[go: up one dir, main page]

JPH0685269A - Manufacture of reverse-conducting insulated-gate bipolar transistor - Google Patents

Manufacture of reverse-conducting insulated-gate bipolar transistor

Info

Publication number
JPH0685269A
JPH0685269A JP23063892A JP23063892A JPH0685269A JP H0685269 A JPH0685269 A JP H0685269A JP 23063892 A JP23063892 A JP 23063892A JP 23063892 A JP23063892 A JP 23063892A JP H0685269 A JPH0685269 A JP H0685269A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
igbt
type layer
bipolar transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23063892A
Other languages
Japanese (ja)
Inventor
Masahide Watanabe
雅英 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP23063892A priority Critical patent/JPH0685269A/en
Publication of JPH0685269A publication Critical patent/JPH0685269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To facilitate the integration of a reverse-conducting IGBT and a diode in one semiconductor element and improve the reliability and achieve the size reduction by a method wherein the manufacture of the IGBT is started from a substrate which is to be a high resistance layer. CONSTITUTION:The manufacture of a reverse-conducting IGBT is started from an n-type F2 silicon wafer 30. Phosphorus ions are implanted selectively to form an n<+>-type diffused layer and annealing is performed to form an n<+>-type layer 20 on the collector side of the wafer 30. The remaining part of the wafer 30 is used as an n-type layer 3. Further, boron ions are implanted selectively and annealing is performed to form a p<+>-type layer 1 on the collector side of the n<+>-type layer 20. The remaining part of the n<+>-type layer 20 is used as an n<+>-type buffer layer 2. Then a window 13 is formed in an oxide film on the surface of the p<+>-type layer 1 by a photoprocess. At that time, the emitter side and the collector side are aligned with each other. That is, the diode part and the IGBT part must be aligned with each other along a vertical direction. Then phosphorus ions are implanted from the collector side and annealing is performed to form an n<++>-type layer 10 which is deeper than the p<+>-type layer 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、絶縁ゲート型バイポー
ラトランジスタ (以下IGBT) とそれに逆並列接続さ
れるダイオードを同一半導体素体に組込んだ逆導通IG
BTの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reverse conducting IG in which an insulated gate bipolar transistor (IGBT) and a diode connected in anti-parallel thereto are incorporated in the same semiconductor element body.
The present invention relates to a method for manufacturing BT.

【0002】[0002]

【従来の技術】IGBTにダイオードを逆並列接続する
場合、従来はIGBTチップとダイオードチップとを同
一モジュール内に組込んで、導線をボンディングするこ
とによりチップ間を接続していた。しかしこのようなI
GBTモジュールは寸法が大きく、また数多くの接続導
線がモジュール内にはりめぐらされており、接続導線の
断線など、信頼性の面でも問題があった。この問題は、
IGBTチップ内にダイオードを集積すれば解決でき
る。
2. Description of the Related Art When a diode is connected to an IGBT in anti-parallel, the IGBT chip and the diode chip are conventionally incorporated in the same module, and the chips are connected by bonding a conductive wire. But I like this
The GBT module has a large size, and a large number of connecting conductors are arranged in the module, which causes a problem in reliability such as disconnection of the connecting conductors. This problem,
This can be solved by integrating the diode in the IGBT chip.

