described.
実施例の1つは、漏れ磁界の検出器(至)として。One example is as a leakage magnetic field detector.
ホール効果を利用した通常のガウスメータのプローブを
取シ付けたもので返る。周知のように。It comes with a standard Gaussmeter probe that uses the Hall effect. As we all know.
ガウスメータはホール素子の面に直角に入る磁界を検出
する。従って、2方向の漏れ磁界を検出する場合は、検
出器(支)の先端部(財)を直角に折り曲げて実施した
。A Gaussmeter detects the magnetic field that enters the plane of the Hall element at right angles. Therefore, when detecting leakage magnetic fields in two directions, the tip of the detector (support) was bent at right angles.
漏れ磁界の検出センサの第2の実施例を第9図に示す。A second embodiment of the leakage magnetic field detection sensor is shown in FIG.
図は、bわゆるマグネットゲートメータと呼ばれている
磁界センサーを、i!接線(7)の漏れ磁束の検出用と
して2円筒状のプローブ@に構成したものである。プロ
ーブーの磁界検出部+411け、第9図(b)の拡大図
に示すように2例えば円筒状のパーマロイなどのコア(
財)のまわシ&C,1次コイル四と2次コイル−の2つ
のコイルをコア(財)とほぼ同軸状に配鐙した構造とな
っている。この動作原理は9例えば、1次コイル12
K周波数fの交流電流を流し、外部磁界−が無い時にコ
アーの磁束変化によって誘起される2次コイル−の出力
が零となるように1次コイル−の巻線を定めておき、こ
の状態で、もし外部磁界−がコア(財)に入るとほぼ2
fのR11l数の出力が2次コイル−に発生するという
ことを利用して外部磁界−を検出しようとするものであ
る。なお、このマグネットゲートメーターは。The figure shows a magnetic field sensor called a so-called magnet gate meter. It is constructed into two cylindrical probes for detecting the leakage magnetic flux of the tangent line (7). As shown in the enlarged view of Fig. 9(b), the magnetic field detection part of the probe +411 has a core (for example, cylindrical permalloy) (2).
It has a structure in which two coils, the primary coil 4 and the secondary coil, are placed almost coaxially with the core. The principle of operation is 9. For example, the primary coil 12
An alternating current of K frequency f is applied, and the winding of the primary coil is determined so that when there is no external magnetic field, the output of the secondary coil induced by changes in the magnetic flux of the core becomes zero. , if the external magnetic field - enters the core (goods), it will be approximately 2
The external magnetic field is detected by utilizing the fact that an output of R11l of f is generated in the secondary coil. In addition, this magnetic gate meter.
地球磁界のような微小磁界を検出できる他、小形で且つ
堅牢に構成できるので、この発明に係わる漏れ磁界の検
出には非常に有効であることが、具体的な実施によって
判明している。In addition to being able to detect minute magnetic fields such as the earth's magnetic field, it can be constructed compactly and robustly, so it has been found through practical implementation that the present invention is very effective in detecting leakage magnetic fields.
次に、上述した磁界センサーからの出力信号は、アーク
溶接ロボットのトーチの仁愛制御に使われるわけである
が、この出力信号の処理方式に関する実施例につbで説
明する。Next, the output signal from the above-mentioned magnetic field sensor is used for benevolent control of the torch of the arc welding robot, and an embodiment related to a processing method of this output signal will be described in section b.
第8図で、磁界検出器a¥?7方向に、溶接線(7)を
跨いで、掃引した時、磁界検出器(至)が愛社る漏れ磁
界の強さは第10図のようになる。即ち、810図は溶
接線+71近傍のy方向の漏れ磁界分布を示している。In Figure 8, magnetic field detector a\? When swept across the welding line (7) in seven directions, the strength of the leakage magnetic field detected by the magnetic field detector (to) is as shown in Figure 10. That is, Figure 810 shows the leakage magnetic field distribution in the y direction near the weld line +71.
この漏れ磁界の強さは。What is the strength of this leakage magnetic field?
磁界検出a(至)の検出端(財)と被溶接物(6)との
距離や溶接電流の値などによって変わることは言うまで
亀な帆。Needless to say, it varies depending on the distance between the detection end of the magnetic field detection a (to) and the workpiece to be welded (6), the value of the welding current, etc.
