[go: up one dir, main page]

JPS583242A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS583242A
JPS583242A JP10052481A JP10052481A JPS583242A JP S583242 A JPS583242 A JP S583242A JP 10052481 A JP10052481 A JP 10052481A JP 10052481 A JP10052481 A JP 10052481A JP S583242 A JPS583242 A JP S583242A
Authority
JP
Japan
Prior art keywords
groove
semiconductor device
etching
ion implantation
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10052481A
Other languages
Japanese (ja)
Other versions
JPS632143B2 (en
Inventor
Yoshinobu Monma
門馬 義信
Toshihiko Fukuyama
福山 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10052481A priority Critical patent/JPS583242A/en
Publication of JPS583242A publication Critical patent/JPS583242A/en
Publication of JPS632143B2 publication Critical patent/JPS632143B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/763Polycrystalline semiconductor regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、半導体装置の一造方法に111.、更に評し
くは素子間分離を行うことに起因する特性低下を防止し
得るようにした半導体*to製造方法に閤する〇 一般に1集積回路、大規模集積回路部の半導体装置にお
いては、−片の半導体ペレットの中に多数のトランジス
タ、ダイオードおよび抵抗郷の回路素子を組み込んで回
路機能を構成する。仁のとき、これらの素子が相互に電
気的な影響を受けないように、各素子を分離(アイソレ
ージ曽ン)する必要がある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for manufacturing a semiconductor device. More particularly, it applies to a semiconductor*to manufacturing method that can prevent the deterioration of characteristics caused by isolation between elements. In general, in a semiconductor device with one integrated circuit or large-scale integrated circuit, - A large number of circuit elements such as transistors, diodes, and resistors are incorporated into the semiconductor pellet to form a circuit function. In this case, each element must be isolated (isolated) so that these elements are not electrically influenced by each other.

このアイソレージ冒ンを行なう方法として(a)PNI
I合分離、ら)絶縁層分離、(e1空気層分離等が提案
されていゐ。第1IIおよび第2図は従来方法によるア
イソレージ曹ンを示す□この方法ではp−型シリコン基
II I K n” m Jl込拡散領域2を拡散形成
し、次に#鯛込拡散領域2.2間にチャンネル・カット
用領域3を形成する。次いで常法により装置シリコン・
エピタキシャル11141成長させ、しかる後、該エピ
タキシャル層4に酸化膜5を形成する。次に8F・を用
いる反応性イオンエツチング(RIE)Kより、U溝6
を形成する0ζこで反応性イオンエツチングとは、反応
性イオンビームエツチング、反応性スパッタエツチング
、反応性プラズマエツチング等を含むものである。次い
で5ins膜7を形成する。このようなアイソレージ冒
ンの構M、tとった場合、寄生容量が増加し、かつコレ
クタと基板の耐圧が減少する欠点があった。
As a method to perform this isolation attack, (a) PNI
I combination separation, e1 insulating layer separation, e1 air layer separation, etc. have been proposed. Figures 1II and 2 show isolation carbon by the conventional method □ In this method, the p-type silicon group II I K n ”m Jl-inclusive diffusion region 2 is formed by diffusion, and then a channel cut region 3 is formed between #Taai-gome diffusion region 2.2. Next, the device silicon is formed by a conventional method.
An epitaxial layer 11141 is grown, and then an oxide film 5 is formed on the epitaxial layer 4. Next, by reactive ion etching (RIE) K using 8F, the U groove 6
Here, reactive ion etching includes reactive ion beam etching, reactive sputter etching, reactive plasma etching, etc. Next, a 5-ins film 7 is formed. When such an isolation structure M and t is adopted, there are disadvantages in that the parasitic capacitance increases and the withstand voltage between the collector and the substrate decreases.

gS図は、他の従来法によるアインレーシlンを示す。The gS diagram shows ein rasin by another conventional method.