【0003】図2はIGBTの断面構造を示し、p+
レクタ層1の上にn+ バッファ層2を介して積層された
n層3の表面層に選択的にp層4が形成され、そのp層
の表面層に選択的にn+ エミッタ層5が形成されてい
る。そしてp層4のn層3とn + 層5にはさまれた部分
の上にゲート絶縁膜6を介してゲート電極7が設けら
れ、またp+ 層に接触するコレクタ電極8、n+ エミッ
タ層5とp層4に共通に接触するエミッタ電極9がそれ
ぞれ設けられる。そして、ゲート電極にはゲート端子G
を、コレクタ電極にはコレクタ端子Cを、エミッタ電極
にはエミッタ端子Eをそれぞれ接続する。このようなI
GBTのp+ 層1、n+ バッファ層2およびn層3はウ
エーハの段階で形成されているのが一般的である。すな
わち、p+ 層1としての500 μm程度の厚さのp形で低
抵抗のCZシリコンウエーハを基板に用い、その上に10
μm程度の厚さのn形で低抵抗のn+ 層2をエピタキシ
ャル法で積み、さらにその上にn形で高抵抗のn層3を
エピタキシャル法で積む。すなわち、p+ 層の基板の上
に2段のエピタキシャル成長層を有するウエーハから拡
散プロセスを出発させ、p層4、n+ 層5を形成する。
FIG. 2 shows a sectional structure of an IGBT, p+Ko
N on the rectifier layer 1+Laminated via the buffer layer 2
The p layer 4 is selectively formed on the surface layer of the n layer 3 and the p layer 4 is formed.
Selectively on the surface layer of+The emitter layer 5 is formed
It And the n layer 3 and the n of the p layer 4 +Part sandwiched by layer 5
A gate electrode 7 is provided on the gate insulating film 6
And p+Collector electrode 8, n in contact with the layer+Emi
The emitter electrode 9 that is commonly contacted with the
Each is provided. And, the gate electrode has a gate terminal G
, The collector terminal C to the collector electrode, and the emitter electrode
The emitter terminals E are respectively connected to the. I like this
GB p+Layer 1, n+The buffer layer 2 and the n layer 3 are
It is generally formed at the stage of aha. sand
Wow, p+Low p-type layer with a thickness of about 500 μm as layer 1
Resistor CZ silicon wafer is used as the substrate and 10
n type with a thickness of about μm and low resistance+Layer 2 epitaxy
Stacking by the jar method, and further n-type and high resistance n layer 3 on top of it.
Stacked by the epitaxial method. That is, p+Layer on board
Expanded from a wafer with a two-step epitaxial growth layer
The p-layer 4, n+Form layer 5.

【0004】このようなIGBTチップに逆並列接続ダ
イオードを内蔵させると図3のような断面構造となる。
すなわち、コレクタ電極8に接触するn++層10がn+
2に連結され、エミッタ電極9に接触するp層11がn層
3の表面層に形成される。
When an anti-parallel connection diode is built in such an IGBT chip, a sectional structure as shown in FIG. 3 is obtained.
That is, the n ++ layer 10 in contact with the collector electrode 8 is connected to the n + layer 2, and the p layer 11 in contact with the emitter electrode 9 is formed on the surface layer of the n layer 3.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述のように
図2のIGBTのp+ 層1の厚さは500 μm以上あるた
め、n++層を拡散法で形成するのには500 μm以上の拡
散深さが必要となり、実際には不可能である。本発明の
目的は、上述の問題を解決してダイオードをIGBTチ
ップに組込むことのできる逆導通IGBTの製造方法を
提供することにある。
However, since the thickness of the p + layer 1 of the IGBT of FIG. 2 is 500 μm or more as described above, it is 500 μm or more to form the n ++ layer by the diffusion method. A diffusion depth of is needed, which is not possible in practice. It is an object of the present invention to provide a method of manufacturing a reverse conducting IGBT which can solve the above problems and incorporate a diode into an IGBT chip.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、第一導電形の第一層の上に直接あるい
は第二導電形で高不純物濃度のバッファ層を介して積層
された第二導電形の低不純物濃度の第二層の表面層に選
択的に第一導電形の第三層、またその第三層の表面層に
選択的に第二導電形の第四層を形成してなるIGBT部
と、第一層の表面から第二導電形のバッファ層あるいは
第二層に達する第二導電形の高不純物濃度の第五層およ
び第二層の表面層に選択的に第一導電形の第六層を形成
してなるダイオード部を同一半導体素体に有する逆導通
IGBTの製造方法において、第二導電形で低不純物濃
度の半導体基板を第二層として用い、その一側に直接あ
るいはバッファ層を介して第一層を形成し、第一層の表
面からの不純物導入により第五層を形成し、前記半導体
基板の他側からの不純物導入により第三層、第四層およ
び第五層を形成するものとする。そして、半導体基板を
フローティングゾーン (FZ) 法により作製することが
有効である。
In order to achieve the above-mentioned object, the present invention is directed to a first layer of the first conductivity type, which is laminated directly or with a buffer layer having a high impurity concentration of the second conductivity type. The third layer of the first conductivity type is selectively formed on the surface layer of the second layer of the second conductivity type having a low impurity concentration, and the fourth layer of the second conductivity type is selectively formed on the surface layer of the third layer. Selective to the IGBT part formed by forming the second conductive type buffer layer or the second conductive type fifth and second surface layers having a high impurity concentration reaching the second conductive type buffer layer or the second layer from the surface of the first layer. In a method of manufacturing a reverse conducting IGBT having a diode portion formed by forming a sixth layer of the first conductivity type in the same semiconductor element body, a semiconductor substrate of the second conductivity type and a low impurity concentration is used as the second layer, The first layer is formed on one side either directly or via a buffer layer, and impurities are introduced from the surface of the first layer. The fifth layer is formed by, a third layer by impurity introduction from the other side of the semiconductor substrate, and to form a fourth layer and fifth layer. Then, it is effective to manufacture the semiconductor substrate by the floating zone (FZ) method.

