[go: up one dir, main page]

JPS5829302A - Controlling device for linear synchronous motor vehicle - Google Patents

Controlling device for linear synchronous motor vehicle

Info

Publication number
JPS5829302A
JPS5829302A JP56126809A JP12680981A JPS5829302A JP S5829302 A JPS5829302 A JP S5829302A JP 56126809 A JP56126809 A JP 56126809A JP 12680981 A JP12680981 A JP 12680981A JP S5829302 A JPS5829302 A JP S5829302A
Authority
JP
Japan
Prior art keywords
pattern
vehicle
acceleration
speed
initial value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56126809A
Other languages
Japanese (ja)
Other versions
JPS633525B2 (en
Inventor
Haruo Ikeda
春男 池田
Toyoharu Uchiyama
内山 豊春
Kiyoshi Nakamura
清 中村
Shigeki Koike
小池 茂喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPANESE NATIONAL RAILWAYS<JNR>
Hitachi Ltd
Japan National Railways
Nippon Kokuyu Tetsudo
Original Assignee
JAPANESE NATIONAL RAILWAYS<JNR>
Hitachi Ltd
Japan National Railways
Nippon Kokuyu Tetsudo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPANESE NATIONAL RAILWAYS<JNR>, Hitachi Ltd, Japan National Railways, Nippon Kokuyu Tetsudo filed Critical JAPANESE NATIONAL RAILWAYS<JNR>
Priority to JP56126809A priority Critical patent/JPS5829302A/en
Publication of JPS5829302A publication Critical patent/JPS5829302A/en
Publication of JPS633525B2 publication Critical patent/JPS633525B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/002Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of propulsion for monorail vehicles, suspension vehicles or rack railways; for control of magnetic suspension or levitation for vehicles for propulsion purposes
    • B60L15/005Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of propulsion for monorail vehicles, suspension vehicles or rack railways; for control of magnetic suspension or levitation for vehicles for propulsion purposes for control of propulsion for vehicles propelled by linear motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Control Of Linear Motors (AREA)

Abstract

PURPOSE:To smooth the change in a running speed and an acceleration by a method wherein the actual speed and acceleration of a vehicle at the time when restarting is commenced are given as the initial value of a running speed pattern and the initial value of the acceleration when the vehicle is transferred out of the state of coasting into that of restarting. CONSTITUTION:A running speed pattern B in accordance with a reference speed A is prepared by an acceleration limitter 12, an acceleration change rate limitter 14 and integrators 15 and 16. A frequency pattern generating element 2 delivers a frequency pattern G in accordance with the running speed pattern B. A follow- up control element 3 gives an effective-value control output J and a sine-wave pattern K to a power transformer 5 via a multiplier 4 according to the frequency pattern G and a signal H of the position of a vehicle 8. When a restarting instruction RST is delivered at the time when the vehicle 8 is in the state of coasting, an output M of the speed of the vehicle and an output N of the acceleration thereof at that time are given as the initial values of the running speed pattern B and a running acceleration pattern D.

Description

【発明の詳細な説明】 本発明はリニアシンクロナスモータ式車輛の制御装置に
関し、特にその速度制御の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control system for a linear synchronous motor vehicle, and particularly to improvements in speed control thereof.

リニアシンクロナスモータ式車輛の制御装置においては
、第1図に示すように、速度基準指令Aに基づき車輛を
走行させるべき速度パターンおよび走行加速度パター7
を速度パターン発生部1から発生させ、さらにこの速度
パターンおよび走行加速度パターンに対応した周波数の
周波数パターンを周波数パターン発生部2から発生させ
、この周波数パターンの位相と車輪の位置検出器6かち
得た位置信号の位相とを追従制御部3で比較してその位
相差に応じて地上1次コイル7に流す電流の実効値を求
め、さらに前記位置信号によって車輛速度に対応した正
弦波パター/信号を追従制御部3から発生させ、この正
弦波パターン信号と前記実効値とを乗算器4において乗
算して速度基準指令Aに追従させるに必要な波高値およ
び周波数を有する電流パターンを求め、この電流パター
ンを電力変換器5において電力増幅して地上1次側コイ
ルに通電させ、これにより車輛80走行速度を制御する
ものがある。
In a control device for a linear synchronous motor vehicle, as shown in FIG.
is generated from the speed pattern generator 1, and a frequency pattern corresponding to this speed pattern and the traveling acceleration pattern is generated from the frequency pattern generator 2, and the phase of this frequency pattern and the wheel position detector 6 are obtained. The tracking control unit 3 compares the phase of the position signal with the phase difference to determine the effective value of the current flowing through the ground primary coil 7 according to the phase difference, and further generates a sine wave pattern/signal corresponding to the vehicle speed based on the position signal. A current pattern is generated from the tracking control unit 3, and is multiplied by this sine wave pattern signal and the effective value in a multiplier 4 to obtain a current pattern having a peak value and frequency necessary to follow the speed reference command A. There is a system that amplifies the power in the power converter 5 and energizes the primary coil on the ground, thereby controlling the running speed of the vehicle 80.