この方法でFip−原シリコン基f 8 K n+型壊
込拡散領域IIt拡散形成し、次いで常法によりh糎シ
リコン自エピタキシャル層10を成長させ、しかる後該
エピタキシャル層10に酸化膜111ft形成する。次
いでSF、を用いる反応性イオンエツチングによシ、n
”11m1込拡散領域9内KUIII12を形成する。
By this method, the Fip-original silicon base f 8 K n+ type collapsed diffusion region IIt is diffused, and then the h-silicon self-epitaxial layer 10 is grown by a conventional method, and then an oxide film 111ft is formed on the epitaxial layer 10. Then by reactive ion etching using SF, n
"11m1 in the diffusion area 9 to form KUIII12.

更にガス拡散法により不純物をU溝12の周一全体く導
入しp+チャンネルストッパー13を形成す石。このよ
うなアイソレージ冒ン構造を採った場合、集積度の高い
ICt作成す石ことか可能となるが、p+チャンネルス
トッパー13が広範l!にわ友っているので寄生容量が
増加する。
Furthermore, impurities are introduced all around the circumference of the U groove 12 using a gas diffusion method to form a p+ channel stopper 13. If such an isolation-based structure is adopted, it is possible to create an ICt with a high degree of integration, but the p+ channel stopper 13 has a wide range of l! Parasitic capacitance increases due to the close contact.

このためスイッチング速度が遵〈な石欠点があり’IP
−。
For this reason, there is a drawback that the switching speed is low.
−.

零ll―は、かかる状況に鐙み寄生容量の増加を肪止し
てスイッチング速度を低下させることなく完全な素子間
分離を行なうことを目的としたものであり、反応性イオ
ンエツチングにより導電層の半導体基[KUIllを形
成し、次いでUllll全表面に絶縁膜を形成し、次い
でイオンインプランテーシ璽ンにより前記導電型の不純
物を導入し、MU#lI底部にのみ不純物領域を形成す
ることを特徴とする0 以下、本発明の一実施例を第4〜6図に従って説明すゐ
The purpose of the 0ll- is to prevent the increase in stirrup parasitic capacitance in such a situation and to achieve complete isolation between elements without reducing the switching speed. The semiconductor substrate [KUIll] is formed, an insulating film is then formed on the entire surface of the ULlll, and then an impurity of the conductivity type is introduced by ion implantation to form an impurity region only at the bottom of the MU#lI. Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 4 to 6.

pus!半導体基板14Kn”WIM!込拡散領域15
を拡散したのち、n型エピタキシャル層16を成長させ
る。次K 5ift I! 37およびSis丸膜]8
をデボシュドする。次いでイオン注入の予定領域に対し
5ins膜17および51iN4膜18t−除去し8F
−を用いた反応性イオンエツチングを行ない半導体基板
】4に到るまで旧19を形成する。ここで反応性イオン
エツチングとは、反応性イオンビームエツチング、反応
性スパッタエツチング、反応性プラズマエツチング等を
含む。次いで約1000℃、塩酸雰囲気中で酸化第11
t行ない、U溝の周WK例えば500〜2000Aの酸
化膜20を形成する。この酸化膜の厚さは、U溝の底部
も側部4同じ厚さである。酸化第mは、エピタキシャル
層が低抵抗であゐ場合、又はイオンインブランテーシl
ンの際浅く注入される種類のイオン、例えばBdを用い
る場合、特I’llFのない工程であり、エピタキシャ
ル層が高抵抗である場合、又はB+の如く深く注入され
るイオンを用いる場合は必ve工程である。尚、熱酸化
層でなくN6雰囲気中で加熱し熱窒化膜を形成しても良
い0又、気相成長法による絶縁膜で本可能である0次い
で娑不;埠う汗純@411坂21を形成するため、ボロ
ンイオン(B+)のイオン注入を行なう。イオン注入は
、UwK対し喬直に行ない、例えば60 keyの加速
電圧を用い、打込みイオン−ドーズ量(3−”)5 X
 I O”の条件下で行なう。イオン注入はU溝に働直
に行なうが、0−101の偏りによる溝儒部のイオン注
入もあ)得るが、酸化膜厚W1偏りを10°とした場合
側部のイオン注入に対するマスキング膜厚My FiM
y = W/aia 10 = 5.8 Wであゐため
、溝底部にイオン注入されても擲儒部の酸化膜を通過し
てイオン注入されることはない0イオン注入後、多結晶
シリコン尋をtIU溝に埋め平坦化し、通常の所要の操
作を行なって半導体装置を製造する。
Pus! Semiconductor substrate 14Kn” WIM! included diffusion region 15
After diffusing, an n-type epitaxial layer 16 is grown. Next K 5ift I! 37 and Sis round membrane] 8
to debossed. Next, the 5ins film 17 and the 51iN4 film 18t were removed from the area scheduled for ion implantation.
Reactive ion etching using - is performed to form the old layer 19 up to the semiconductor substrate 4. Here, reactive ion etching includes reactive ion beam etching, reactive sputter etching, reactive plasma etching, and the like. Next, oxidation No. 11 was carried out at about 1000°C in a hydrochloric acid atmosphere.
Then, an oxide film 20 having a circumference WK of, for example, 500 to 2000 Å is formed around the U groove. The thickness of this oxide film is the same at the bottom and side portions 4 of the U-groove. The oxidation stage m is used when the epitaxial layer has low resistance or when ion implantation is performed.
When using ions that are implanted shallowly during the process, such as Bd, this is a process that does not require I'llF, and when the epitaxial layer has a high resistance, or when using ions that are implanted deeply such as B+, it is necessary. ve process. In addition, it is possible to form a thermal nitride film by heating in an N6 atmosphere instead of a thermal oxidation layer.Also, it is possible to form an insulating film by vapor phase growth. Boron ions (B+) are implanted in order to form. The ion implantation is performed directly with respect to UwK, for example, using an acceleration voltage of 60 keys and an implanted ion dose (3-'') 5X.
Ion implantation is performed directly into the U-groove, but ion implantation into the groove part with a deviation of 0-101 is also possible), but when the oxide film thickness W1 deviation is 10°. Masking film thickness for side ion implantation My FiM
y = W/aia 10 = 5.8 W, so even if ions are implanted at the bottom of the trench, they will not pass through the oxide film in the groove. The semiconductor device is manufactured by filling the tIU trench with the tIU and planarizing it, and performing the necessary normal operations.

