JPS5832230B2 - Method for forming high melting point material film - Google Patents
Method for forming high melting point material filmInfo
- Publication number
- JPS5832230B2 JPS5832230B2 JP6055379A JP6055379A JPS5832230B2 JP S5832230 B2 JPS5832230 B2 JP S5832230B2 JP 6055379 A JP6055379 A JP 6055379A JP 6055379 A JP6055379 A JP 6055379A JP S5832230 B2 JPS5832230 B2 JP S5832230B2
- Authority
- JP
- Japan
- Prior art keywords
- melting point
- high melting
- substrate
- point material
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002844 melting Methods 0.000 title claims description 69
- 230000008018 melting Effects 0.000 title claims description 67
- 239000000463 material Substances 0.000 title claims description 38
- 238000000034 method Methods 0.000 title claims description 14
- 239000000758 substrate Substances 0.000 claims description 39
- 239000010410 layer Substances 0.000 claims description 26
- 239000000126 substance Substances 0.000 claims description 23
- 239000000843 powder Substances 0.000 claims description 22
- 238000010438 heat treatment Methods 0.000 claims description 11
- 239000002344 surface layer Substances 0.000 claims description 8
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 10
- 229910052702 rhenium Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910000889 permalloy Inorganic materials 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/08—Coating starting from inorganic powder by application of heat or pressure and heat
- C23C24/10—Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Switches (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
【発明の詳細な説明】
本発明は高融点物質膜の形成方法に関し、更に詳細には
高融点物質粉末を母材とし、これを低融点物質からなる
基板上で加熱溶融することにより該基板上に高融点物質
膜を形成する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a high melting point substance film, and more specifically, the present invention relates to a method for forming a high melting point substance film, and more particularly, a high melting point substance powder is used as a base material, and by heating and melting the base material on a substrate made of a low melting point substance, the film is formed on the substrate. The present invention relates to a method for forming a high melting point material film.
従来、低融点物質からなる基板上に高融点物質からなる
膜を形成する技術は電気接点、プリンターの活字の表面
処理等の分野で行なわれて来た。Conventionally, techniques for forming a film made of a high melting point substance on a substrate made of a low melting point substance have been used in the fields of electrical contacts, surface treatment of printer type, and the like.
そしてこの種の膜形成方法として溶射法が知られている
が、この方法は高温燃焼炎中又は放電プラズマ中で高融
点物質粉末を加熱し、これを低融点物質の基板上に付着
させて高融点物質膜を形成するものである。Thermal spraying is known as a method for forming this type of film, and this method heats high-melting point material powder in a high-temperature combustion flame or discharge plasma, and deposits it on a substrate of a low-melting point material. This forms a film of melting point material.
したがってこの方法は酸化性の大きな物質には適用でき
ないこと、不純物の混入を避は難いこと及び緻密な膜の
形成が困難であること等の欠点を有した。Therefore, this method has drawbacks such as not being applicable to highly oxidizing substances, the incorporation of impurities being difficult to avoid, and the formation of a dense film being difficult.
本発明はこれらの欠点を解決するためになされたもので
、その目的は低融点物質基板上に緻密かつ高純度の高融
点物質膜を形成する方法を提供することである。The present invention has been made to solve these drawbacks, and its purpose is to provide a method for forming a dense and highly pure high melting point material film on a low melting point material substrate.
本発明の前記目的は低融点物質からなる基板上に高融点
物質粉末層を形成する第1工程、高融点物質粉末層の表
層を加熱溶融する第2工程及び未溶融の高融点粉末層に
接する基板面を加熱溶融して基板と高融点物質膜とを結
合する第3工程からなることを特徴とする高融点物質膜
の形成方法により達成される。The objects of the present invention are a first step of forming a high melting point powder layer on a substrate made of a low melting point material, a second step of heating and melting the surface layer of the high melting point powder layer, and a second step of forming a high melting point powder layer on a substrate made of a low melting point material. This is achieved by a method for forming a high melting point material film characterized by comprising a third step of bonding the substrate and the high melting point material film by heating and melting the substrate surface.
すなわち本発明によれば第2工程における高融点物質粉
末層の表層の溶融による高融点物質膜の形成と第3工程
における基板面の溶融による基板と高融点物質膜との結
合か別個に行なわれるので緻密かつ高純度の高融点物質
膜の形成が可能になる。That is, according to the present invention, the formation of a high melting point material film by melting the surface layer of the high melting point material powder layer in the second step and the bonding of the substrate and the high melting point material film by melting the substrate surface in the third step are performed separately. Therefore, it is possible to form a dense and highly pure high melting point substance film.
本発明を第1図を参照して具体的に説明する。The present invention will be specifically explained with reference to FIG.
