JPS5837953A - Laminated semiconductor integrated circuit device - Google Patents
Laminated semiconductor integrated circuit deviceInfo
- Publication number
- JPS5837953A JPS5837953A JP56136381A JP13638181A JPS5837953A JP S5837953 A JPS5837953 A JP S5837953A JP 56136381 A JP56136381 A JP 56136381A JP 13638181 A JP13638181 A JP 13638181A JP S5837953 A JPS5837953 A JP S5837953A
- Authority
- JP
- Japan
- Prior art keywords
- channel
- layer
- source
- layers
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D88/00—Three-dimensional [3D] integrated devices
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は,電界効果トラ゛ンジスタ(FIT)を含む素
子が集積形成された半導体層を絶縁層をはさんで複数層
積層して構成される積層半導体集積回路装置書二関する
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stacked semiconductor integrated circuit device comprising a plurality of semiconductor layers in which elements including field effect transistors (FITs) are stacked with an insulating layer in between. Two matters.
Nチャネル素子とPチャネル素子を含む回路の中で最も
著明なものは相補聾回路である。第1図はその1例で3
人力のCM08NOi1回路を示す。6個のMO 8
F Elテー”1 e T* * T1及び’I’
,’ , TI’ , T,’は3個ノ入力信号v1
1 v,,■.によって開閉される。”meτ,,T,
はNチャネルmTl・,テ,●,テ.1はPチャネルの
ため、”1 * Tt * Tjが開のときは’r
,’ ,’r,’,’r,’が閉、T,’ ,’r,I
,’r,”が開ノトき}!Tt−Tl*Tmが閉とな
り,状態が遷移する瞬間を除いて,VDDからVllへ
の直流電流は流れない。すなわち電力消費は極めて少く
,今後、L8Iが大規模化すればするほどますます重要
endpage:1
となりつ\ある回路方式である。The most prominent of the circuits that include N-channel and P-channel devices are complementary deaf circuits. Figure 1 is an example of 3
The human powered CM08NOi1 circuit is shown. 6 MOs 8
F Elte"1 e T* * T1 and 'I'
, ', TI', T,' are three input signals v1
1 v,, ■. It is opened and closed by ”meτ,,T,
are N-channel mTl・, te, ●, te. 1 is a P channel, so when ``1 * Tt * Tj is open, 'r
,','r,','r,' is closed, T,','r,I
, 'r,'' is open}!Tt-Tl*Tm is closed, and no DC current flows from VDD to Vll except at the moment of state transition.In other words, power consumption is extremely low, and in the future, L8I The larger the scale, the more important it becomes.
endpage:1 This is a circuit system that is becoming popular.
従来このような回路を組むには、半導体たとえば8Mの
表面上1:素子を平面的に並べていた。Conventionally, in order to assemble such a circuit, elements were arranged in a plane on the surface of a semiconductor such as 8M.
第2図はその1例で第1図の3人力CM08 NOR回
路の81結晶表面上へのレイアウト図である争Nfヤ*
ルMO8FIT’ JR子4 F ? ヤ* ルMO
8FIfT素子も全て同一平面上に並べてあり、したが
って両種の素子間の分離にはPウヱルという特別な方法
を用いている.すなわち、Nllの81結晶上に、ある
限定されたPfi領域を作り,それをPクエルと称する
。NチャネルMO8Fl’l’ − T1〜〒.はPウ
エル内に作られ、PチャネルMO8IPl’r.’r1
’〜T.1はもともとのN@8最表面ζコ作られている
。分離方法としては逆も可能で、P型81表面にNクヱ
ルな作り、Nクヱル内にrチャネル素子,外にNチャネ
ル素子を作っても夷い.
このような従来の集積回路には次のような欠点がある。Figure 2 is an example of this, and is a layout diagram of the three-man powered CM08 NOR circuit shown in Figure 1 on the 81 crystal surface.