さて、第8図に示した一実施例では、磁界検出器0をト
ーチのシールドガスノズル圓に対して1回転自在の結合
器C(1を介して、y軸方向に一定の振巾で振らせてし
る。この時、振巾の中心とシールドガスノズル(至)、
(よ〕厳密に言えば、アークを出しているワイヤ電極a
D)とを結ぶ直線の方向にトーチを進行させると上記振
巾の中心とワイヤ電極tsnとが共に同一の溶接線(2
)上を進めば、磁界検出器(至)からの漏れ磁界の検出
信号は、第11図(a) K示すように、一定間隔1、
)のパルス信号となる。Now, in one embodiment shown in FIG. 8, the magnetic field detector 0 is swung at a constant amplitude in the y-axis direction via a coupler C (1) which can rotate once with respect to the shield gas nozzle circle of the torch. At this time, the center of the swing width and the shield gas nozzle (towards),
(Yo) Strictly speaking, the wire electrode a that is emitting an arc
When the torch is advanced in the direction of the straight line connecting D), the center of the amplitude and the wire electrode tsn are both on the same welding line (2
), the leakage magnetic field detection signal from the magnetic field detector (to) is detected at regular intervals 1, 1, as shown in Fig. 11 (a) K.
) becomes a pulse signal.
ところが、溶接トーチの進行とともに、ワイヤ電極(2
)、従って磁界検出器(至)が、*接線(7)からけず
れてくると、このパルス信号の間隔は。However, as the welding torch advances, the wire electrode (2
), so when the magnetic field detector (to) deviates from the *tangent line (7), the interval of this pulse signal is.
第11図の)、 (C)のように変化する。第11図(
C)は、溶接!!(7)からのずれの巾が1丁度振巾と
一致した状態で、パルス信号の間隔は第11図(a)の
ときの2倍92toとなる。ずれの巾が磁界検出器(至
)の振巾よりも大きくなると、このパルス信号は出なく
なる◎
ここで注意しておきた員ことは、#!45!J〜第1図
に示す漏れ串界強度にはかな)のばらつきがあることを
考慮して、成る一定の磁界強度以上のものと、以下のも
のとの2値で信号を処理しているということである。) and (C) in Figure 11. Figure 11 (
C) is welding! ! In a state where the width of the deviation from (7) exactly matches the amplitude, the interval between the pulse signals becomes 92to, twice that in FIG. 11(a). If the width of the deviation becomes larger than the amplitude of the magnetic field detector (to), this pulse signal will no longer be output◎ The thing to note here is #! 45! Considering that there is a variation in the leakage field strength shown in Figure 1, the signal is processed using two values: one above a certain magnetic field strength and one below. That's true.
この発明による一実施例では、第11図(a)の基準と
なるtQを設定し、同v!J(b)のto+’Hを検出
する回路を作夛、これがt(1を越えると、トーチ(至
)を左右のどちらかkゆりく夛と振り、 tQ−1−t
l の増減を判定してトーチ(至)の左右の振りを逆
にしたカ、或は更に進めたシするという制御方式を採用
した。この実施例では、トーチ(至)の1行装置や左右
の振シ速度、或は磁界検出器(至)の振巾の大きさやそ
の周波数、更にはtO−4−tl の大きさを判定す
る基準中のとシ方などの条件によって、トーチI)Fi
y方向に微小振動しながら溶接線け)上を進行するとい
う場合もあるが、実際0溶接KllとZど影響がないと
いう条件範囲も存在することが判明している。即ち。In one embodiment according to the present invention, tQ, which is the reference in FIG. 11(a), is set, and the same v! Create a circuit to detect to+'H of J(b), and when this exceeds t(1), swing the torch (to) to either the left or right, and tQ-1-t
A control method was adopted in which the increase or decrease in l was determined and the left and right swing of the torch was reversed or the torch was moved further. In this example, the one-line device of the torch, the left and right oscillation speed, the amplitude and frequency of the magnetic field detector (to), and the magnitude of tO-4-tl are determined. Depending on the conditions such as the direction of the torch I)Fi
Although there are cases in which the welding line progresses over the welding line while making slight vibrations in the y direction, it has been found that there is actually a range of conditions in which there is no effect on the 0 weld Kll and Z. That is.
実用的な面ての倣い精KFi十分あるとbえる。It seems that there is enough copying precision KFi in practical aspects.