ところが、このような制御装置において、手動制御によ
って車輛のダ行・再起動の運転処理を行う場合には、走
行速度パターンの初期値の設定の肚方が問題になるが、
従来においてはこの点の技術が確立されておらず、ダ行
・再起動運転の際に走行速度および加速度が急激に変化
して乗心地が損なわれるという欠点があった。
However, in such a control device, when performing driving processing such as starting or restarting a vehicle by manual control, there is a problem in how to set the initial value of the traveling speed pattern.
Conventionally, the technology in this respect has not been established, and there has been a drawback that the running speed and acceleration change rapidly during start-up/restart operation, which impairs ride comfort.

本発明の目的はダ行状態から再起動状態に移る際の走行
速度および加速度の変化を滑らかに行ない、乗心地の良
好な制御を実行し得るリニアシンクロナスモータ式車輛
の制御装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a control device for a linear synchronous motor vehicle that can smoothly change the running speed and acceleration when moving from a running state to a restart state, and can perform good control of riding comfort. be.

本発明は、ダ行・再起動運転処理を手動で行なう際に、
車輌の走行速度、加速度が急激に変化して車輛の乗心地
が損なわれないようにするために、走行速度パターンの
初期値として再起動開始時の車輛の実際の速度を与え、
さらにこの走行速度パターンを立上げる際の加速度の初
期値として再起動開始時の車輌の実際の加速度を与える
ようにして、これら2つの初期値よシ、走行速度パター
ンの加速度を許容される加速度まで一定の加速度変化率
で増加させるようにしたものである。
The present invention provides the following advantages when manually performing the start/restart operation process.
In order to prevent the riding comfort of the vehicle from being impaired due to sudden changes in the running speed and acceleration of the vehicle, the actual speed of the vehicle at the time of restarting is given as the initial value of the running speed pattern.
Furthermore, the actual acceleration of the vehicle at the time of restarting is given as the initial value of acceleration when starting up this running speed pattern, and based on these two initial values, the acceleration of the running speed pattern is increased to an allowable acceleration. The acceleration is increased at a constant rate of change.

以下、図示する実施例に基づき本発明の詳細な説明する
Hereinafter, the present invention will be described in detail based on illustrated embodiments.

第2図は本発明の一実施例を示すブロック図である。FIG. 2 is a block diagram showing one embodiment of the present invention.