【0007】また、第一層あるいは第一層およびバッフ
ァ層を半導体基板の表面からの不純物導入により形成す
ること、もしくは半導体基板表面上へのエピタキシャル
成長により形成することが有効である。
Further, it is effective to form the first layer or the first layer and the buffer layer by introducing impurities from the surface of the semiconductor substrate or by epitaxial growth on the surface of the semiconductor substrate.

【0008】[0008]

【作用】半導体基板を第二層として用いるため、第一層
は不純物導入あるいはエピタキシャル成長により10μm
程度の厚さに制御できる。従って第一層を貫通するダイ
オード部の第五層は第一層表面からの不純物導入により
容易に形成できる。
[Function] Since the semiconductor substrate is used as the second layer, the first layer is 10 μm thick by introducing impurities or by epitaxial growth.
It can be controlled to a certain thickness. Therefore, the fifth layer of the diode portion penetrating the first layer can be easily formed by introducing impurities from the surface of the first layer.

【0009】[0009]

【実施例】以下、図2、図3と共通の部分に同一の符号
を付した断面構造と不純物濃度分布を対応して示す図を
引用して本発明の実施例について述べる。図1(a) 〜
(d) の実施例では、n形で比抵抗100 Ω・cm、厚さ250
μmのFZシリコンウエーハ30から出発した〔同図(a)
〕。次にn+ 拡散層形成のため、P(りん) イオンをド
ーズ量5×1014/cm2 、加速電圧100keVで打込み、1250
℃で2時間のアニールを実施し、コレクタ側に表面濃度
5×1016/cm3 、拡散深さ15μmのn+ 層20を形成した
〔同図(b) 〕。ウエーハ30の残った部分がn層3とな
る。さらに、B (ほう素) イオンをドーズ量1×1016
cm2 、加速電圧50keV で打込み、1250℃で30分のアニー
ルを実施し、コレクタ側に表面濃度1×1019/cm 3 、拡
散深さ5μmのp+ 層1を形成した〔同図(c) 〕。n+
層20の残った部分がn+ バッファ層2となる。次いで、
+ 層1の表面の酸化膜12にフォトプロセスで窓13を明
けた。このとき、エミッタ側とコレクタ側の位置あわせ
をする必要がある。すなわち、ダイオード部とIGBT
部とが縦方向に位置があう必要がある。そのため、両面
フォトマスクアライナなどの装置を用いてコレクタ側の
窓13を明けると同時にエミッタ側のマーカー付けを行
い、このマーカーを用いて、以後のエミッタ側の拡散の
際に用いる。そして、コレクタ側からのPイオン打込み
とアニールによりp+ 層1より深いn++層10を形成した
〔同図(d) 〕。このあと、従来のIGBTの製造方法と
同様に、エミッタ側からのイオン打込み、アニールによ
り図3に示したようにp層4、p層1およびn+ エミッ
タ層5を形成した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following, the same parts as those in FIGS.
Figure showing the cross-sectional structure marked with and corresponding impurity concentration distribution
The embodiments of the present invention will be described with reference. Figure 1 (a)
In the example of (d), the n-type has a specific resistance of 100 Ω · cm and a thickness of 250.
We started with a 30 μm FZ silicon wafer [Fig.
 ]. Then n+In order to form a diffusion layer, P (phosphorus) ions are removed.
Dose 5 × 1014/cm2, 1250 with acceleration voltage of 100 keV
Annealed for 2 hours at ℃, surface concentration on the collector side
5 x 1016/cm3, With a diffusion depth of 15 μm+Formed layer 20
[Fig. (B)]. The remaining part of the wafer 30 is the n-layer 3.
It In addition, the dose of B (boron) ions is 1 × 1016/
cm2, Accelerating voltage 50keV, annealing at 1250 ℃ for 30 minutes
The surface concentration of 1 × 10 on the collector side.19/cm 3, Expansion
Dispersion depth 5μm p+Layer 1 was formed [(c) in the figure]. n+
The remaining part of layer 20 is n+It becomes the buffer layer 2. Then
p+A window 13 is formed in the oxide film 12 on the surface of the layer 1 by a photo process.
I got it. At this time, align the emitter side and collector side
Need to That is, the diode section and the IGBT
The parts must be aligned vertically. Therefore, both sides
Use a device such as a photomask aligner to
At the same time as opening the window 13
I will use this marker to
Used when. Then, P ion implantation from the collector side
And p by annealing+N deeper than layer 1++Formed layer 10
[Fig. (D)]. Then, the conventional IGBT manufacturing method
Similarly, ion implantation from the emitter side and annealing
As shown in FIG. 3, p layer 4, p layer 1 and n+Emi
Layer 5 was formed.