また、溶接線−が曲線である場合も、トーチ■及びこれ
に回転自在に結合されてbる磁界検出器−を数値制御す
ることKよって9曲線上を倣って行くことができる。こ
の場合、 II!iK、テイチンクプレイバック方式の
アーク溶接寵ボットでは、この−着の倣い精度が良くな
る。Furthermore, even if the welding line is a curved line, it is possible to trace the nine curves by numerically controlling the torch (1) and the magnetic field detector (b) which is rotatably coupled thereto. In this case, II! iK, the arc welding robot using the Teiching playback method, improves the accuracy of this welding pattern.
つ帆でながら、上述の1実施例で、トーチ(至)と磁界
検出器(至)とを剛体的に結合し、トーチ(至)を反覆
自転させることKよって、磁界検出器(至)が溶接線け
)を横切るようにしても、第11図のような信号が得ら
れることを付言しておこう。However, in the above embodiment, the torch (to) and the magnetic field detector (to) are rigidly coupled, and the torch (to) is rotated repeatedly, so that the magnetic field detector (to) is It should be added that a signal like that shown in FIG. 11 can be obtained even if the welding line is crossed.
この方法は、結合器(至)の構造が簡単であること。In this method, the structure of the coupler is simple.
更に、トーチ−が反覆自転しても溶接に何らの悪影響も
与えないことなどの理由て非常に有効である。また、テ
イチングプレイパック方式のナーク溶接ロボッ)K適用
して2曲率半径が50w以上のゆるやかな曲線の溶接線
を精度よく倣うことを確かめてbる。Furthermore, it is very effective because even if the torch rotates repeatedly, it does not have any adverse effect on welding. In addition, we applied a teaching play pack type nark welding robot (K) to confirm that it accurately follows a gently curved welding line with a radius of curvature of 50W or more.
次に、アーク溶接ロボットのトーチの位置制御に関する
もう一つの実施例に−)いて説明する。Next, another embodiment of controlling the position of the torch of an arc welding robot will be described.
これは、第12図に示すように、溶接1i (71を跨
Lnで、2つの磁界検出器(52a)、(32b)をト
ーチ(至)に固定して配電し、これらの磁界検出器(i
52a)、(32b)が受ける漏れ磁界の信号の差によ
って、ワイヤ電極a11の溶接II(71からのずれを
補正しようとすする奄のである。一実施例では、2つの
磁界検出器(52a)、(32b)の間隔を溶接線(7
)の空隙中の約2倍に設定することによって、溶接アー
ク@は、溶接線a)上を精度よく倣って進むことが判明
している。As shown in Fig. 12, two magnetic field detectors (52a) and (32b) are fixed to the torch (to) and power is distributed by straddling the welding 1i (71). i
This is an attempt to correct the deviation of the wire electrode a11 from the welding II (71) by the difference in the leakage magnetic field signals received by the two magnetic field detectors (52a) and (32b). , (32b) to the welding line (7
) It has been found that the welding arc @ can accurately follow the welding line a) by setting the width to be approximately twice that in the air gap.
この方式は、磁界検出器−の作り方にもよるが、一般的
Ku隅肉などの溶接形状の溶接線を倣うのはむりかしb
ものとbえる。また1重ね合せなどの溶接形状では、溶
接線からの漏れ磁界のy方向の分布が、第10図のよう
な対称形が得られfkbため、2つの磁界検出器(32
a)。This method depends on how the magnetic field detector is made, but it is difficult to copy the weld line of a general Ku fillet or other weld shape.
I can't believe anything. In addition, in a welding shape such as one overlapping, the distribution in the y direction of the leakage magnetic field from the weld line becomes symmetrical as shown in Fig. 10 (fkb), so two magnetic field detectors (32
a).
(52b)からの信号をあらかじめ補正しておく必要が
ある。It is necessary to correct the signal from (52b) in advance.
なお上記実施例では、TIG溶接機を例に説明したが大
きな溶接電流が流れる他の溶接機。In the above embodiments, a TIG welding machine was used as an example, but other welding machines that flow a large welding current may be used.
例えばM工G溶接機、溶接棒を用いるアーク溶接機、更
には抵抗溶接機にも同様に適用できることはいうまでも
ない。For example, it goes without saying that it can be similarly applied to M/G welding machines, arc welding machines using welding rods, and even resistance welding machines.
以上に説明したようKこの発明は、溶接点よ〕先行する
所定の位置に配電され、溶接電流によって生じる漏れ磁
界を検出する磁界センサー。As explained above, the present invention is a magnetic field sensor that is distributed to a predetermined position preceding a welding point and detects a leakage magnetic field generated by a welding current.