第2図において、速度基mhと、走行速度パターンBは
減算器11へ入力されて速度基準Aと走行速度パターン
Bとの速度差信号SAMが求められる。この速度差信号
Sム、IIは加速度リミッタ12へ人力される。この加
速度リミッタ12は、速度差信号SABの絶対値の大き
さが予め定められた閾値より大きい場合には一定の出方
を送出し、速度差信号SABが閾値よシ小さい場合には
、速度差信号SムBの値に比例した出力を送出するよう
に構成されている。加速度リミッタ12の出力Cおよび
走行加速度パターンDは減算器13へ入力され、加速度
差信号Eが求められる。この加速度差信号Eは、加速度
変化率リミッタ14へ入力される。この加速度変化率リ
ミッタ14は、加速度差信号Eが正の値であれば正の一
定値を出力し、加速度差信号Eが負の値であれば負の一
定値を出力し、加速度差信号Eが零であれば零値を出力
するように構成されている。加速度変化率リミッタ14
の出力Fは積分器15へ入力される。積分器15の出力
が走行加速度パターンDとなる。走行加速度パターンD
は、減算器13に帰還されると共に積分器16に入力さ
れる。積分器16の出力は、走行速度パター・ンBとな
る。走行速度パターンBは減算器11に帰還されると共
に周波数パターン発生部2に入力される。周波数パター
ン発生部2は走行速度パターンBの値に比例した周波数
を有する3相方形波を発生するように構成されている。
In FIG. 2, the speed base mh and the running speed pattern B are input to a subtracter 11 to obtain a speed difference signal SAM between the speed reference A and the running speed pattern B. The speed difference signals S, II are inputted to the acceleration limiter 12. This acceleration limiter 12 sends out a certain output when the magnitude of the absolute value of the speed difference signal SAB is larger than a predetermined threshold, and when the speed difference signal SAB is smaller than the threshold, the speed difference It is configured to send out an output proportional to the value of the signal SmB. The output C of the acceleration limiter 12 and the running acceleration pattern D are input to a subtracter 13, and an acceleration difference signal E is obtained. This acceleration difference signal E is input to the acceleration change rate limiter 14. This acceleration change rate limiter 14 outputs a constant positive value if the acceleration difference signal E is a positive value, outputs a negative constant value if the acceleration difference signal E is a negative value, and outputs a constant negative value if the acceleration difference signal E is a negative value. is configured to output a zero value if is zero. Acceleration change rate limiter 14
The output F is input to the integrator 15. The output of the integrator 15 becomes the traveling acceleration pattern D. Travel acceleration pattern D
is fed back to the subtractor 13 and input to the integrator 16. The output of the integrator 16 becomes the traveling speed pattern B. The traveling speed pattern B is fed back to the subtracter 11 and is also input to the frequency pattern generator 2. The frequency pattern generator 2 is configured to generate a three-phase rectangular wave having a frequency proportional to the value of the traveling speed pattern B.

周波数パターン発生部2の出力である周波数パターン(
3相方形波)Gは、車輛の位置信号H(車輌の位置信号
は3相方形波である。)と共に追従制御部3へ入力され
る。追従制御部3では、周波数パターンGと、位置信号
Hとの藺の位相差を検出し、この位相差に補償演算を施
して実効値制御出力Jが求められる。また車輛の位置信
号Hより車輌速度を検出して、車輛速度に比例また周波
数を有する正弦波パターンKが求められる。実効値制御
出力Jと正弦波パターンには乗算器4に入力される。乗
算器4の出力である電流バター/Lは電力変換器5へ人
力される。電力変換器5は電流パターンLの波高値及び
周波数に応じた波高値及び周波数を有する電流を地上−
次側コイル7に通電して所定の推力を得て車輛8を推進
させる。車輛8の位置は11位置検出器6によって検出
され、位置検出器6の出力である位置信号Hは追従制御
部3へ入力される。
The frequency pattern (
The three-phase square wave) G is input to the follow-up control section 3 together with the vehicle position signal H (the vehicle position signal is a three-phase square wave). The follow-up control section 3 detects the phase difference between the frequency pattern G and the position signal H, and performs a compensation calculation on this phase difference to obtain the effective value control output J. Further, the vehicle speed is detected from the vehicle position signal H, and a sine wave pattern K having a frequency proportional to the vehicle speed is determined. The effective value control output J and the sine wave pattern are input to a multiplier 4. Current butter/L, which is the output of the multiplier 4, is input to the power converter 5. The power converter 5 transmits a current having a peak value and frequency corresponding to the peak value and frequency of the current pattern L to the ground.
The next coil 7 is energized to obtain a predetermined thrust to propel the vehicle 8. The position of the vehicle 8 is detected by a position detector 6 , and a position signal H that is an output of the position detector 6 is input to the follow-up control section 3 .

以上述べた各信号の一連の入出力関係によって車輛8は
走行速度パターンBK一致するように速度が制御されて
走行する。
The vehicle 8 runs with its speed controlled so as to match the running speed pattern BK by the series of input/output relationships of the respective signals described above.