Le MO8FIT' JR child 4 F? Y*ru MO
All of the 8 FIfT elements are arranged on the same plane, so a special method called PWEL is used to separate the two types of elements. That is, a certain limited Pfi region is created on the Nll 81 crystal and is called a Pquel. N-channel MO8Fl'l'-T1~〒. is created in the P-well, and the P-channel MO8IPl'r. 'r1
'~T. 1 is made from the original N@8 top surface ζ. The reverse separation method is also possible; it is also possible to create an N-well on the surface of the P-type 81, an R-channel element inside the N-well, and an N-channel element outside the N-well. Such conventional integrated circuits have the following drawbacks.
第1に,81表面の面積を大きく消費することである.
第2に、多数の入力ラインが同一千面1におかれるため
,躬段の回路の出力部との間に長い配線を要することで
ある。即ち、入力が1本ならば、前段の回路と本回路を
密接しておくことができるが,入力が複数本になると,
前段の回路も複数個になり、当然ながら密接して配置す
ることはできない。必然的に配線は長くなり,単口gi
!1面の面積を大きく消費するばかりでなく、信号伝播
の遅れのちとにもなっている。First, it consumes a large area of the 81 surface.
Second, since a large number of input lines are placed on the same plane, long wiring is required between the input lines and the output section of the multi-stage circuit. In other words, if there is one input, it is possible to keep the previous circuit and the main circuit in close contact, but if there are multiple inputs,
There are also multiple circuits in the previous stage, and naturally they cannot be placed closely together. Inevitably, the wiring becomes long and the single-port GI
! This not only consumes a large amount of surface area, but also causes delays in signal propagation.
なおここではCM08回路を例にとって説明したがNチ
ャネルFBTのみ、またはPチャネルFl〒のみで構成
された回路の場合も事情は同じである.
本発明はt記の点(:#1み,Flテを含む素子が集積
形成された半導体層を絶縁層をはさんで複数層積層して
高密度化を図り、かつL下に積層されるFil’rの配
置を所定の関係に設定することで配線長を短かくして信
号伝播の連れを小さくし、高性能化を可能とした檀肩半
導体集積回路装置を提供するものである。Although the CM08 circuit has been explained here as an example, the situation is the same in the case of a circuit composed only of N-channel FBTs or only P-channel Fl〒. The present invention aims at high density by laminating a plurality of semiconductor layers in which elements including Fl are integrated with an insulating layer in between, and is laminated under L. By setting the arrangement of Fil'r in a predetermined relationship, the wiring length can be shortened and the delay in signal propagation can be reduced, thereby providing a stable semiconductor integrated circuit device that can achieve high performance.
即ち本発明では.半導体層を絶縁層をはさんで上下に積
層して3次元的に回路を構或することが基本である.こ
の基本構成は既に従来からある考え方であるが,本発明
の特徴は,NチャネルFIITはNチャネルFB?同士
,PチャネルTNTはPチャネルFET同士がと下ζ=
重なるように積層することにある。この場合更に,L下
に重なるFlテがソース,ドレイン領域とソース,Pレ
イン領域同士、?−}領域とr 一ト領域同士が重なる
という具合に,素子配置を設定することが好ましい.こ
れにより、ソースまたはドレイン領域,あるいは両方そ
れぞれを1下に直結することができるという特黴が得ら
れる。That is, in the present invention. The basic method is to construct a three-dimensional circuit by stacking semiconductor layers one above the other with insulating layers in between. Although this basic configuration is already a conventional concept, the feature of the present invention is that N-channel FIIT is N-channel FB? P-channel TNT and P-channel FET are lower ζ=
The purpose is to stack them so that they overlap. In this case, furthermore, the Flte which overlaps under L is the source, drain region and source, P drain region, ? It is preferable to set the element arrangement so that the r. This provides the advantage that the source or drain region, or both, can be directly connected under one layer.
本発明によって,次のような利点が得られる。The present invention provides the following advantages.
第1に基板表面の消費面積が大幅ζ;減少し,高書度の
集積回路が出来る。First, the area consumed on the substrate surface is significantly reduced, making it possible to create integrated circuits with high density.
第2に、上下の半導体層のプンタクトが同じ型の層にお
いてなされるため,結晶の不整合カー少く,JllL質
の単結晶層が得られ,性能の高い素子が形成できる。Second, since the punching of the upper and lower semiconductor layers is performed in the same type of layer, a single crystal layer of JLL quality can be obtained with fewer crystal mismatches, and a device with high performance can be formed.