及び上記磁界センサーの検出信号の変化から上記溶接線
からの変位量を検出する検出装置を備えたもので、単(
小形で、堅牢で、且つ取シ扱すや信号処理が簡便な磁界
センサーを用いうるので溶接トーチに装着しても作業性
が損なわれることがな−という実用上大きな効果がある
。and a detection device that detects the amount of displacement from the welding line from a change in the detection signal of the magnetic field sensor, and a simple (
Since it is possible to use a magnetic field sensor that is small, robust, and easy to handle and process signals, it has a great practical effect in that workability is not impaired even when it is attached to a welding torch.
第1図は従来の磁気センサーの一例を示す図。
第2図は従来の視覚センサーの一例を示す図。
第3図はこの発明の動作原理を、説明するための図、第
4図はアーク電流によるy方向のもれ磁束のX軸方向の
分布図、第5図はアーク電流によるy方向6もれ磁束の
X軸方向の分布の溶接ビードの有無による磁界分布の異
いを説明するための分布図、第6図は2軸方向のもれ磁
界の強さのX軸方向の分布図、第1図は重ね合せ接手に
おける45°の方向のもれ磁界の強さのX軸方向の分布
図、第s!l!Oはこの発明の一実施例の斜視図、第9
図(a) itこの発明で用いる磁気センサーの一例で
あるマグネットゲートメータを示す図、同図(b)はそ
の一部拡大破断図、第10図はもれ磁界のy軸方向の分
布図、館11図(a)〜((り #i磁界七ンサーと溶
接線との位置による検出信号波形図、第12図はこの発
明の他の実施例の斜視図である。
図[オLn テ(61/fi被溶接物、イア1 Fi溶
接線、 aFi溶接ビード、 ast′iガウスメー
タのプローブ、■はアーク溶接トーチ、a2は界磁検出
器、 ollはワイヤ電極、(至)は給金機、(!9は
アークである。
なお図中同一符号はそれぞれ同一または相当部分を示す
。
代理人 葛 野 信 −
第8図
4t?
とb)
varovn
I!12図
ψ
手続補正書(白に2
特許庁長官殿
1、事件の表示 特願昭 ll−181121号
2、発明の名称
S*線検出装置
3、補正をする者
代表者片由仁へ部
4、代理人
住 所 ↑;誓↓F丸の内二丁目2番3号社内
+xtaaqc+s id+ q子
t−t −4Ai 補正の対象
明a41Fの特許請求の範囲1発明の詳細な説明および
図面の簡単な説明の欄
1 補正の内容
1)明細書の特許請求の範囲の欄を別紙のとお9訂正す
る。
2)明細書をつぎのとおシ訂正する。
に 以上訂正後
の特許請求の範囲
(1)溶接点よル先行する所定の位置に配置され。
溶接電流によって生ずる漏れ磁界を検出する磁界センサ
ー、及び上記磁界センサーの検出信号によって溶接線か
らの変位量を検出する検出装置を備え九溶接線検出装置
。
(2) 磁界センサーを溶接線を横切るようにオッシ
レートさせる機構を備えた特許請求範囲第1項記載の溶
接線検出装置。
(3) 磁界センサーとアーク溶接トーチとを結合し
、上記アーク溶接トーチを反覆自転させる機構を備え、
上記磁界センサーが上記溶接線を横切るようにオツシレ
ートするようにした特許請求範囲第2項記載の溶接線検
出装置。
(4)浴接*を挾むように配置された複数の磁界センサ
ーと、これらの磁界センサーの検出信号の差から上記溶
接線からの変位数を検出する検出装置とを備えた%i請
求範囲第1項記載の溶接線検出装置。
(5) 磁界センサーがホール素子である特許請求範
囲第1項ないし第4項のいずれかに記載の溶接線検出装
置◎
(6) 磁界センサーがマグネットゲートメータであ
る特許請求範囲第1項ないし第4項のいずれかに記載の
溶接線検出装置。FIG. 1 is a diagram showing an example of a conventional magnetic sensor. FIG. 2 is a diagram showing an example of a conventional visual sensor. Fig. 3 is a diagram for explaining the operating principle of the present invention, Fig. 4 is a distribution diagram of the leakage magnetic flux in the y direction due to the arc current in the X-axis direction, and Fig. 5 is a diagram showing the leakage flux in the y direction due to the arc current. A distribution diagram for explaining the difference in the magnetic field distribution depending on the presence or absence of a weld bead in the distribution of magnetic flux in the X-axis direction. The figure is a distribution diagram of the strength of the leakage magnetic field in the 45° direction in the overlapping joint in the X-axis direction, sth! l! O is a perspective view of one embodiment of this invention, No. 9
Figure (a) is a diagram showing a magnet gate meter which is an example of the magnetic sensor used in the present invention, Figure (b) is a partially enlarged cutaway diagram, and Figure 10 is a distribution diagram of the leakage magnetic field in the y-axis direction. Fig. 11 (a) - ((ri #i Detection signal waveform diagram depending on the position of the magnetic field sensor and the welding line. Fig. 12 is a perspective view of another embodiment of the present invention. 