第1図は本発明の工程を示す説明図であり、1は高融点
物質の粉末、2は低融点物質からなる基板、3は溶融、
緻密化した高融点物質膜、4は該基板2と該膜3とを結
合する中間層である。FIG. 1 is an explanatory diagram showing the steps of the present invention, in which 1 is a powder of a high melting point substance, 2 is a substrate made of a low melting point substance, 3 is a melting point,
A densified high melting point material film 4 is an intermediate layer that connects the substrate 2 and the film 3.
次に各工程について説明する。Next, each process will be explained.
第1工程においては高融点物質粉末1を基板2上に圧着
し、高融点物質粉末層を形成する。In the first step, the high melting point substance powder 1 is pressed onto the substrate 2 to form a high melting point substance powder layer.
次に第2工程として1回目のレーザ照射を行なう。Next, as a second step, first laser irradiation is performed.
この場合、レーザ照射時間を短くすることにより、高融
点物質粉末層及び基板の深さ方向に大きな温度勾配をも
たせることができ、低融点物質である基板を溶融するこ
となく、高融点物質粉末層の表層を溶融、緻密化せしめ
る。In this case, by shortening the laser irradiation time, a large temperature gradient can be created in the depth direction of the high melting point material powder layer and the substrate, and the high melting point material powder layer can be formed without melting the substrate, which is a low melting point material. The surface layer of the material is melted and densified.
続いて第3工程として、2回目のレーザ照射を行なう。Subsequently, as a third step, a second laser irradiation is performed.
この場合、レーザ照射時間を長くシ、徐々に加熱するこ
とにより深さ方向の温度勾配を小さくでき、したがって
表層の高融点物質を溶融せずに、これに接する低融点物
質からなる基板面を溶融することができる。In this case, by increasing the laser irradiation time and gradually heating, the temperature gradient in the depth direction can be reduced. Therefore, without melting the high melting point material on the surface layer, the substrate surface made of the low melting point material in contact with it can be melted. can do.
第3工程において溶融した基板物質は未溶融の高融点物
質粉末層中に浸透して中間層4を形成し、これにより高
融点物質膜と基板とが確実に結合される。In the third step, the melted substrate material permeates into the unmelted high melting point material powder layer to form the intermediate layer 4, thereby reliably bonding the high melting point material film and the substrate.
しかしながら溶融した基板物質の浸透は第2工程により
形成された緻密層によりさえぎられ、基板物質が膜表面
に露出することはない。However, the penetration of the molten substrate material is blocked by the dense layer formed in the second step, and the substrate material is not exposed to the film surface.
したがって膜表面の純度を低下させることがなく、密着
性の大なる高融点物質膜を低融点物質基板上に形成する
ことが可能となる。Therefore, it is possible to form a highly adhesive high melting point material film on a low melting point material substrate without reducing the purity of the film surface.
前記説明においては第2及び第3工程における加熱手段
としてレーザ光を用いる場合について説明したが、加熱
手段はこれに限定されるものではなく電子ビーム又は赤
外線による加熱も適用できる。In the above description, a case has been described in which a laser beam is used as a heating means in the second and third steps, but the heating means is not limited to this, and heating with an electron beam or infrared rays can also be applied.
本発明において使用される高融点物質及び低融点物質は
電気接点及びプリンター等の場合のような金属物質に限
られるものではなく、セラミックのような金属以外の物
質であってもよく、例えば3000℃以上の高融点物質
をも含むものである。The high melting point substance and the low melting point substance used in the present invention are not limited to metal substances such as those used in electrical contacts and printers, but may also be non-metallic substances such as ceramics, for example, at 3000°C. It also includes the above-mentioned high melting point substances.
次に本発明を実施するために使用する装置の一具体例に
ついて説明する。Next, a specific example of an apparatus used to carry out the present invention will be described.
第2図は装置の概略図であり、図中1は高融点物質粉末
層、2は低融点物質基板であり、該粉末層1は予め該基
板2に圧着される。FIG. 2 is a schematic diagram of the apparatus, in which 1 is a powder layer of a high melting point substance, 2 is a substrate of a low melting point substance, and the powder layer 1 is pressed onto the substrate 2 in advance.
5はYAGレーザパルス発振器、6は反射鏡、7は集光
レンズ、8は気密室、9はレーザ光透過窓である。5 is a YAG laser pulse oscillator, 6 is a reflecting mirror, 7 is a condensing lens, 8 is an airtight chamber, and 9 is a laser beam transmission window.
これを動作するには、該粉末層1及び該基板2よりなる
試料の酸化防止のために気密室8の排気又は不活性ガス
の導入を行なう。To operate this, the hermetic chamber 8 is evacuated or an inert gas is introduced to prevent oxidation of the sample consisting of the powder layer 1 and the substrate 2.