第3に、下層の一部を種結晶として1層を形成する場合
、その種結晶で制御するべき単結晶領域が比較的狭くて
済み、無理なく単結晶化できるので,L8Iとしての歩
留も高くなる。Thirdly, when forming one layer using a part of the lower layer as a seed crystal, the single crystal region to be controlled by the seed crystal is relatively narrow, and single crystallization can be achieved without difficulty, so the yield as L8I is also improved. It gets expensive.
第4に多入力NOR回路などを組んだ場合、それらの入
力はそれぞれ異る層に設けること力一できるため、前段
の回路ブロックとの配線は容易であり.配線長を短かく
して信号の伝播遅れを小さくでき、また面積は小さくな
り、回路の動作速度は高くなる。Fourth, when constructing a multi-input NOR circuit, the inputs can be provided on different layers, making wiring with the preceding circuit block easy. By shortening the wiring length, signal propagation delay can be reduced, the area can be reduced, and the operating speed of the circuit can be increased.
第5図に出力線,電源線も好みの層に設置することがで
きる。As shown in Figure 5, output lines and power lines can also be installed on the desired layer.
第6としては,例えばメモリアレーを構成する場合I:
,本発明によれば,各メモリセルを上下に積層すること
が出来、ビット線を上下に通すことができるため、出力
を多数とり出すことができる。この点は、1度に多数の
メモリ内容の読み出しが要求される今後のコンピュータ
用には極めて有用である。Sixth, for example, when configuring a memory array I:
According to the present invention, each memory cell can be stacked vertically and the bit lines can be passed vertically, so a large number of outputs can be taken out. This point will be extremely useful for future computers that will be required to read a large number of memory contents at once.
endpage:2 以下本発明の実施例を説明する。endpage:2 Examples of the present invention will be described below.
(1)CM08 NOR回路
第3図は,本発明に基いて、第1図の3人力CMO8
NOR回路を構成した実施例の模式的構成を示すもので
ある.わかり易くするため絶縁層は省略してある。半導
体層は、1〜■の3層の積層構造になっており、左側の
3層のFIT−T t e Tt * TsがNチ
ャネルMO8FBITである。この3個のFITはソー
ス側(向側),ドレイン側(手前)ともに上下に配線層
1,2,1.4でつながれており、最上層璽のソース側
からVms電源ラインがとり出されている.右側の3層
のFFtT−71’,Tl@e Tl@はPチャネルM
O8 Fli丁で,最下層Iは手前がソース,中間層■
は向側がソース、最t層璽は手前がソースとなっており
,最下層■のドレインと中間層Iのソース、中間層冒の
ドレイyと最土層■のソースがそれぞれ配線層5,cで
1下につながれている。(1) CM08 NOR circuit Figure 3 shows the three-man power CMO8 shown in Figure 1 based on the present invention.
This figure shows a schematic configuration of an example of a NOR circuit. The insulating layer is omitted for clarity. The semiconductor layer has a stacked structure of three layers 1 to 2, and the three layers on the left, FIT-TteTt*Ts, are N-channel MO8FBIT. These three FITs are connected vertically on both the source side (facing side) and drain side (front side) by wiring layers 1, 2, and 1.4, and the Vms power supply line is taken out from the source side of the top layer. There is. FFtT-71' of the three layers on the right, Tl@e Tl@ is P channel M
O8 Fli-cho, the bottom layer I is the source in front, and the middle layer ■
The source is on the opposite side, and the source is on the front side of the top layer. It is connected to 1 below.
最1層■のドレイン側からはVDD電瀞ラインがとり出
されている.Nチャネル側もPチャネル側も同じ導電型
層が上下に重なるように積層されているのが特徴である
。N?ヤネル側と!チャネル側は最下層■で結ばれてい
る.即ち、最下層IのNチャネルMO8Fi’r −
T ,のドレインとPチャネルMO8FET −. T
, ’のブースとが配線層rにより結ばれているわけ
である。A VDD conductor line is taken out from the drain side of the first layer ■. A feature is that layers of the same conductivity type are stacked one above the other on both the N-channel side and the P-channel side. N? With Yanel side! The channel side is connected by the bottom layer ■. That is, the N-channel MO8Fi'r of the bottom layer I
T, drain and P-channel MO8FET -. T
, ' are connected by the wiring layer r.