61/fi workpiece, IA1 Fi welding line, aFi welding bead, ast'i Gauss meter probe, ■ is arc welding torch, a2 is field detector, oll is wire electrode, (to) is feeder, (!9 is an arc. The same symbols in the figures indicate the same or corresponding parts. Agent Shin Kuzuno - Figure 8 4t? and b) varovn I! Figure 12 ψ Procedural amendment (2 patents in white) Mr. Commissioner of the Agency 1. Indication of the case: Japanese Patent Application No. 11-181121 2. Title of the invention: S* ray detection device 3. To the representative of the person making the amendment: Katayuni Kata 4. Address of the agent: ↑; Oath ↓ F Marunouchi 2 Chome 2-3 In-house + xtaaqc + s id + q child t-t -4Ai Subject of amendment A41F Claims 1 Detailed description of the invention and brief description of drawings column 1 Contents of amendment 1) Patent claims in the specification 2) The specification is amended as follows. (1) Claims after the above amendment (1) Arranged at a predetermined position preceding the welding point. 2) The specification is amended as follows. 9. A welding line detection device comprising: a magnetic field sensor that detects a leakage magnetic field generated by an electric current; and a detection device that detects the amount of displacement from the welding line based on a detection signal from the magnetic field sensor. The welding line detection device according to claim 1, comprising a mechanism for oscillating. (3) A mechanism for coupling a magnetic field sensor and an arc welding torch to repeatedly rotate the arc welding torch,
The welding line detection device according to claim 2, wherein the magnetic field sensor oscillates across the welding line. (4) %i claim 1, which comprises a plurality of magnetic field sensors arranged so as to sandwich the bath contact*, and a detection device that detects the number of displacements from the welding line based on the difference in detection signals of these magnetic field sensors. Welding line detection device described in Section 1. (5) The weld line detection device according to any one of claims 1 to 4, wherein the magnetic field sensor is a Hall element. (6) Claims 1 to 4, wherein the magnetic field sensor is a magnet gate meter. The welding line detection device according to any one of Item 4.
Claims (1)
ー、及び上記磁界センサーの検出信号によって溶接線か
らの変位量を検出する検出装置を備えた溶接線検出装着
。 (21磁界センサーを溶接線を横切るようにオッシレー
トさせる機構を備えた特許請求範囲第1項記載の溶接線
検出装置。 (3) 磁界センサーとアーク溶接トーチとを結合し
、上記アーク溶接トーチを反覆自転させる機構を備え、
上記磁界センサーが上記溶接線を横切るようにオツシレ
ートするようにした特許請求岐囲第2項記載の溶接線検
出装置。 (4) 溶接線を挾むように配着された複数の磁界セ
ンサーと、これらの磁界センサーの検出信号の差から上
記溶接線からの変位量を検出する検出装置とを備えfc
%許請求範囲第1項記載の溶接線検出装置。 (6) 磁界センサーがホール素子である特許請求範囲
第1項なりし第4項の込ずれかに記載の溶接線検出装置
。 (6) 磁界センサーがマグネットメータである特許請
求範囲第1項ないし第4項のbずれかに記載の溶接線検
出装置。[Claims] (1) Arranged at a predetermined position preceding the welding point. A welding line detection attachment comprising a magnetic field sensor that detects a leakage magnetic field generated by a welding current, and a detection device that detects an amount of displacement from the welding line based on a detection signal of the magnetic field sensor. (21) The welding line detection device according to claim 1, which includes a mechanism for oscillating the magnetic field sensor across the welding line. (3) A magnetic field sensor and an arc welding torch are combined, and the arc welding torch is repeatedly operated. Equipped with a mechanism to rotate,
The weld line detection device according to claim 2, wherein the magnetic field sensor oscillates across the weld line. (4) An fc comprising a plurality of magnetic field sensors arranged so as to sandwich the welding line, and a detection device that detects the amount of displacement from the welding line based on the difference in detection signals of these magnetic field sensors.