本発明は、以上説!したように反応性イオンエツチング
により導電型の半導体基1[KU溝を形成し、所wKよ
りU溝表面に酸化膜を形成し、次いでイオン注入1cよ
り前記導電型の不純物を導入し、該U溝底部にのみ不純
物領域を形成するようにした4のであるから、完全なア
イソレージ嘗ンを得ることができると共に、寄生容量を
減少できるのでスイッチング速度が遅くなること本ない
That's all for the present invention! As described above, a conductivity type semiconductor substrate 1 [KU groove is formed by reactive ion etching, an oxide film is formed on the surface of the U groove from place wK, and then an impurity of the conductivity type is introduced by ion implantation 1c, Since the impurity region is formed only at the bottom of the trench, complete isolation can be obtained and parasitic capacitance can be reduced, so that the switching speed will not be slowed down.

【図面の簡単な説明】 第1図力いし第3図は従来方法による半導体装置の製造
工程説明図、第4図ないし第6図は、本発明の一実施例
を示す半導体装置の製造工程説明図である。 14・・・・・・p型半導体基板、15・・・・・・n
”ll置込拡散領域、16・・・・・・nWエピタキシ
ャル聯、19・・・・・・酸化膜、20・・・・・・U
溝、21・・・・・・不純物領域O 特許出願人 富士通株式金社 特許出願代理人 弁ト青木  朗 弁理士 西 舘 和 之 弁理士 内 1)幸 勇 弁1士 山 口 昭 之 第1図   旦 第2図 第3図
[Brief Description of the Drawings] Figures 1 to 3 are explanatory diagrams of the manufacturing process of a semiconductor device according to a conventional method, and Figures 4 to 6 are explanatory diagrams of the manufacturing process of a semiconductor device showing an embodiment of the present invention. It is a diagram. 14...p-type semiconductor substrate, 15...n
"ll placed diffusion region, 16... nW epitaxial connection, 19... oxide film, 20... U
Groove, 21... Impurity region O Patent applicant Fujitsu Kinsha Patent application agent Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney 1) Yuuben Yuki 1st attorney Akira Yamaguchi Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、エツチングにより−導電皺の半導体基板にυ溝を形
成し1次いで所11によりU溝全表面に絶縁膜を形成し
、次いでイオンインプランテーシ璽ンにより前記−導電
型の不純物を導入し、IIU溝底部にのみ不純物領域を
形成することt−特徴とする、前記半導体5IIlf)
製造方法。
1. Form a υ groove on the conductive wrinkled semiconductor substrate by etching, then form an insulating film on the entire surface of the U groove in step 11, and then introduce impurities of the conductivity type by ion implantation. The semiconductor 5IIlf) characterized in that an impurity region is formed only at the bottom of the IIU groove.
Production method.
JP10052481A 1981-06-30 1981-06-30 Manufacturing method of semiconductor device Granted JPS583242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10052481A JPS583242A (en) 1981-06-30 1981-06-30 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10052481A JPS583242A (en) 1981-06-30 1981-06-30 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS583242A true JPS583242A (en) 1983-01-10
JPS632143B2 JPS632143B2 (en) 1988-01-18