自動走行を行なっている車輛をダ行状態にするべくダ行
指令DKを出すと波高値制御出力は零となり1車輛8は
ダ行状態となる。ダ行状態の車輛8を自動運転状態に復
帰させるべく再起動指令R8Tを出すと次のような手続
きによって再起動される。すなわち、位置信号Hは速度
演算部18に入力されてここから車輛の速度に対応した
速度出力Mが発生される。また、位置信号Hは加速度演
算部17にも入力されてここから車輛の加速度に対応し
た加速度出力Nが発生される。速度出力Mはゲート19
に入力され、加速度出力Nはゲート20に入力される。
When a vehicle that is automatically running is issued a "Go" command DK to put it into a "Go" state, the peak value control output becomes zero and one vehicle 8 goes into a "Go" state. When a restart command R8T is issued to return the vehicle 8 which is in the running state to an automatic driving state, the vehicle 8 is restarted according to the following procedure. That is, the position signal H is input to the speed calculation section 18, from which a speed output M corresponding to the speed of the vehicle is generated. The position signal H is also input to the acceleration calculation section 17, from which an acceleration output N corresponding to the acceleration of the vehicle is generated. Speed output M is gate 19
The acceleration output N is input to the gate 20.

ゲート19およびゲート20は通常は閉じられているが
、再起動指令R8Tがストローブ信号発生部21に入力
されることによりストローブ信号発生部21からストロ
ーブ信号8TBが発生されると、ゲート19およびゲー
ト20はゲート開状態となる。これによって車輛の速度
出力Mは走行速度パターンBの初期値として積分器16
にセットされ、また車輛の加速度出力Nは走行加速度パ
ターンDの初期値として積分器15にセットされる。こ
れによって、走行速度パターンBおよび走行加速度パタ
ーンDを再起動時の車輛の速度および車輛の加速度を基
準として立上げることが可能になる。
Gate 19 and gate 20 are normally closed, but when strobe signal 8TB is generated from strobe signal generation section 21 by inputting restart command R8T to strobe signal generation section 21, gate 19 and gate 20 are closed. becomes the gate open state. As a result, the speed output M of the vehicle is set as the initial value of the traveling speed pattern B by the integrator 16.
The acceleration output N of the vehicle is also set in the integrator 15 as the initial value of the traveling acceleration pattern D. This makes it possible to start the traveling speed pattern B and the traveling acceleration pattern D based on the vehicle speed and vehicle acceleration at the time of restart.

また、再起動時には再起動指令R8Tは、周波数パター
ン発生部2にも入力され、この信号の入力によって周波
数パターンGが位置信号Hに同期して発生させられる。
Further, at the time of restart, the restart command R8T is also input to the frequency pattern generating section 2, and the frequency pattern G is generated in synchronization with the position signal H by inputting this signal.

第3図は以上説明してきた動作をタイミングチャートに
図示したものである。なお、第3図で用いる記号は第2
図における信号名と一致している。
FIG. 3 is a timing chart showing the operations described above. Note that the symbols used in Figure 3 are
It matches the signal name in the figure.

以上説明した実施例によれば、2個のゲートと1個のス
トローブ信号発生回路によって再起動運転に移る際の車
輌の速度および加速度を簡単に初期値として設定するこ
とができるため、ダ行から再起動へ移る際の速度変化を
滑らかにすることができる。
According to the embodiment described above, the speed and acceleration of the vehicle when transitioning to restart operation can be easily set as initial values using two gates and one strobe signal generation circuit. This allows for smoother speed changes when restarting.

第4図は本発明の他の実施例を示すブロック図であって
、第2図と同一部分は同一信号で表わしその説明は省略
する。
FIG. 4 is a block diagram showing another embodiment of the present invention, in which the same parts as in FIG. 2 are represented by the same signals, and their explanation will be omitted.

第4図において、第2図に示した実施例と異なる点は、
ゲート19およびゲート20のゲート制御信号8TBを
、再起動指令R,8Tとダ行指令DKとを論理回路22
に入力して、この論理出力として得ている点である。
In Fig. 4, the differences from the embodiment shown in Fig. 2 are as follows.
The gate control signal 8TB of the gates 19 and 20, the restart commands R and 8T, and the row command DK are sent to the logic circuit 22.
This is the point obtained as the logical output by inputting to .