入力V1 ,v,,v,は各層C;配分され、それぞれ
%TIとT,′,丁,とTI’*TlとT,’(Dr−
}に結ばれている。出方部veは中間層夏のNチャネル
MO8FIT−〒!のドレインからとり出されているが
、これは必要に応じて最1層Iからも、また最下層■か
らもとり出すことができる.またv1ラインも最1層I
ではなく、中間層■や最下層Iに置くことも可能である
.
本実施例により、第2図の従来例C二比ぺ,同じ設計基
準を用いた場合に、8昌表面の占有面積は1/1!以下
に減少する.入方数がちっと多い場合はこの効果はさら
に絶大であり、それに基いて配線も短か《なり信号の伝
達時間も面積の平方根に比例して減少し、高速化が達成
できる.
第4図は上記実施例の興体的な断面構造の一部を示した
ものである。NチャネルMO8FITがソース,ドレイ
ン,ダートを揃えて重ねられている.絶縁8[8はたと
えばsio,である。ソース,ドレインそれぞれが配線
層1〜4により土下につながれており、この部分を種結
晶として順次各層のFITを形成すぺp!8i単結晶層
が形成される。種の部分と同じ導電型層をまず成長させ
るため、成長が容易であり%嵐質の結晶を得易いという
利点がある。しかも1個Φ種結晶が制御すべき領域は極
めて狭い範囲で済むので,単結晶化は容易であり、IC
としての歩留も大幅に改善される.それでいてダート下
のチャネル部は種から若干離れているためしきい電圧の
制御も容易である。The inputs V1, v,,v, are distributed to each layer C; and are respectively %TI and T,′,D, and TI′*Tl and T,′(Dr-
} is connected. The output part ve is the middle class summer N channel MO8FIT-〒! However, it can be taken out from the first layer I or the bottom layer ■ as necessary. Also, the v1 line is the first layer I
It is also possible to place it in the middle layer ■ or the bottom layer I instead. According to this embodiment, when using the same design criteria as the conventional example C2hipe in FIG. 2, the area occupied by the 8-sho surface is 1/1! It decreases to below. This effect is even greater when the number of inputs is much larger, and based on this, the wiring can be shortened, and the signal transmission time is reduced in proportion to the square root of the area, achieving higher speeds. FIG. 4 shows a part of the sectional structure of the above embodiment. N-channel MO8FITs are stacked with the source, drain, and dirt aligned. Insulation 8 [8 is sio, for example. The sources and drains are each connected to the ground through wiring layers 1 to 4, and these parts are used as seed crystals to sequentially form the FIT of each layer! An 8i single crystal layer is formed. Since a layer of the same conductivity type as the seed portion is first grown, it has the advantage that it is easy to grow and it is easy to obtain crystals with high crystal quality. Moreover, since the area to be controlled by one Φ seed crystal is extremely narrow, single crystallization is easy, and IC
The yield is also significantly improved. However, since the channel section under the dart is slightly away from the seeds, it is easy to control the threshold voltage.
上記実施例と同様にしてN▲ND回路を構成することも
容易にできる。It is also possible to easily construct an N▲ND circuit in the same manner as in the above embodiment.
(2)アドレスデコーダ回路
第S図は、本発明に基いて,4人力のアドレス一コー〆
回路を構成した実施例の概略図である.回路は8層の半
導体層の積層構造になっている,No町,Non,,N
OR.,・・・はそれぞれ4人力のNO1回路で,たと
えばCMO8で構成する場合には、実施例(1)の@3
図にもう一層積み重ねた構造ζ:なる。ただし,本実施
例の場合には、8層のうち、ある選択された4層にFI
Tが形成され、その他の層は空位となっている。(2) Address decoder circuit FIG. S is a schematic diagram of an embodiment of an address decoder circuit operated by four people based on the present invention. The circuit has a laminated structure of 8 semiconductor layers.
OR. , ... are NO1 circuits powered by four people, for example, when configured with CMO8, @3 in Example (1)
The structure ζ is further stacked in the figure. However, in the case of this embodiment, FI is installed in selected four layers among the eight layers.