【0010】図4に示す実施例では、FZシリコン基板
を用いた2段エピタキシャルウエーハから出発した。基
板は、n層3となる比抵抗100 Ω・cm、厚さ230 μmの
FZシリコンウエーハで、その上のn+ エピタキシャル
層2は比抵抗0.1Ω・cm、厚さ10μm、p+ エピタキシ
ャル層1は比抵抗0.02Ω・cm、厚さ10μmとした〔同図
(a) 〕。このあと、図1(d) について述べたと同様な工
程でダイオード部のn ++層10を形成した〔同図(b) 〕。
さらに、上述の実施例と同様にして図3の構造を形成し
た。
In the embodiment shown in FIG. 4, an FZ silicon substrate is used.
Was started from a two-stage epitaxial wafer using. Basis
The plate has a specific resistance of 100 Ω · cm and a thickness of 230 μm to be the n-layer 3.
FZ silicon wafer with n on it+Epitaxial
Layer 2 has a specific resistance of 0.1 Ω · cm, thickness of 10 μm, p+Epitaxy
The layer 1 has a specific resistance of 0.02 Ω · cm and a thickness of 10 μm.
(a)]. After this, the same work as described in Fig. 1 (d) is performed.
N of the diode part ++A layer 10 was formed [(b) in the same figure].
Further, the structure of FIG.
It was

【0011】上記の実施例によって得られた逆導通IG
BTは、いずれも耐圧1500Vで、コレクタ電流、飽和電
圧ともに同一マスクパターンでエミッタ側を形成した従
来の逆導通IGBTのIGBTの特性と同一であること
を確認した。また、ダイオード動作も正常に行われるこ
とが確認された。なお、n+ バッファ層2を介在させな
い構造の場合にも同様に実施できる。
Reverse conduction IG obtained by the above embodiment
It was confirmed that each of the BTs has a withstand voltage of 1500 V, and both the collector current and the saturation voltage have the same characteristics as the IGBT of the conventional reverse conducting IGBT in which the emitter side is formed with the same mask pattern. It was also confirmed that the diode operation was performed normally. It should be noted that the same can be applied to a structure having no n + buffer layer 2 interposed.

【0012】[0012]

【発明の効果】本発明によれば、逆導通IGBTの製造
を高抵抗層となる基板から出発することにより、従来不
可能と考えられていた同一半導体素体内へのIGBTと
ダイオードの集積が可能となり、信頼性が高く、寸法の
小さい逆導通IGBTが得られた。
According to the present invention, it is possible to integrate the IGBT and the diode in the same semiconductor element, which has been considered impossible in the past, by starting the manufacturing of the reverse conducting IGBT from the substrate which becomes the high resistance layer. Thus, a highly reliable reverse conducting IGBT having a small size was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の逆導通IGBTの製造工程
の一部を(a) ないし(d) の順に示す断面構造図および不
純物濃度分布図
FIG. 1 is a sectional structural view and an impurity concentration distribution diagram showing a part of a manufacturing process of a reverse conducting IGBT according to an embodiment of the present invention in the order of (a) to (d).

【図2】IGBTの断面構造図FIG. 2 is a sectional structure view of an IGBT.

【図3】逆導通IGBTの断面構造図FIG. 3 is a cross-sectional structure diagram of a reverse conducting IGBT.

【図4】本発明の別の実施例の逆導通IGBTの製造工
程の一部を(a) 、(b) の順に示す断面構造図および不純
物濃度分布図
FIG. 4 is a sectional structural view and an impurity concentration distribution diagram showing a part of a manufacturing process of a reverse conducting IGBT according to another embodiment of the present invention in the order of (a) and (b).