% Welding line detection device according to claim 1. (6) The welding line detection device according to any one of claims 1 to 4, wherein the magnetic field sensor is a Hall element. (6) The welding line detection device according to any one of claims 1 to 4, b, wherein the magnetic field sensor is a magnet meter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13662581A JPS5838672A (en) | 1981-08-31 | 1981-08-31 | Detector for weld line |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13662581A JPS5838672A (en) | 1981-08-31 | 1981-08-31 | Detector for weld line |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5838672A true JPS5838672A (en) | 1983-03-07 |
JPH0141438B2 JPH0141438B2 (en) | 1989-09-05 |
Family
ID=15179672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13662581A Granted JPS5838672A (en) | 1981-08-31 | 1981-08-31 | Detector for weld line |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5838672A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6027479A (en) * | 1983-07-26 | 1985-02-12 | Mitsubishi Electric Corp | Automatic welding machine |
US4571479A (en) * | 1983-03-14 | 1986-02-18 | Mitsubishi Denki Kabushiki Kaisha | Welding machine with automatic seam tracking |
JPS6132900U (en) * | 1984-07-31 | 1986-02-27 | 大同酸素株式会社 | high pressure gas container |
JPS6146374A (en) * | 1984-08-08 | 1986-03-06 | Mitsubishi Electric Corp | Automatic welding machine |
US8680434B2 (en) | 2005-07-15 | 2014-03-25 | Fronius International Gmbh | Welding method and welding system with determination of the position of the welding torch |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100451263B1 (en) | 2003-12-30 | 2004-10-11 | 주식회사 효성 | Polyamide fibers for uncoated airbag |
-
1981
- 1981-08-31 JP JP13662581A patent/JPS5838672A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4571479A (en) * | 1983-03-14 | 1986-02-18 | Mitsubishi Denki Kabushiki Kaisha | Welding machine with automatic seam tracking |
JPS6027479A (en) * | 1983-07-26 | 1985-02-12 | Mitsubishi Electric Corp | Automatic welding machine |
JPS6132900U (en) * | 1984-07-31 | 1986-02-27 | 大同酸素株式会社 | high pressure gas container |
JPH0413501Y2 (en) * | 1984-07-31 | 1992-03-30 | ||
JPS6146374A (en) * | 1984-08-08 | 1986-03-06 | Mitsubishi Electric Corp | Automatic welding machine |
US8680434B2 (en) | 2005-07-15 | 2014-03-25 | Fronius International Gmbh | Welding method and welding system with determination of the position of the welding torch |
Also Published As
Publication number | Publication date |
---|---|
JPH0141438B2 (en) | 1989-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4525619A (en) | Automatic weld line following method | |
US3268805A (en) | Seam tracking and flaw detection | |
MXPA04002852A (en) | Welding wire positioning system. | |
US4040557A (en) | Elliptical seam welding apparatus | |
US4187411A (en) | Arc welding | |
Mahajan et al. | Intelligent seam tracking using ultrasonic sensors for robotic welding | |
US4015101A (en) | Scanning device for welding torches | |
JPS5838672A (en) | Detector for weld line | |
You et al. | A study on an automatic seam tracking system by using an electromagnetic sensor for sheet metal arc welding of butt joints | |
Kim et al. | A study of a dual-electromagnetic sensor system for weld seam tracking of I-butt joints | |
US3775582A (en) | Proximity control using microwave techniques | |
Garašić et al. | Sensors and their classification in the fusion welding technology | |
Ushio et al. | Sensors for arc welding: advantages and limitations | |
Ushio | Sensors in arc welding | |
JP3473404B2 (en) | Weld bead center position detector | |
JPS60127080A (en) | Welding device | |
Garašić et al. | Senzori i njihova podjela u tehnologiji zavarivanja | |
JPH0647171B2 (en) | Welding controller | |
SU880647A1 (en) | Device for guiding electrode along the joint of welded parts | |
JPS612065A (en) | Flaw detector using eddy current | |
JP4542973B2 (en) | Moving distance measuring device and moving distance measuring method | |
JPS60203364A (en) | Automatic welding machine | |
EP0100721A1 (en) | Tri-axis seam tracker for electric arc torch position control | |
Prinz et al. | Robotic seam tracking | |
SU544903A1 (en) | Converter to fluxgate flaw detector |