T is formed, and the other layers are vacant.
AIs▲@,1B,▲4がアドレス入力で、▲,,▲,
,▲1,人4はその逆である。この8個が、8層のそれ
ぞれに配分され、NOR,,NOR,,・・・の対応す
る層のff−}に,空位を除いて,つながれている。た
とえば,NOR,はアドレス(▲1 ,▲,,▲.,▲
4 )が(0,0,0.0)のときに1を出力するよe
ndpage:3
うにきめるとすると,NOR,は▲,.▲,,▲畠 ,
▲6に相当する4層にFl丁をもっており、他の4層の
相当する場所は空位となってている。次に,Non,は
アドレス(0,0,0,1)のときに1を出力するよう
にきめるとすると,NOR,はA1 ,▲@,k@,A
番に相当する4層にFITをもっており,他の層の相当
する場所は空位となっている。以下同様にして、NOi
l, , NOR4, −・・の構造が決められる。AIs▲@, 1B, ▲4 are address inputs, ▲,, ▲,
, ▲1, Person 4 is the opposite. These eight are distributed to each of the eight layers, and are connected to ff-} of the corresponding layer of NOR, , NOR, . . . , excluding vacant positions. For example, NOR is the address (▲1 , ▲,, ▲., ▲
4) Outputs 1 when (0, 0, 0.0).
ndpage:3 If you decide on a sea urchin, NOR is ▲, . ▲,,▲Hatake ,
There is a Fl block on the 4th floor corresponding to ▲6, and the corresponding positions on the other 4 floors are vacant. Next, if we decide that Non, outputs 1 when the address is (0, 0, 0, 1), then NOR, is A1, ▲@, k@, A
There is a FIT in the 4th layer corresponding to the number, and the corresponding positions in other layers are vacant. Similarly, NOi
The structure of l, , NOR4, --... is determined.
各NO1回路は先の実施例(1)の第3図で示したよう
に左側がドライAPIITの積層になっているため,そ
のソース,Pレインは上下に結ばれている。したがって
出力はどの階層からもとり出すことができる。第5図で
は手前側がドライΔFETのドレイン側之なっており、
全ての階層から出力0,,0,,・・・をとり出した場
合を示してある.
本実施例ζ;よっても,基板面積の減少、信号伝播の高
速化.JL質の結晶成長による回路特性の向上や歩留り
向土などの効果が得られる。As shown in FIG. 3 of the previous embodiment (1), each NO1 circuit has a stack of dry APIITs on the left side, so its source and P-rain are connected vertically. Therefore, output can be extracted from any layer. In Figure 5, the front side is the drain side of the dry ΔFET,
The case where outputs 0,,0,,... are extracted from all layers is shown. This embodiment ζ: Therefore, the board area is reduced and the signal propagation speed is increased. Effects such as improved circuit characteristics and improved yields can be obtained through JL-quality crystal growth.
(3}CMOSスタティックメモヲ回路第6図は本発明
に基いて,CMO8スタティックメモリセルを構成した
実施例の概略図である。(3) CMOS static memory circuit FIG. 6 is a schematic diagram of an embodiment in which a CMOS 8 static memory cell is constructed based on the present invention.
( m, n ) (m=1 . 2 ,…; 11−
1 . 2,・・・)でメモリセルを表わすと、(1
, n) ,(2,m),・・・が上下に重なっている
, Wm(m冨1,2,・・・)はワーP線で、W,は
最上層、W,はその次の層,・・・という具合に配線さ
れている。Bn,B!l (aml ,2 ,”・)は
Vット線で、上下に重なったメモリセル(1,m),(
2,n)・・・の入出力部に結ばれている。Vl)Dは
Hi gh側電線、V I I ハLlIW側電源線で
ある。VDD,Vssもまた上下に重なったメモリセル
に結ばれているのが特徴である。(m, n) (m=1.2,...; 11-
1. If a memory cell is represented by (2,...), then (1
, n) , (2, m), ... are stacked vertically, Wm (m-depth 1, 2, ...) is the warp line, W, is the top layer, and W, is the next layer. The wiring is done in layers, etc. Bn, B! l (aml, 2, "・) is the Vt line, and the memory cells (1, m), (
2, n)... are connected to the input/output section. Vl)D is a High side electric wire, and VII is a LlIW side power supply line. A feature is that VDD and Vss are also connected to memory cells stacked one above the other.