第5図は、本実施例におけるダ行状態、再起動状態にお
ける各信号の様子をタイミングチャートに図示したもの
である。図中の記号は第4図における信号名と一致して
いる。以下第5図に従って動作の説明を行なう。
FIG. 5 is a timing chart showing the state of each signal in the DOWN state and the restart state in this embodiment. The symbols in the figure correspond to the signal names in FIG. The operation will be explained below according to FIG.

定速走行を続けている車輛をダ行状態にするべくダ行指
令DKを出すとゲート制御信号8TBが出力されてゲー
ト19およびゲート20は開かれる。したがって車輛が
ダ行状態である期間は、走行速度パターンBとしては車
輛の速度出力Mがセットされ、走行加速度パターンDと
しては車輛の加速度出力Nがセットされることになる。
When a go command DK is issued to bring the vehicle, which continues to travel at a constant speed, into a go state, a gate control signal 8TB is output and gates 19 and 20 are opened. Therefore, during the period when the vehicle is in the D-line state, the vehicle's speed output M is set as the traveling speed pattern B, and the vehicle's acceleration output N is set as the traveling acceleration pattern D.

再起動指令R8Tが出されるとゲート制御信号出力はL
OWとなシグート19およびゲート20は閉じられる。
When the restart command R8T is issued, the gate control signal output becomes L.
OW gate 19 and gate 20 are closed.

これ以降走行速度パターンBは再起動指令R8Tが出さ
れた時の車輛速度を初期値として、また走行加速度パタ
ーンDは再起動開始時8Tが出された時の車輛加速度を
初期値として、各速度パターンB、Dを立上げることに
なる。
From now on, the traveling speed pattern B has the vehicle speed when the restart command R8T is issued as the initial value, and the traveling acceleration pattern D has the vehicle acceleration when the restart command R8T is issued as the initial value, and each speed is set as the initial value. Patterns B and D will be launched.

以上説明した実施例によれば、ストローブ信号の発振回
路は不用となり初期値設定のためのゲートの制御は受動
論理回路だけで行なうことができる。
According to the embodiment described above, the strobe signal oscillation circuit is not required, and the gate control for setting the initial value can be performed only by the passive logic circuit.

以上の説明から明らかなように本発明によれば、ダ行状
態から車輛を再起動させる場合に走行速度パターンの初
期値として再起動開始時の車輛の速度を与え、また走行
加速度パターンの初期値として再起動開始時の車輛の加
速度を与えるので、ダ行状態から再起動状態に移る際の
車輛の速度制御を円滑に行なうことができ、乗心地の良
好なリニアシンクロナスモータ式車輛の速度制御を行な
うことができる。
As is clear from the above description, according to the present invention, when restarting a vehicle from a running state, the speed of the vehicle at the time of restarting is given as the initial value of the traveling speed pattern, and the initial value of the traveling acceleration pattern is given as the initial value of the traveling speed pattern. Since the acceleration of the vehicle at the start of restart is given as can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的なリニアシンクロナスモータ式車輛の制
御システムを示すブロック図である。第2図は本発明の
一実施例を示すブロック図であり、第3図は第2図の実
施例の動作を説明するためのタイムチャート、第4図は
本発明の他の実施例を示すブロック図であシ、第5図は
、第4図の実施例の動作を説明するためのタイムチャー
トである。
FIG. 1 is a block diagram showing a control system for a general linear synchronous motor vehicle. Fig. 2 is a block diagram showing one embodiment of the present invention, Fig. 3 is a time chart for explaining the operation of the embodiment of Fig. 2, and Fig. 4 shows another embodiment of the invention. FIG. 5 is a time chart for explaining the operation of the embodiment shown in FIG. 4.

Claims (1)