Family

ID=14276340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10052481A Granted JPS583242A (en) 1981-06-30 1981-06-30 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS583242A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649625A (en) * 1985-10-21 1987-03-17 International Business Machines Corporation Dynamic memory device having a single-crystal transistor on a trench capacitor structure and a fabrication method therefor
US5004703A (en) * 1989-07-21 1991-04-02 Motorola Multiple trench semiconductor structure method
JPH1064993A (en) * 1996-06-27 1998-03-06 Hyundai Electron Ind Co Ltd Semiconductor device having element separating structure and its manufacture
KR100719719B1 (en) 2006-06-28 2007-05-18 주식회사 하이닉스반도체 Manufacturing method of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649625A (en) * 1985-10-21 1987-03-17 International Business Machines Corporation Dynamic memory device having a single-crystal transistor on a trench capacitor structure and a fabrication method therefor
US5004703A (en) * 1989-07-21 1991-04-02 Motorola Multiple trench semiconductor structure method
JPH1064993A (en) * 1996-06-27 1998-03-06 Hyundai Electron Ind Co Ltd Semiconductor device having element separating structure and its manufacture
US5904541A (en) * 1996-06-27 1999-05-18 Hyundai Electronics Industries Co., Ltd. Method for fabricating a semiconductor device having a shallow trench isolation structure
KR100719719B1 (en) 2006-06-28 2007-05-18 주식회사 하이닉스반도체 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPS632143B2 (en) 1988-01-18

Similar Documents

Publication Publication Date Title
US4766086A (en) Method of gettering a semiconductor device and forming an isolation region therein
JPS6072268A (en) Method of producing bipolar transistor structure
JPS5866359A (en) Manufacturing method of semiconductor device
US5480816A (en) Method of fabricating a bipolar transistor having a link base
JPH0669431A (en) METHOD FOR MANUFACTURING BIPOLAR TRANSISTOR AND CMOS TRANSISTOR ON SOI SUBSTRATE AND THESE TRANSISTOR
JPS583242A (en) Manufacturing method of semiconductor device
JPH0685269A (en) Manufacture of reverse-conducting insulated-gate bipolar transistor
US6525401B2 (en) Semiconductor device for integrated injection logic cell and process for fabricating the same
Foster Silicon processing: CMOS technology
JPH11204541A (en) Manufacture of combined substrate and semiconductor device
JP2538077B2 (en) Method for manufacturing semiconductor device
JPS58206158A (en) Manufacture of semiconductor device
JPH0897223A (en) Bipolar transistor and manufacturing method thereof
JPH0249020B2 (en)
JPH0870047A (en) Method for manufacturing semiconductor device
JPS6386565A (en) Manufacturing method of semiconductor device
JPS59184523A (en) Manufacture of semiconductor integrated circuit
JPS6020555A (en) semiconductor equipment
JPH07153772A (en) Bipolar transistor and its manufacture
JPS641933B2 (en)
JPH05243249A (en) Manufacture of bipolar transistor
JPS599967A (en) Manufacture of semiconductor device
JPH0661239A (en) Semiconductor device and manufacturing method thereof
JPH06151733A (en) Bipolar semiconductor device and manufacture thereof
JPH01189159A (en) Method for manufacturing semiconductor integrated circuit device