メそリセル内はCMO&フリッグフロッグの両端に各1
個のトランスファr−}MO8FIT’rise〒14
をつけた,いわゆるスタティックメモリセルである。〒
11* ”He ’lU* T14はN?+$ルM08
Fl〒,τ,,′,〒11’はpfJrネルMO 8
F B〒である。第6図では各pm’rを記号で示して
あるが、構造的には同じ紀号で表わされたFlテは上下
に丁度重なるように配列されている。たとえば、テ,1
はセル(1,!I)内のものも、セル(2,鳳)内のも
のも、セル(m,鳳)内のものも,皆丁度膚状に重なっ
ており、しかもドレイン領域はドレイン領域どうし,ソ
ース領域はソース領域どうし、?−}領域はff−}領
域どうし丁度重っているのである.しかもいずれのFB
Tもツースかドレインか、いずれか一方の端で上下に結
ばれているのが特徴である。Inside the mesori cell, there is one each on both ends of CMO & Frigg Frog.
transfer r-}MO8FIT'rise〒14
This is a so-called static memory cell. 〒
11* “He 'lU* T14 is N?+$leM08
Fl〒,τ,,',〒11' is pfJr channel MO 8
FB〒. In FIG. 6, each pm'r is shown by a symbol, but structurally, Flte represented by the same era code are arranged so as to overlap vertically. For example, te,1
In the cell (1,!I), in the cell (2, Otori), and in the cell (m, Otori), they all overlap in a skin-like manner, and the drain region overlaps the drain region. What's wrong with each other, what's the source area with the source area? -} area exactly overlaps the ff-} area. Moreover, which FB
The characteristic of the T is that either the teeth or the drain are tied at the top and bottom at one end.
本実施例によれば、と下の層は同じ導電型層の部分で結
ばれているため,下層との連結部を種結晶として土層の
単結晶層を品質曳く作ることが容易であり,しかも各r
Nテは必ず一端が下層の種結晶の1にあるので、単結晶
化率も良く、キャタア移動度も高い。またビット線は極
めて短かくでき、配線による信号の伝播遅延をきわめて
小さくすることができ、メそリとしてのアクセスタイ▲
を短かくできる.さらにこの構造を横方向に展開し,メ
モリセルを多数並べることにより、ピット線を多数とり
出すことができる.この点は、連想メモリなどのような
、1度に多数のメモリ内容の読み出しを要する用途や、
画像情報処理用などに極めて有用である。According to this embodiment, since the lower layer is connected by the same conductivity type layer, it is easy to create a single crystal layer of the soil layer using the connection part with the lower layer as a seed crystal. Moreover, each r
Since one end of NTE is always located at 1 of the lower seed crystal, the single crystallization rate is good and the cathar mobility is high. In addition, the bit line can be made extremely short, and the signal propagation delay due to wiring can be minimized, making it possible to use access lines as a memory.
can be made shorter. Furthermore, by expanding this structure laterally and arranging many memory cells, it is possible to extract many pit lines. This point is important for applications that require reading a large number of memory contents at once, such as associative memory,
It is extremely useful for image information processing.
以上の実施例では、いずれもCM08回路をとりあげた
がNチャネルMO8%Pチャネル.MO8回路でも同様
に本発明を応用できる。またFIT}tMO8FIIT
}?かりテp < Mlii8Fii丁テモ応用可能で
ある.