【特許請求の範囲】 1、速度基準指令に基づいて車輛の走行速度パター/を
発生し、さらに前記走行速度パターンに比例した周波数
を有する周波数パターンを発生させ、この周波数パター
ンの位相と車輛の位置信号の位相との位相差を検出して
この位相差データに基づいて所定の補償演算を行ない、
この演算値によって一次側コイルに通電する電流パター
ンの実効値を調節し車輛の速度を制御するリニアシンク
ロナスモータ式車輛の制御装置において、 ダ行状態から再起動状態に移る時の前記・走行速度パタ
ーンの初期値として再起動開始時の車輛の実速度を与え
、この初期値から走行速度パターンの値を速度基準指令
に向けて変化させる走行速度パターン発生装置を有する
リニアシンクロナスモータ式車輛の制御装置。    
 。 2、前記実速度を初期とする走行速度パターンは、再起
動開始時の車輌の実加速度を初期値とする一定の加速度
変化率で変化させることを特徴とする特許請求の範囲第
1項記載のリニアシンクロナスモータ式車輛の制御装置
[Claims] 1. Generate a traveling speed pattern of the vehicle based on a speed reference command, further generate a frequency pattern having a frequency proportional to the traveling speed pattern, and determine the phase of this frequency pattern and the position of the vehicle. Detecting the phase difference with the phase of the signal and performing a predetermined compensation calculation based on this phase difference data,
In a control device for a linear synchronous motor vehicle that controls the speed of the vehicle by adjusting the effective value of the current pattern energized to the primary coil based on this calculated value, the traveling speed pattern described above when transitioning from the running state to the restart state is used. A control device for a linear synchronous motor vehicle, which has a traveling speed pattern generator that gives the actual speed of the vehicle at the time of starting restart as an initial value, and changes the value of the traveling speed pattern from this initial value toward a speed reference command.
. 2. The traveling speed pattern having the actual speed as an initial value is changed at a constant rate of change in acceleration with the actual acceleration of the vehicle at the start of restart as an initial value. Control device for linear synchronous motor vehicle
JP56126809A 1981-08-14 1981-08-14 Controlling device for linear synchronous motor vehicle Granted JPS5829302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56126809A JPS5829302A (en) 1981-08-14 1981-08-14 Controlling device for linear synchronous motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56126809A JPS5829302A (en) 1981-08-14 1981-08-14 Controlling device for linear synchronous motor vehicle

Publications (2)

Publication Number Publication Date
JPS5829302A true JPS5829302A (en) 1983-02-21
JPS633525B2 JPS633525B2 (en) 1988-01-25

Family

ID=14944487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56126809A Granted JPS5829302A (en) 1981-08-14 1981-08-14 Controlling device for linear synchronous motor vehicle

Country Status (1)

Country Link
JP (1) JPS5829302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249889A (en) * 1984-05-21 1985-12-10 Mitsubishi Electric Corp Speed controller of motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561788A (en) * 1979-06-15 1981-01-09 Meidensha Electric Mfg Co Ltd Method of switching power supply of induction motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561788A (en) * 1979-06-15 1981-01-09 Meidensha Electric Mfg Co Ltd Method of switching power supply of induction motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249889A (en) * 1984-05-21 1985-12-10 Mitsubishi Electric Corp Speed controller of motor

Also Published As

Publication number Publication date
JPS633525B2 (en) 1988-01-25

Similar Documents

Publication Publication Date Title
DE69515323D1 (en) MODEL-BASED PREDICTIVE CONTROL DEVICE AND METHOD
JPS6140602A (en) Control optimization method for machine tool drives
JPS5829302A (en) Controlling device for linear synchronous motor vehicle
US4700120A (en) Control for a stepper motor or other synchronous motor
JP3377532B2 (en) Automatic flight control system
JP3160793B2 (en) Scheduled operation control device for vehicles
JPH04364307A (en) Fixed position stop controller for train
JPS58191004A (en) Searching circuit of extreme value
JPH07285745A (en) Speed control device for inverter for elevator
JP2817745B2 (en) Control device for linear synchronous motor vehicle
JPH0566842A (en) Controller of servomotor
JPH0561553A (en) Servo motor controller
JPH11269464A (en) Control apparatus for rerunning of on-rail moving machine
JPH0429505A (en) Controller for linear synchronous type vehicle
JPH03173303A (en) Automatic train controller
JP3193270B2 (en) Control device for linear synchronous motor
SU907751A1 (en) Device for frequency control of induction electric drive
JPS6111444Y2 (en)
JPH0678599A (en) Controller for water wheel generator
JPH0488404A (en) Position setting system for numerical controller
JPS60207480A (en) Controller for driving motor
JPS6127998B2 (en)
JPH08168113A (en) Run pattern correction device
JPH0746717A (en) Controller for linear synchronous motor
KR940022466A (en) How to control drums and capstan motors