【符号の説明】[Explanation of symbols]

1 p+ 層 2 n+ バッファ層 20 n+ 層 3 n層 30 シリコンウエーハ 4 p層 5 n+ エミッタ層 6 ゲート絶縁膜 7 ゲート電極 8 コレクタ電極 9 エミッタ電極 10 ダイオード部n++層 11 ダイオード部p層1 p + layer 2 n + buffer layer 20 n + layer 3 n layer 30 silicon wafer 4 p layer 5 n + emitter layer 6 gate insulating film 7 gate electrode 8 collector electrode 9 emitter electrode 10 diode part n ++ layer 11 diode part p layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】第一導電形の第一層の上に直接あるいは第
二導電形で高不純物濃度のバッファ層を介して積層され
た第二導電形の第二層の表面層に選択的に第一導電形の
第三層、またその第三層の表面層に選択的に第二導電形
の第四層を形成してなるIGBT部と、第一層の表面か
ら第二導電形のバッファ層あるいは第二層に達する第二
導電形の高不純物濃度の第五層および第二層の表面層に
選択的に第一導電形の第六層を形成してなるダイオード
を同一半導体素体に有する逆導通絶縁ゲート型バイポー
ラトランジスタの製造方法において、第一導電形で低不
純物濃度の半導体基板を第二層として用い、その一側に
直接あるいはバッファ層を介して第一層を形成し、第一
層の表面からの不純物導入により第五層を形成し、前記
半導体基板の他側からの不純物導入により第三層、第四
層および第五層を形成することを特徴とする逆導通絶縁
ゲート型バイポーラトランジスタの製造方法。
1. A surface layer of a second layer of the second conductivity type, which is laminated directly on the first layer of the first conductivity type or through a buffer layer of the second conductivity type having a high impurity concentration. An IGBT part formed by forming a third layer of the first conductivity type and a fourth layer of the second conductivity type selectively on the surface layer of the third layer, and a buffer of the second conductivity type from the surface of the first layer. A diode formed by selectively forming a sixth layer of the first conductivity type on the surface layer of the fifth layer of the second conductivity type high impurity concentration reaching the first layer or the second layer and the surface layer of the second layer In the method of manufacturing a reverse conduction insulated gate bipolar transistor having, a semiconductor substrate of a first conductivity type and a low impurity concentration is used as a second layer, and the first layer is formed on one side thereof directly or through a buffer layer, The fifth layer is formed by introducing impurities from the surface of one layer, and the other side of the semiconductor substrate is formed. Third layer, the manufacturing method of the reverse conducting insulated gate bipolar transistor, and forming a fourth layer and fifth layer by an impurity introduction al.
【請求項2】半導体基板をフローティングゾーン法によ
り作製する請求項1記載の逆導通絶縁ゲート型バイポー
ラトランジスタの製造方法。
2. The method for producing a reverse conducting insulated gate bipolar transistor according to claim 1, wherein the semiconductor substrate is produced by a floating zone method.
【請求項3】第一層あるいは第一層およびバッファ層を
半導体基板の表面からの不純物導入により形成する請求
項1あるいは2記載の逆導通絶縁ゲート型バイポーラト
ランジスタの製造方法。
3. The method for manufacturing a reverse conducting insulated gate bipolar transistor according to claim 1, wherein the first layer or the first layer and the buffer layer are formed by introducing impurities from the surface of the semiconductor substrate.
【請求項4】第一層あるいは第一層およびバッファ層を
半導体基板表面上へのエピタキシャル成長により形成す
る請求項1あるいは2記載の逆導通絶縁ゲート型バイポ
ーラトランジスタの製造方法。
4. The method for producing a reverse conducting insulated gate bipolar transistor according to claim 1, wherein the first layer or the first layer and the buffer layer are formed by epitaxial growth on the surface of the semiconductor substrate.
JP23063892A 1992-08-31 1992-08-31 Manufacture of reverse-conducting insulated-gate bipolar transistor Pending JPH0685269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23063892A JPH0685269A (en) 1992-08-31 1992-08-31 Manufacture of reverse-conducting insulated-gate bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23063892A JPH0685269A (en) 1992-08-31 1992-08-31 Manufacture of reverse-conducting insulated-gate bipolar transistor

Publications (1)

Publication Number Publication Date
JPH0685269A true JPH0685269A (en) 1994-03-25

Family

ID=16910929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23063892A Pending JPH0685269A (en) 1992-08-31 1992-08-31 Manufacture of reverse-conducting insulated-gate bipolar transistor