また1紀メモリ回路の実施例ではスタティックRAMを
示したが、同様にして、ダイナミックRAMJpROM
についても同様に構成することができ、同様の効果を上
げることができる。In the above embodiments, the CM08 circuit was used, but the N-channel MO8% P-channel circuit. The present invention can be similarly applied to MO8 circuits. Also FIT}tMO8FIIT
}? Karitep < Mlii8Fii Dingtemo can be applied. Furthermore, in the embodiment of the first generation memory circuit, a static RAM is shown, but in the same way, a dynamic RAM JpROM
can also be configured in the same way, and similar effects can be achieved.
endpage:4endpage:4
第1図はCM08 NOR回路を示す図、第2図はこの
CM08NOR回路を8N基板上に平面的複;集積形成
したレイアク}K、第3図は同じくこのCM08 NO
R回路を3次元的に集積形成した本発明の一実施例の模
式的構成を示す図、第4因はその一部の断面構造を示す
図、第5図は本発明をアドレスデコーダに適用した実施
例の模式的構成を示す図、第6図は本発明をCMO8ス
タティックメモリに適用した実施例の模式的構成を示す
図である。
T1 s ”l e Tm・・・NチャネルMO8
Fl!tT,〒.’ ,Tl’ ,T,I・・・Pチャ
ネルMO8FET%I,1.1・・・半導体層,1〜1
・・・配線層、8・・・絶縁層、T11#”lt*〒l
aw〒,,・・・N?ヤネルMO8PI!tT.?11
1,丁u’””Pf’r*#MO8FET,( 1 *
a ) * ( 2 e n ) e・・・(m,!
l)・・・メモツセル。
出願人代理人 弁理士 鈴 江 武 彦endpage:5Fig. 1 shows the CM08 NOR circuit, Fig. 2 shows the CM08 NOR circuit integrated on an 8N substrate, and Fig. 3 shows the CM08 NOR circuit.
A diagram showing a schematic configuration of an embodiment of the present invention in which R circuits are three-dimensionally integrated, the fourth factor is a diagram showing a cross-sectional structure of a part of the circuit, and FIG. 5 is a diagram in which the present invention is applied to an address decoder. FIG. 6 is a diagram showing a schematic configuration of an embodiment in which the present invention is applied to a CMO8 static memory. T1 s ”le Tm...N channel MO8
Fl! tT,〒. ', Tl', T, I...P channel MO8FET%I, 1.1... Semiconductor layer, 1-1
...Wiring layer, 8...Insulating layer, T11#"lt*〒l
aw〒、、・・・N? Yanel MO8PI! tT. ? 11
1, dingu'""Pf'r*#MO8FET, (1*
a) * (2 en) e...(m,!
l)... Memotsu cell. Applicant's representative Patent attorney Takehiko Suzueendpage:5
Claims (3)
た半導体層を絶縁層をはさんで複数層積層して構成され
る半導体集積回路装置において、同じ導電チャネルの電
界効果トランジスタ同士が上下に重なるように素子配列
を設定したことを特徴とする積層半導体集積回路装置.(1) In a semiconductor integrated circuit device that is constructed by laminating multiple semiconductor layers with integrated insulating layers in between, in which elements including field effect transistors are formed, field effect transistors with the same conductive channel are stacked vertically. A stacked semiconductor integrated circuit device characterized in that an element arrangement is set in the following.
ソース,ドレイン領域およびr一F領域が互いに重なる
ように配列されている特許請求の範囲第1項記載の積層
半導体集積回路装置.(2) The stacked semiconductor integrated circuit device according to claim 1, wherein the vertically overlapping field effect transistors are arranged such that their respective source, drain regions, and r-F regions overlap with each other.