次に前記試料の加工箇所にレーザ光を集束させるために
反射鏡6及び集光レンズ7の位置調整を行なった後、該
発振器5を作動する。Next, the oscillator 5 is activated after adjusting the positions of the reflecting mirror 6 and the condensing lens 7 in order to focus the laser beam on the processing location of the sample.
該発振器5より放射されたパルスレーザ光は反射鏡6に
より進行方向を変え、集光レンズ7により試料の加工箇
所に集束して試料を加熱する。The pulsed laser beam emitted from the oscillator 5 changes its traveling direction by a reflecting mirror 6, and is focused by a condensing lens 7 onto a processing location of the sample to heat the sample.
照射されるパルスレーザ光のパワー密度及びパルス幅に
より試料の加熱部位(試料の所定の深さ)が決定される
ので、これらの因子を変更してパルスレーザ光を照射す
ることにより該粉末層1及び該基板2は別個に加熱溶融
される。Since the heated part of the sample (predetermined depth of the sample) is determined by the power density and pulse width of the pulsed laser beam to be irradiated, the powder layer 1 can be heated by changing these factors and irradiating the pulsed laser beam. And the substrate 2 is separately heated and melted.
次に本発明を実施例により説明するが、本発明はこれに
よりなんら限定されるものではない。Next, the present invention will be explained with reference to examples, but the present invention is not limited thereto in any way.
実施例
本実施例では前記した装置並びに高融点物質としてレニ
ウムを、又基板としてパーマロイを使用した。EXAMPLE In this example, the above-described apparatus, rhenium was used as the high melting point substance, and permalloy was used as the substrate.
第1工程として粒径3μmのレニウム粉末をパーマロイ
基板上に分散し、油圧プレスによりこれを圧着し、厚さ
50μmのレニウム粉末層を形成した。As a first step, rhenium powder with a particle size of 3 μm was dispersed on a permalloy substrate, and this was compressed using a hydraulic press to form a rhenium powder layer with a thickness of 50 μm.
第2工程では、パワー密度2xlOW/d1パルス幅0
.2X10 秒、ビームスポット直径0.3wl1
の条件でレーザ照射を行なうことにより、レニウム粉末
層を約20μmの深さまで溶融した。In the second step, power density 2xlOW/d1 pulse width 0
.. 2X10 seconds, beam spot diameter 0.3wl1
By performing laser irradiation under these conditions, the rhenium powder layer was melted to a depth of approximately 20 μm.
第3工程ではパワー密度0.7X10’w/cil、パ
ルス幅1.0X10−3秒、ビームスポット直径1.0
駅の条件でレーザ照射を行なうことにより、レニウム層
を溶融することなく、基板のみを深さ約20μmの深さ
まで溶融した。In the third step, the power density is 0.7 x 10'w/cil, the pulse width is 1.0 x 10-3 seconds, and the beam spot diameter is 1.0.
By performing laser irradiation under stationary conditions, only the substrate was melted to a depth of approximately 20 μm without melting the rhenium layer.
このとき溶融した基板物質は未溶融のレニウム粉末層に
浸透し、その部分が緻密化するとともにレニウム層と基
板とが強固に結合された。At this time, the molten substrate material permeated into the unmelted rhenium powder layer, making the part densified and firmly bonding the rhenium layer and the substrate.
又レニウム層の表層は第2工程により既に緻密化して膜
を形成しており、この膜への溶融基板物資の浸透はなく
、表層の純度低下は生じなかった。Further, the surface layer of the rhenium layer had already been densified to form a film in the second step, and the molten substrate material did not penetrate into this film, so that the purity of the surface layer did not deteriorate.
前記のように表面純度、密着性ともに良好なレニウム膜
をパーマロイ基板上に形成できるので、例えば電気接点
膜の製造に応用できる。As mentioned above, since a rhenium film with good surface purity and adhesion can be formed on a permalloy substrate, it can be applied, for example, to the production of electrical contact films.
以上の説明から明らかなように、本発明によれば高融点
物質粉末を基板上で直接成膜できるので、従来の金属加
工にみられる鍛造、圧延、及び基板との接合という諸工
程を必要とせず、短時間に高融点物質膜の形成ができる
という利点がある。As is clear from the above explanation, according to the present invention, the high melting point substance powder can be directly formed into a film on the substrate, thereby eliminating the need for the various processes of forging, rolling, and bonding with the substrate that are seen in conventional metal processing. First, it has the advantage that a high melting point material film can be formed in a short time.