Country Status (1)

Country Link
JP (1) JPH0685269A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729031A (en) * 1996-01-16 1998-03-17 Mitsubishi Denki Kabushiki Kaisha High breakdown voltage semiconductor device
WO1999005713A1 (en) * 1997-07-22 1999-02-04 Siemens Aktiengesellschaft Bipolar transistor which can be controlled by field effect and method for producing the same
JP2007227412A (en) * 2006-02-21 2007-09-06 Renesas Technology Corp Semiconductor device and inverter device using the same
JP2008004867A (en) * 2006-06-26 2008-01-10 Denso Corp Process for fabricating semiconductor device
US7705398B2 (en) 2006-10-20 2010-04-27 Mitsubishi Electric Corporation Semiconductor device preventing recovery breakdown and manufacturing method thereof
US7768101B2 (en) 2006-10-27 2010-08-03 Mitsubishi Electric Corporation Semiconductor device having an insulated gate bipolar transistor and a free wheel diode
JP2013012783A (en) * 2012-10-10 2013-01-17 Mitsubishi Electric Corp Semiconductor device and manufacturing method thereof
CN107622979A (en) * 2016-07-15 2018-01-23 富士电机株式会社 Semiconductor device and case for semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729031A (en) * 1996-01-16 1998-03-17 Mitsubishi Denki Kabushiki Kaisha High breakdown voltage semiconductor device
WO1999005713A1 (en) * 1997-07-22 1999-02-04 Siemens Aktiengesellschaft Bipolar transistor which can be controlled by field effect and method for producing the same
US6309920B1 (en) 1997-07-22 2001-10-30 Siemens Aktiengesellschaft Bipolar transistor which can be controlled by field effect and method for producing the same
JP2007227412A (en) * 2006-02-21 2007-09-06 Renesas Technology Corp Semiconductor device and inverter device using the same
JP2008004867A (en) * 2006-06-26 2008-01-10 Denso Corp Process for fabricating semiconductor device
US7705398B2 (en) 2006-10-20 2010-04-27 Mitsubishi Electric Corporation Semiconductor device preventing recovery breakdown and manufacturing method thereof
DE102007019561B4 (en) * 2006-10-20 2012-10-25 Mitsubishi Electric Corp. Semiconductor device and manufacturing method thereof
US7768101B2 (en) 2006-10-27 2010-08-03 Mitsubishi Electric Corporation Semiconductor device having an insulated gate bipolar transistor and a free wheel diode
JP2013012783A (en) * 2012-10-10 2013-01-17 Mitsubishi Electric Corp Semiconductor device and manufacturing method thereof
CN107622979A (en) * 2016-07-15 2018-01-23 富士电机株式会社 Semiconductor device and case for semiconductor device

Similar Documents

Publication Publication Date Title
JPH0685269A (en) Manufacture of reverse-conducting insulated-gate bipolar transistor
US3840409A (en) Insulating layer pedestal transistor device and process
US5506156A (en) Method of fabricating bipolar transistor having high speed and MOS transistor having small size
JP3327658B2 (en) Manufacturing method of vertical bipolar transistor
KR930004720B1 (en) Semiconductor device and its manufacturing method
JP2538077B2 (en) Method for manufacturing semiconductor device
JPS63175463A (en) Bi-MOS integrated circuit manufacturing method
JPS5879735A (en) Semiconductor integrated circuit
JPS6151871A (en) semiconductor equipment
JPH02135755A (en) Dielectric isolation substrate and semiconductor device
KR860000254B1 (en) Longitudinal current injection type integrated injection logic device coexisting with linear device and manufacturing method thereof
JPH02278736A (en) Semiconductor device
JPH079385Y2 (en) Semiconductor integrated circuit device
JPH0247854B2 (en)
JPS6084878A (en) Semiconductor device with negative resistance characteristics and its manufacturing method
JPS60245169A (en) Semiconductor device and its manufacturing method
JPH04323832A (en) Semiconductor device and manufacture thereof
JPS6394676A (en) Manufacture of semiconductor device
JPS6020555A (en) semiconductor equipment
JPS6348842A (en) Manufacture of semiconductor integrated circuit device
JPS63144567A (en) Manufacture of semiconductor device
JPS63164364A (en) Semiconductor device and manufacture thereof
JPH0235470B2 (en)
JPH0582985B2 (en)
JPH0262046A (en) Semiconductor device