れのソース.Pレイン領域およびy−ト頷域が互い書二
重なるように配列され,かつソースまたはドレイン領域
の少《とも一方が上下に連結されている特許請求の範囲
第1項記載の積層半導体集積回路装置。(3) The field effect transistors that overlap under L have their respective sources. The laminated semiconductor integrated circuit device according to claim 1, wherein the P-rain region and the Y-node region are arranged so as to overlap each other, and at least one of the source and drain regions is connected vertically. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56136381A JPS5837953A (en) | 1981-08-31 | 1981-08-31 | Laminated semiconductor integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56136381A JPS5837953A (en) | 1981-08-31 | 1981-08-31 | Laminated semiconductor integrated circuit device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5837953A true JPS5837953A (en) | 1983-03-05 |
JPH0330301B2 JPH0330301B2 (en) | 1991-04-26 |
Family
ID=15173818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56136381A Granted JPS5837953A (en) | 1981-08-31 | 1981-08-31 | Laminated semiconductor integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5837953A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62219955A (en) * | 1986-03-22 | 1987-09-28 | Agency Of Ind Science & Technol | Three-dimensional circuit |
US5095352A (en) * | 1988-12-20 | 1992-03-10 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit device of standard cell system |
US5455445A (en) * | 1994-01-21 | 1995-10-03 | Kulite Semiconductor Products, Inc. | Multi-level semiconductor structures having environmentally isolated elements |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5023990A (en) * | 1973-07-03 | 1975-03-14 | ||
JPS5678155A (en) * | 1979-11-30 | 1981-06-26 | Hitachi Ltd | Semiconductor device and manufacture thereof |
JPS56111238A (en) * | 1980-01-07 | 1981-09-02 | Chiyou Lsi Gijutsu Kenkyu Kumiai | Semiconductor ic device |
JPS57155765A (en) * | 1981-03-20 | 1982-09-25 | Fujitsu Ltd | Manufacture of semiconductor device |
JPS5835969A (en) * | 1981-08-28 | 1983-03-02 | Matsushita Electric Ind Co Ltd | semiconductor equipment |
-
1981
- 1981-08-31 JP JP56136381A patent/JPS5837953A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5023990A (en) * | 1973-07-03 | 1975-03-14 | ||
JPS5678155A (en) * | 1979-11-30 | 1981-06-26 | Hitachi Ltd | Semiconductor device and manufacture thereof |
JPS56111238A (en) * | 1980-01-07 | 1981-09-02 | Chiyou Lsi Gijutsu Kenkyu Kumiai | Semiconductor ic device |
JPS57155765A (en) * | 1981-03-20 | 1982-09-25 | Fujitsu Ltd | Manufacture of semiconductor device |
JPS5835969A (en) * | 1981-08-28 | 1983-03-02 | Matsushita Electric Ind Co Ltd | semiconductor equipment |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62219955A (en) * | 1986-03-22 | 1987-09-28 | Agency Of Ind Science & Technol | Three-dimensional circuit |
JPH0369175B2 (en) * | 1986-03-22 | 1991-10-31 | Kogyo Gijutsuin | |
US5095352A (en) * | 1988-12-20 | 1992-03-10 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit device of standard cell system |
US5455445A (en) * | 1994-01-21 | 1995-10-03 | Kulite Semiconductor Products, Inc. | Multi-level semiconductor structures having environmentally isolated elements |
Also Published As
Publication number | Publication date |
---|---|
JPH0330301B2 (en) | 1991-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI238411B (en) | Semiconductor memory device | |
JP4002412B2 (en) | Basic cell, integrated circuit layout section, integrated circuit layout, integrated circuit device and method for designing signal lines of integrated circuit | |
KR100217210B1 (en) | Basic Cells for Bi-MOSMOS Gate Arrays | |
KR100439096B1 (en) | Semiconductor integrated circuit | |
TW535158B (en) | Semiconductor device | |
JP3274493B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH0770623B2 (en) | Static random access memory device | |
JPS56108259A (en) | Semiconductor memory device | |
JP3020199B2 (en) | SRAM cell and method of manufacturing the same | |
JP3015186B2 (en) | Semiconductor memory device and data reading and writing method | |
CN104637939A (en) | Integrated circuit with a plurality of transistors | |
JPH04233756A (en) | Integrated circuit consisting of multiple transistor structures with shared electrodes | |
US5754468A (en) | Compact multiport static random access memory cell | |
TW490929B (en) | Semiconductor integrated circuit having logic circuit comprising transistors with lower threshold voltage values and improved pattern layout | |
JP3299260B2 (en) | Semiconductor integrated circuit device | |
KR20190058238A (en) | Random access memory and associated circuit, method and system | |
US5684412A (en) | Cell forming part of a customizable logic array | |
CN101483428A (en) | Reconfigurable logic circuit | |
JPS61289598A (en) | Read only semiconductor memory device | |
JPS5837953A (en) | Laminated semiconductor integrated circuit device | |
TW201740381A (en) | Semiconductor storage device | |
US5814846A (en) | Cell apparatus and method for use in building complex integrated circuit devices | |
JPS58139446A (en) | Semiconductor integrated circuit device | |
JPH1131385A (en) | Semiconductor device | |
JP2501639B2 (en) | Semiconductor integrated circuit device |