又セラミック及び高硬度金属など、圧延加工を適用でき
ない物質に対しても本発明を適用することにより、膜形
成ができるので従来極めて困難であった高融点物質によ
る表面被覆加工が実現され、例えば特性の優れたレニウ
ム被覆電気接点の製造を高能率で行なうことが可能とな
る。Furthermore, by applying the present invention to materials to which rolling cannot be applied, such as ceramics and high-hardness metals, it is possible to form a film, making surface coating with high melting point materials, which was extremely difficult in the past, possible. This makes it possible to manufacture rhenium-coated electrical contacts with excellent quality with high efficiency.
第1図は本発明の工程を示す説明図、第2図は本発明を
実施するに当り使用する装置の一具体例の概略図である
。
1・・・・・・高融点物質粉末、2・・・・・・基板、
3・・・・・・溶融、緻密化した高融点物質の膜、4・
・・・・・中間層、5・・・・・・YAGパルスレーザ
発振器、6・・・・・・反射鏡、7・・・・・・集光レ
ンズ、8・・・・・・気密室、9・・・・・・レーザ光
透過窓。FIG. 1 is an explanatory diagram showing the steps of the present invention, and FIG. 2 is a schematic diagram of a specific example of the apparatus used in carrying out the present invention. 1... High melting point substance powder, 2... Substrate,
3... Melted, densified film of high melting point substance, 4.
...Intermediate layer, 5...YAG pulse laser oscillator, 6...Reflector, 7...Condensing lens, 8...Airtight chamber , 9... Laser light transmission window.
Claims (1)
成する第1工程、高融点物質粉末層の表層を加熱溶融す
る第2工程及び未溶融の高融点粉末層に接する基板面を
加熱溶融して基板と高融点物質膜とを結合する第3工程
からなることを特徴とする高融点物質膜の形成方法。 2 第2工程及び第3工程の加熱をレーザ光により行な
う特許請求の範囲第1項記載の高融点物質膜の形成方法
。[Claims] 1. A first step of forming a high melting point powder layer on a substrate made of a low melting point material, a second step of heating and melting the surface layer of the high melting point powder layer, and a second step of heating and melting the surface layer of the high melting point powder layer on the unmelted high melting point powder layer. A method for forming a high melting point material film, comprising a third step of bonding the substrate and the high melting point material film by heating and melting the contacting substrate surfaces. 2. The method of forming a high melting point substance film according to claim 1, wherein the heating in the second step and the third step is performed by laser light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6055379A JPS5832230B2 (en) | 1979-05-18 | 1979-05-18 | Method for forming high melting point material film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6055379A JPS5832230B2 (en) | 1979-05-18 | 1979-05-18 | Method for forming high melting point material film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55154574A JPS55154574A (en) | 1980-12-02 |
JPS5832230B2 true JPS5832230B2 (en) | 1983-07-12 |
Family
ID=13145584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6055379A Expired JPS5832230B2 (en) | 1979-05-18 | 1979-05-18 | Method for forming high melting point material film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5832230B2 (en) |
-
1979
- 1979-05-18 JP JP6055379A patent/JPS5832230B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS55154574A (en) | 1980-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4970196A (en) | Method and apparatus for the thin film deposition of materials with a high power pulsed laser | |
US3969604A (en) | Method of welding galvanized steel | |
US4879450A (en) | Laser welding technique | |
US8367971B2 (en) | Method of working material with high-energy radiation | |
US4390743A (en) | Silicon layer solar cell and method of producing it | |
US3881084A (en) | Method of welding galvanized steel | |
JP2003245784A (en) | Laser processing method, laser processing apparatus, and three-dimensional structure | |
US4092515A (en) | Laser method of precision hole drilling | |
Venkatakrishnan et al. | Sub-micron ablation of metallic thin film by femtosecond pulse laser | |
US5415901A (en) | Laser ablation device and thin film forming method | |
EP0427737B1 (en) | Method of micro-working the surface of a workpiece while using a laser beam | |
JPS5832230B2 (en) | Method for forming high melting point material film | |
JPS62230B2 (en) | ||
US7767269B2 (en) | Method for coating a support with a material | |
US8609202B2 (en) | Method for inscribing or marking surfaces | |
JPS6155588B2 (en) | ||
Ayers et al. | Consolidation of plasma-sprayed coatings by laser remelting | |
JPS5852473A (en) | Surface treatment of metallic material | |
RU2104592C1 (en) | Method for manufacturing of magnetic recording carrier | |
JPH01225770A (en) | Vacuum deposition equipment and method for producing deposited films using laser light heating | |
Gaković et al. | Modification of multilayered TiAlN/TiN coating by nanosecond and picosecond laserpulses | |
JPH0324263A (en) | Vapor deposition device for thin film | |
JPS62224669A (en) | Ceramic coating method with laser | |
JPH09256141A (en) | Formation of thin film and device therefor | |
JP4627693B2 (en) | Thin film forming equipment |